微粒暗色包体中锆石的形态演化 及其制约机制*

汪 相

(南京大学地球科学系, 南京 210093)

J.-R. Kienast

(Laboratoire de Petrologie, Universite de Paris-7, 75252-Paris Cedex 05, France)

摘要 在浙江青田钙碱性花岗岩的微粒暗色包体中存在着 3 种不同类型的锆石. 其中,A 类锆石具有最小的、但变化范围最大的 $I_{\rm pr}$, $I_{\rm py}$ 和 $I_{\rm el}$ 值;C 类锆石与 A 类锆石相反,具有最大的、但变化范围最小的 $I_{\rm pr}$, $I_{\rm py}$ 和 $I_{\rm el}$ 值;B 类锆石的晶型特征介于 A 类锆石与 C 类锆石之间. 锆石的电子探针分析表明,微量元素(Hf, U, Y, Th)含量从 A 类锆石至 C 类锆石呈现为连续增大的演化趋势,且伴随着含量的变化范围亦趋于增大. 这些特征反映了 A 类锆石、B 类锆石和 C 类锆石依次形成于包体岩浆冷凝过程的不同阶段或包体岩浆侵入过程的不同空间位置. 根据晶体的 UO_2/HfO_2 , ThO_2/Y_2O_3 , $UO_2/(ThO_2+Y_2O_3)$ 比值分别与 $I_{\rm pr}$, $I_{\rm py}$ 和 $I_{\rm el}$ 数值呈显著的正相关性,可以认为锆石晶型变化是由于在不同锆石晶面上微量元素的差异性分配造成的. 结合微粒暗色包体的岩石学特征和锆石的晶型和成分标型特征,可以推测包体岩浆可能同源于产生寄主花岗岩浆的部分熔融区,为该区残留物质部分熔融作用而分离出来的熔体.

关键词 锆石 晶型 微量元素 微粒暗色包体

由于锆石普遍存在于岩浆岩中,且经过漫长的地质作用以后仍然保留了它的原生特征.因此,锆石在重砂副矿物的成因属性研究中一直起着非常重要的作用.其中,锆石的规则而又多变的聚形特征使得锆石成为一个比较典型的形态标型矿物.天然锆石的形态观察表明,锆石的{100}和{110}柱面之间、{211}和{101}双锥面之间的相对发育程度分别受到锆石结晶时熔体的温度和碱度的控制^[1].然而,晶体内部的环带构造揭示,锆石晶面的生长速度主要取决于生长介质中 ZrSiO₄ 的过饱和度和一些特殊的微量元素丰度,它们分别决定了柱体和双锥体的形态^[2].与此相反,Benisek等人^[3]的电子探针分析显示,熔体中铀的富集有利于锆石发育{110}柱面^[3].事实上,许多作者^[4~7]早已提到,锆石的形态与它的化学成分有一定的相关性.但是,在何种条件下、哪些元素能够真正影响锆石的晶面生长速度,至今尚无有关的详细研究.

本文将利用微粒暗色包体中的锆石,定量地研究锆石晶型的演化规律;然后,结合锆石的微量元素地球化学特征,探讨锆石晶型演化的机制;从而,为解决岩石包体的成因问题提供一条新的研究途径.

¹⁹⁹⁸⁻¹²⁻²⁶ 收稿, 1999-03-20 收修改稿

^{*} 国家自然科学基金资助项目(批准号: 49632080)

1 地质背景与研究方法

1.1 地质背景

在中国东南沿海地区的深熔型钙碱性花岗岩中,经常出现以石英闪长岩质为主要成分的 微粒暗色包体.由于它们普遍具有塑性变形的形态(大部分包体的长度在 10~20 cm 范围内)、微粒(或细粒)结构和冷凝边构造,且经常分布在岩体的中心相部位,故被认为是由少量温度较高的中基性岩浆侵入到主体花岗质岩浆中快速冷凝形成的^[8,9].

在浙江省的青田钙碱性花岗岩中亦发现这类岩浆结晶成因的岩石包体[10]。本文以该包体中人工提取出来的锆石晶体为研究样品,分别制成普通砂薄片和探针砂薄片,进行晶型学和地球化学方面的研究,以揭示锆石的晶型演化机制及其地质意义。

1.2 晶型学研究

在天然锆石晶体上最常见的晶面为{100}, {110}, {211}和{101}4种单形的晶面.这些晶面构成了锆石形态的 3 个彼此独立的组成部分,即由锆石的{110}与{100}柱面、{101}与{211}双锥面以及柱体与锥体之间的相对发育程度决定的柱体形态、锥体形态以及延长形态,它们分别可以通过下列 3 个相应的晶型指数(其数值变化范围均在 0 与 1 之间)被定量地确定下来:

柱面指数:
$$I_{\mathrm{pr}} = \frac{W_{\{\mathrm{110}\}}}{W_{\{\mathrm{100}\}} + W_{\{\mathrm{110}\}}}$$
, 锥面指数: $I_{\mathrm{py}} = \frac{M_{\mathrm{py}} - L_{\mathrm{py}}}{M_{\mathrm{py}} - N_{\mathrm{py}}}$, 延长指数: $I_{\mathrm{el}} = \frac{L_{\mathrm{pr}}}{W_{\mathrm{pr}} + L_{\mathrm{pr}}}$,

其中, $W_{(100)}$ 和 $W_{(110)}$ 分别为 $\{100\}$ 面和 $\{110\}$ 面的宽度, L_{pr} 和 L_{py} 分别为柱体和锥体的长度, W_{pr} 为在 $\{110\}$ 面上投影的柱体宽度, M_{py} 和 N_{py} 分别为柱体宽度确定时锥体长度变化范围的最大值和最小值(详细注释和相应图解见文献[11]).

1.3 微量元素分析

为了研究锆石晶型变化的机制, 我们利用法国巴黎第七大学岩石学实验室的 Cameca Camebax 型电子探针对锆石中最易置换锆的元素(Hf, U, Y 和 Th)进行了测试分析. 电子探针的分析条件为: 25 kV 加速电压, 100 nA 电流强度, 电子束直径约在 1 μm 左右, 每点测试计时约 2 min 左右, 各元素的分析误差在±0.01%范围之内.

2 锆石的晶型特征

镜下观察发现,包体中的锆石具有晶面简单、棱角分明、晶形规则,且含有岩浆包裹体等岩浆结晶成因的特征.然而,根据晶体的色泽、粒径和结晶习性等方面的差异性,它们可以区分为3种不同的类型:

- (1) A 类锆石(图 1(a)) 无色透明, 粒径较大(平均粒径宽度为 58.6 μm), 含较多的岩浆包裹体. 这类锆石的颗粒数量较少, 仅占整个锆石群的 15%.
- (2) B 类锆石(图 1(b)) 自形性和透明度略有下降,粒径明显变小(平均粒径宽度为 39.5 μm),在透射显微镜下(特别在电子荧光图中)呈现明显的砂钟构造. 这类锆石的颗粒数量显著增加,占整个锆石群的 32%.
- (3) C 类锆石(图 1(c)) 由于遭受了不同程度的变生作用而呈黄褐色, 半透明状, 普遍具有带状构造. 它们常以微小的晶体充填在早期造岩矿物的粒间(平均粒径宽度为 10.8 μm), 或以环带形式再生在 B 类锆石之上. 它们是包体中数量最多的一类锆石, 占整个锆石群的 53%.

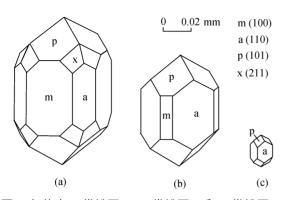


图 1 包体中 A 类锆石(a), B 类锆石(b)和 C 类锆石(c)形态示意图

通过显微镜下测定及数据处理(表 1),我们发现暗色微粒包体中三类锆石的 I_{pr} , I_{py} 和 I_{el} 分布范围呈现连续过渡的特征,表现为从 A 类锆石经 B 类锆石至 C 类锆石,它们的 I_{pr} , I_{py} 和 I_{el} 平均值分别从 0.35 增加到 1,从 0.79 增加到 1,以及从 0.43 增加到 0.57(图 2). 资料表明,随着结晶温度的降低,岩浆中结晶锆石的 {110}柱面和{101}双锥面相对{100}柱面和{211}双锥面的发育程度,以及晶体长度相对晶体宽度的延长程度趋于增加(即

晚期锆石的 $I_{\rm pr}$, $I_{\rm py}$ 和 $I_{\rm el}$ 值趋于增大) $^{[1\sim4.7]}$. 因此,包体中锆石晶型的连续变化趋势揭示了 A 类锆石、B 类锆石和 C 类锆石依次形成于包体岩浆冷凝过程的不同阶段. 事实上, A 类锆石所显示的最大粒径与最少颗粒数量说明了它们的生长速度较大,而成核速率较小,指示了较小过冷度的结晶环境,因此它们很可能形成于包体岩浆侵入之前的深部熔融区. B 类锆石的砂钟构造以及较小的粒径和较多的颗粒数量则指示了较大过冷度的结晶环境,故它们很可能形成于包体岩浆侵入到上部较冷的花岗质岩浆的过程中. 至于 C 类锆石,它的产出形式(如再生边)及其最小的粒径和最多的颗粒数量说明了它们形成于包体岩浆冷凝过程的最后阶段,此时,由于温度的下降和结晶分异作用所造成的 $ZrSiO_a$ 过饱和度加大了锆石的成核速率.

另一方面,每一类锆石的晶型变化范围(对应于 $I_{\rm pr}$, $I_{\rm py}$ 和 $I_{\rm el}$ 数值的离散度)也是各不相同的,A 类锆石具有最大的晶型变化范围,而 B 类锆石至 C 类锆石的晶型变化范围趋于减小(图 2).在深部熔融区,温度的变化幅度相对较小,故熔体中 $ZrSiO_4$ 过饱和度、铝碱比值、水的活动性等化学因素可以上升为影响锆石形态变化的主要因素[1,2,4]. 当初始的包体岩浆具有一定的化学不均匀性时,不同部位或不同时间结晶出来的 A 类锆石可以受到不同的化学因素的干扰,从而导致它们的晶型具有较大的变化范围. 相反,在包体岩浆上侵到花岗质岩浆的过程中,由于温度的急剧下降导致熔体中 $ZrSiO_4$ 过饱和度上升而结晶出 B 类锆石;至于包体岩浆冷凝过程的最后阶段,由于结晶分异作用和温度的下降导致了包体岩浆再次达到 $ZrSiO_4$ 过饱和,从而形成 C 类锆石.在后两者的结晶过程中,一些大离子半径的微量元素(如 Th,Y 和 U)有选择性地结合到锆石的某些晶面上,从而控制了相应晶面的发育程度,导致锆石的晶型变化范围趋于变小(见下述).

3 锆石的化学特征

为了研究包体中锆石的晶型演化机制,我们利用电子探针对包体中的锆石进行了化学成分的测试(表 2). 我们发现,从 A 类锆石至 C 类锆石,与锆的地球化学性质最相近的微量元素 (Hf, U, Y 和 Th)含量具有非常规律的演化趋势.

从 A 类锆石经 B 类锆石至 C 类锆石,微量元素含量呈现为连续增加的趋势(表 2). 由于 A 类锆石形成于温度较高、过冷度较小的深部熔融区,在此环境中晶体的生长速度相对较慢,而

操行 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Name
$L_{pr}^{(rid)}$ 28.5 44.5 39.7 55.9 83.5 35.6 36.8 50.8 42.8 24.0 29.6 58.6 13.2 45.6 45.9 40.0 17.3 72.5 34.7 42.7 $L_{pr}^{(rid)}$ 20.31 0.52 0.40 0.55 0.37 0.09 0.29 0.33 0.48 0.14 0.36 0.55 0.17 0.42 0.12 0.22 0.32 0.34 0.18 0.25 $L_{pr}^{(rid)}$ 0.78 0.99 0.99 0.91 0.95 0.58 0.78 0.73 0.69 0.69 0.61 0.85 0.88 0.35 0.87 0.88 0.41 0.78 1.00 0.76 0.85 $L_{pr}^{(rid)}$ 0.78 0.99 0.90 0.91 0.95 0.58 0.78 0.73 0.69 0.69 0.61 0.85 0.88 0.35 0.87 0.88 0.41 0.78 1.00 0.76 0.85 $L_{pr}^{(rid)}$ 0.78 0.85 0.84 0.95 0.89 0.99 0.91 0.95 0.58 0.78 0.78 0.73 0.69 0.61 0.85 0.85 0.88 0.35 0.87 0.88 0.41 0.78 1.00 0.76 0.85 0.85 0.89 0.99 0.91 0.95 0.98 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90
$L_{\rm pv}^{\rm re}$ 18.5 9.8 16.1 16.1 31.1 50.2 25.6 46.6 39.8 34.0 16.4 18.7 33.4 22.0 29.8 52.0 29.3 15.8 23.4 17.4 17.4 17.5 18.5 19
Implement 0.31 0.52 0.40 0.55 0.37 0.09 0.29 0.33 0.48 0.14 0.36 0.65 0.17 0.42 0.12 0.22 0.32 0.34 0.18 0.25 Implement 0.42 0.69 0.99 0.91 0.95 0.58 0.78 0.73 0.69 0.61 0.85 0.85 0.48 0.35 0.23 0.45 0.38 0.31 0.22 0.45 0.85 0.21 0.60 0.41 0.51 0.85 0.78 0.73 0.69 0.60 0.23 0.45 0.38 0.35 0.21 0.60 0.41 0.51 0.85 0.24 0.48 0.24
I_{cl} 0.42 0.60 0.44 0.57 0.49 0.30 0.40 0.35 0.29 0.43 0.56 0.23 0.45 0.38 0.35 0.21 0.60 0.41 0.51 W I_{11001} 36.0 45.6 48.1 14.1 12.0 45.3 40.0 62.2 36.0 57.6 22.6 32.8 30.4 17.0 24.0 20.0 27.2 29.6 17.6 25.6 W_{11001} 11.3 35.6 22.4 18.4 17.0 16.0 11.3 28.0 6.8 7.4 25.6 12.4 12.4 16.0 4.5 15.3 13.6 13.0 24.2 25.0 26.0 22.0 18.5 46.6 18.5 46.6 18.8 33.6 32.0 18.6 18.5 49.6 19.8 33.6 32.0 18.0 24.0 24.0 40.0 24.0 40.0 24.0 40.0 24.0 40.0 24.0 40.0 25.0
$W_{(110)}$ 36.0 45.6 48.1 14.1 12.0 45.3 40.0 62.2 36.0 57.6 22.6 32.8 30.4 17.0 24.0 20.0 27.2 29.6 17.6 25.6 $W_{(110)}$ 11.3 35.6 22.4 18.4 17.0 16.0 11.3 28.0 6.8 7.4 25.6 12.4 12.4 16.0 4.5 15.3 13.6 13.0 24.3 17.0 $L_{\rm pr}$ 40.2 70.8 31.1 51.8 30.1 74.2 64.0 89.9 51.1 36.7 64.4 24.8 40.0 46.2 26.1 58.6 36.7 57.9 39.6 34.9 $L_{\rm pr}$ 19.9 52.6 50.4 18.1 17.0 26.9 22.0 51.0 18.5 49.6 19.8 33.6 32.0 18.9 21.0 24.7 20.4 19.8 21.0 18.6 $L_{\rm pr}$ 10.0 0.68 0.63 0.76 0.72 0.98 0.99 0.81 1.00 0.63 0.96 0.61 0.60 0.76 0.65 0.61 0.89 0.94 0.83 0.95 $L_{\rm cl}$ 10.0 0.68 0.63 0.76 0.72 0.98 0.99 0.81 1.00 0.63 0.96 0.61 0.60 0.76 0.65 0.61 0.89 0.94 0.83 0.95 $L_{\rm cl}$ 10.39 0.41 0.26 0.57 0.47 0.48 0.49 0.44 0.47 0.29 0.59 0.30 0.42 0.54 0.40 0.57 0.47 0.48 0.49 0.44 0.47 0.29 0.59 0.30 0.42 0.54 0.40 0.57 0.47 0.51 0.45 0.40 $L_{\rm pr}$ 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.
N_{1100}
N_{1100}
$L_{\rm pr}$
I_{pr}^{ro} 0.24 0.44 0.32 0.57 0.59 0.26 0.22 0.31 0.16 0.11 0.53 0.28 0.29 0.49 0.16 0.43 0.33 0.31 0.58 0.40 I_{pv} 1.00 0.68 0.63 0.76 0.72 0.98 0.99 0.81 1.00 0.63 0.96 0.61 0.60 0.76 0.61 0.89 0.94 0.83 0.95 I_{cl} 0.39 0.41 0.26 0.57 0.47 0.48 0.49 0.44 0.47 0.29 0.53 0.30 0.42 0.54 0.40 0.57 0.41 0.51 0.45 0.40 I_{cl} 0.0 0.1 0.24 0.25 0.57 0.47 0.44 0.49 0.50 51 52 53 54 55 56 57 58 59 60 I_{cl} 0.00 1.02 1.05 1.4 4.0 15.8 13.0 21.6
$\frac{I_{\rm pv}}{I_{\rm cl}}$
P_{c1} 0.39 0.41 0.26 0.57 0.47 0.48 0.49 0.44 0.47 0.29 0.53 0.30 0.42 0.54 0.40 0.57 0.41 0.51 0.45 0.40 颗粒样号 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 $W_{(100)}$ 32.0 21.6 14.4 9.6 7.4 4.0 15.8 13.0 21.6 7.9 8.5 3.2 7.4 13.6 6.2 9.6 0.0 6.8 6.8 2.8 U_{pr} 22.5 36.8 35.0 46.2 42.4 41.0 32.1 60.3 62.3 54.7 42.4 44.0 35.4 51.8 34.6 41.6 45.8 46.4 51.9 57.0 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5
颗粒样号 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 $W_{[100]}$ 32.0 21.6 14.4 9.6 7.4 4.0 15.8 13.0 21.6 7.9 8.5 3.2 7.4 13.6 6.2 9.6 0.0 6.8 6.8 2.8 $W_{[110]}$ 10.2 17.5 24.9 18.4 29.6 24.0 33.6 33.6 27.2 40.8 28.0 31.7 28.0 24.8 27.2 26.4 36.0 30.4 28.0 32.0 L_{pr} 22.5 36.8 35.0 46.2 42.4 41.0 32.1 60.3 62.3 54.7 42.4 44.0 35.4 51.8 34.6 41.6 45.8 46.4 51.9 57.0 51.5 I_{pr} 0.24 0.45 0.63 0.66 0.80 0.86 0.88 0.72 0.56 0.84 0.77 0.91 0.79 0.65 0.81 0.73 1.00 0.82 0.80 0.9 I_{py} 0.46 0.82 1.00 0.81 1.00
$W_{(100)}$ 32.0 21.6 14.4 9.6 7.4 4.0 15.8 13.0 21.6 7.9 8.5 3.2 7.4 13.6 6.2 9.6 0.0 6.8 6.8 2.8 $W_{(110)}$ 10.2 17.5 24.9 18.4 29.6 24.0 33.6 33.6 27.2 40.8 28.0 31.7 28.0 24.8 27.2 26.4 36.0 30.4 28.0 32.0 $L_{\rm pr}$ 22.5 36.8 35.0 46.2 42.4 41.0 32.1 60.3 62.3 54.7 42.4 44.0 35.4 51.8 34.6 41.6 45.8 46.4 51.9 57.0 $L_{\rm pr}$ 36.7 20.8 14.5 14.1 12.8 9.5 17.9 16.6 18.5 16.6 12.8 11.6 12.3 14.1 11.5 12.8 11.5 12.8 11.5 12.8 12.0 11.5 $L_{\rm pr}$ 0.24 0.45 0.63 0.66 0.80 0.86 0.68 0.72 0.56 0.84 0.77 0.91 0.79 0.65 0.81 0.73 1.00 0.82 0.80 0.9 $L_{\rm pr}$ 0.46 0.82 1.00 0.81 1.00 1.00 1.00 1.00 1.00 1.00
$V_{(110)}^{(100)}$ 10.2 17.5 24.9 18.4 29.6 24.0 33.6 33.6 27.2 40.8 28.0 31.7 28.0 24.8 27.2 26.4 36.0 30.4 28.0 32.0 L_{pr} 22.5 36.8 35.0 46.2 42.4 41.0 32.1 60.3 62.3 54.7 42.4 44.0 35.4 51.8 34.6 41.6 45.8 46.4 51.9 57.0 L_{py} 36.7 20.8 14.5 14.1 12.8 9.5 17.9 16.6 18.5 16.6 12.8 11.6 12.3 14.1 11.5 12.8 11.5 12.8 11.5 12.8 12.0 11.5 L_{py} 0.46 0.82 1.00 0.81 1.00 1.00 1.00 1.00 1.00 1.00
L_{pr} 22.5 36.8 35.0 46.2 42.4 41.0 32.1 60.3 62.3 54.7 42.4 44.0 35.4 51.8 34.6 41.6 45.8 46.4 51.9 57.0 I_{pr} 36.7 20.8 14.5 14.1 12.8 9.5 17.9 16.6 18.5 16.6 12.8 11.6 12.3 14.1 11.5 12.8 11.5 12.8 11.5 12.8 12.0 11.5 I_{pr} 0.24 0.45 0.63 0.66 0.80 0.86 0.68 0.72 0.56 0.84 0.77 0.91 0.79 0.65 0.81 0.73 1.00 0.82 0.80 0.9 I_{pr} 0.46 0.82 1.00 0.81 1.00 1.00 1.00 1.00 1.00 1.00
I_{py}^{ir} 36.7 20.8 14.5 14.1 12.8 9.5 17.9 16.6 18.5 16.6 12.8 11.6 12.3 14.1 11.5 12.8 11.5 12.8 12.0 11.5 I_{py} 0.24 0.45 0.63 0.66 0.80 0.86 0.68 0.72 0.56 0.84 0.77 0.91 0.79 0.65 0.81 0.73 1.00 0.00 0.80 0.99 I_{py} 0.46 0.82 1.00 0.81 1.00
$ \frac{I_{\rm pr}}{I_{\rm py}} = \begin{array}{ccccccccccccccccccccccccccccccccccc$
$I_{\rm py}$
$\frac{I_{\rm cl}}{I_{\rm pp}}$ $\frac{I_{\rm cl}}{I_{\rm cl}}$ I
$W_{(100)}$ 9.1 5.7 11.3 2.8 8.5 7.4 8.5 7.4 6.8 15.8 7.4 13.0 7.4 7.4 9.6 7.4 2.8 8.5 7.4 17.0 $W_{(101)}$ 25.6 24.0 32.0 36.0 36.0 21.6 28.0 33.6 22.4 24.0 20.0 32.0 33.6 29.6 26.4 25.6 20.0 24.0 24.0 20.0 $L_{\rm pr}$ 55.4 41.9 42.9 46.4 50.9 31.5 42.4 39.8 49.9 50.3 32.5 51.7 47.8 52.8 52.8 42.6 34.2 65.0 64.4 51.8 $L_{\rm pr}$ 12.3 10.2 15.4 12.8 15.4 10.2 12.8 14.1 10.2 14.9 9.7 16.1 14.1 12.8 12.8 11.5 7.7 11.5 11.0 14.1 $L_{\rm pr}$ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
$W_{(110)}^{(101)}$ 25.6 24.0 32.0 36.0 36.0 21.6 28.0 33.6 22.4 24.0 20.0 32.0 33.6 29.6 26.4 25.6 20.0 24.0 24.0 20.0 L_{pr} 55.4 41.9 42.9 46.4 50.9 31.5 42.4 39.8 49.9 50.3 32.5 51.7 47.8 52.8 52.8 42.6 34.2 65.0 64.4 51.8 L_{pr} 12.3 10.2 15.4 12.8 15.4 10.2 12.8 14.1 10.2 14.9 9.7 16.1 14.1 12.8 11.5 7.7 11.5 11.0 14.1 I_{pr} 1.00 1.0
$L_{\rm pr}$ 55.4 41.9 42.9 46.4 50.9 31.5 42.4 39.8 49.9 50.3 32.5 51.7 47.8 52.8 52.8 42.6 34.2 65.0 64.4 51.8 $L_{\rm py}$ 12.3 10.2 15.4 12.8 14.1 10.2 14.9 9.7 16.1 14.1 12.8 12.8 11.5 7.7 11.5 11.0 14.1 $I_{\rm py}$ 1.00 1.01 1.00 <th< th=""></th<>
$L_{\rm py}^{\rm ir}$ 12.3 10.2 15.4 12.8 15.4 10.2 12.8 14.1 10.2 14.9 9.7 16.1 14.1 12.8 12.8 11.5 7.7 11.5 11.0 14.1 $I_{\rm py}$ 0.74 0.81 0.74 0.93 0.81 0.75 0.77 0.82 0.77 0.60 1.00 1.08 0.88 0.73 0.78 0.88 0.74 0.77 0.54 $I_{\rm py}$ 1.00 1.00
I_{pr} 0.74 0.81 0.74 0.93 0.81 0.75 0.77 0.82 0.77 0.60 0.73 0.71 0.82 0.80 0.73 0.78 0.88 0.74 0.77 0.54 I_{py} 1.00 1.00 </th
$I_{\rm py}$ 1.00 1.00<
I _c 0.59 0.57 0.47 0.54 0.51 0.50 0.51 0.48 0.61 0.52 0.52 0.51 0.52 0.52 0.52 0.51 0.52 0.52 0.52 0.51 0.52 0.52 0.52 0.51 0.52 0.52 0.52 0.51 0.52 0.52 0.52 0.51 0.52 0.52 0.52 0.51 0.52
颗粒样号 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
W_{1100} 0.0 4.0 7.4 9.6 6.8 8.5 4.0 3.4 7.9 6.8 7.4 9.6 9.1 10.2 7.4 5.7 10.2 8.0 7.4 10.7
$W_{[110]}$ 33.6 28.0 32.0 20.0 28.0 32.0 32.0 33.6 30.4 28.0 29.6 28.0 23.2 25.6 17.6 30.4 25.6 32.8 25.6 26.4
$L_{\rm pr}^{(110)}$ 52.1 44.1 46.5 46.5 47.9 55.8 35.9 57.8 47.0 41.5 52.8 41.4 33.0 38.4 39.7 41.0 38.4 51.8 30.6 57.4
$L_{\rm py}^{\mu}$ 10.8 10.8 13.6 10.8 12.0 14.1 12.0 12.3 13.3 12.0 12.8 13.3 11.5 12.8 9.0 12.3 12.8 14.1 11.5 13.3
$I_{\text{pr}}^{\text{CO}} = 1.00 - 0.88 - 0.81 - 0.68 - 0.80 - 0.79 - 0.89 - 0.91 - 0.79 - 0.80 - 0.80 - 0.74 - 0.72 - 0.72 - 0.71 - 0.84 - 0.72 - 0.80 - 0.780.71$
$I_{\rm py}$ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
<u>I_{el} 0.61 0.57 0.52 0.58 0.56 0.56 0.49 0.60 0.53 0.52 0.57 0.50 0.48 0.49 0.59 0.52 0.49 0.54 0.460.58</u>
颗粒样号 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
$\overline{W_{(100)}} = 9.6 - 0.00 - $
W ₍₁₁₀₎ 18.4 44.1 36.8 53.7 39.6 35.1 46.4 53.7 36.8 35.1 53.7 52.0 55.4 59.4 56.6 63.9 40.7 31.1 42.4 48.1
L _{pr} 23.5 55.7 58.9 61.6 40.2 73.5 43.9 61.6 48.5 59.1 61.6 70.7 56.5 90.0 75.8 83.1 55.5 40.1 44.8 65.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
颗粒样号 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
$\frac{887411775}{W_{\{100\}}} = 0.00 = 0.$
$W_{(110)}$ 56.6 49.8 50.9 45.3 39.6 39.6 42.4 45.3 53.7 42.4 45.3 38.5 53.7 48.1 45.3
$L_{\rm pr}^{\rm 1100}$ 75.8 64.1 75.4 63.0 58.6 70.6 51.2 63.0 77.6 44.8 63.0 51.4 65.6 62.8 75.0
L_{py}^{μ} 18.1 15.9 16.3 14.5 12.7 12.7 13.6 14.5 17.2 13.6 14.5 38.5 53.7 48.1 45.3
$I_{\rm pr}$ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
I_{pv} 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

表 1 包体中 A~C类锆石的晶体组成单元的尺寸(um)和晶型指数 a)

a) 晶型指数(即 $I_{\rm pr},~I_{\rm pp}$ 和 $I_{\rm el}$)及其他的晶体组成单元的尺寸(如 $W_{\rm pr},~M_{\rm py},~N_{\rm py}$ 等)仅通过 4 个实测数据(即 $W_{(100)},~W_{(110)},~L_{\rm pr}$ 和 $L_{\rm pv}$)就可以计算得到 $^{(11)}$. 1 ~ 44 为 A 类锆石, 45 ~ 101 为 B 类锆石, 102 ~ 135 为 C 类锆石

元素的扩散速度相对较快. 因此, 在熔体中那些被排斥在锆石晶体之外的大离子半径元素(U, Y 和 Th 等)难以在锆石的固液界面处相对富集起来, 从而决定了它们与锆石表面的悬键(即氧键)结合的几率较低. 相反, 在较大过冷度环境中结晶的 B 类锆石和 C 类锆石, 它们的生长速度相对元素的扩散速度呈大幅度的提高, 导致在锆石的固液界面处形成一个较大离子半径的微量元素越来越富集、锆越来越贫乏的浓度梯度带. 尽管温度下降会减小锆石中微量元素的分配系数,但当固液界面处微量元素与锆的浓度比值高于一定的水平时,微量元素就可以较大

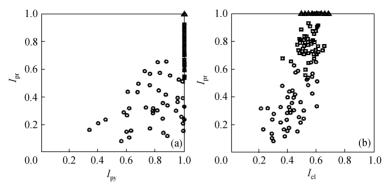


图 2 包体中锆石的 $I_{pr} \sim I_{py}(a)$ 和 $I_{pr} \sim I_{el}(b)$ 的晶型演化图解 $\bigcirc A$ 类锆石, $\bigcirc B$ 类锆石, $\triangle C$ 类锆石

表 2 包体中 A~C 类锆石的微量元素含量(%)、比值及其相应的平均值 $(X_A, X_B \cap X_C)^{ab}$

分析点号	1	2	3	4	5	ϵ	5 '	7	8	9	X_{A}	10	11	12	13	14
HfO ₂	0.55	0.60	0.81	0.64	0.65	0.69	9 0.6	3 0.	78 0	.78 ().66	0.69	0.62	0.70	0.65	0.70
UO_2	0.00	0.00	0.03	0.01	0.00	0.00	0.0	0.0	0 00	.01 (0.01	0.07	0.12	0.08	0.10	0.10
ThO_2	0.03	0.00	0.03	0.02	0.04	0.00	0.0	0.0	0 00	.01 (0.02	0.19	0.44	0.24	0.90	0.67
Y_2O_3	0.16	0.02	0.17	0.19	0.09	0.03	5 0.0	3 0.0	06 0	.05 (0.09	0.39	0.71	0.44	0.63	0.55
UO_2/HfO_2	0.00	0.00	0.04	0.01	0.00	0.00	0.0	0.0	0 00	.01 (0.01	0.11	0.20	0.11	0.15	0.14
ThO_2/Y_2O_3	0.20	0.00	0.21	0.12	0.40	0.00	0.0	0.0	0 00	.18 ().16	0.49	0.62	0.54	1.42	1.21
$UO_2/(ThO_2+Y_2O_3)$	0.00	0.00	0.14	0.03	0.00	0.00	0.0	0.0	0 00	.13 (0.05	0.13	0.11	0.11	0.06	0.08
分析点号	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
HfO ₂	0.72	0.67	0.72	0.67	0.70	0.72	0.89	0.76	0.96	0.62	0.72	0.75	0.95	0.69	0.73	0.54
UO_2	0.09	0.11	0.06	0.07	0.08	0.11	0.11	0.07	0.10	0.09	0.07	0.09	0.14	0.09	0.11	0.04
ThO_2	0.95	0.87	1.17	0.17	0.20	0.53	0.64	0.28	0.29	0.33	0.69	0.27	0.99	0.27	0.75	0.96
Y_2O_3	0.55	0.58	0.51	0.35	0.43	0.48	0.41	0.64	0.54	0.59	0.60	0.43	0.68	0.49	0.60	0.46
UO_2/HfO_2	0.12	0.16	0.08	0.10	0.11	0.15	0.12	0.09	0.11	0.14	0.10	0.12	0.15	0.12	0.15	0.08
ThO_2/Y_2O_3	1.74	1.51	2.30	0.50	0.46	1.11	1.57	0.43	0.54	0.57	1.16	0.62	1.46	0.57	1.26	2.09
$UO_2/(ThO_2+Y_2O_3)$	0.06	0.07	0.04	0.13	0.13	0.11	0.10	0.08	0.12	0.09	0.06	0.13	0.08	0.11	0.08	0.03
分析点号	31		32	33	34	2	X_{B}	35	36	5	37	38	39	9	40	$X_{\rm C}$
HfO ₂	0.6	4 0	.63	0.56	0.65	0.	.71	0.81	1.0	06	1.11	2.18	2.0)3	1.55	1.46
UO_2	0.0	7 0	.07	0.06	0.05	0.	.09	0.08	0.:	29 (0.28	0.89	0.1	2	0.40	0.34
ThO_2	0.4	1 0	.72	0.40	0.13	0.	.54	0.47	0.	77 (0.43	1.11	0.2	25	0.64	0.61
Y_2O_3	0.3	2 0	.59	0.54	0.28	0.	.51	0.40	0.	64 (0.68	0.85	0.1	5	0.72	0.58
UO_2/HfO_2	0.1	1 0	.12	0.11	0.08	0.	.12	0.09	0.:	28	0.25	0.41	0.0)6	0.26	0.24
ThO_2/Y_2O_3	1.2	7 1	.23	0.75	0.46	1.	.06	1.17	1.	19 (0.63	1.31	1.6	57	0.89	1.06
$UO_2/(ThO_2 + Y_2O_3)$	0.1	0 0	.06 0	.07	0.13	0.	.08	0.09	0.:	21 (0.25	0.45	0.3	30	0.29	0.29

a) 1~9 为 A 类锆石, 10~34 为 B 类锆石, 35~40 为 C 类锆石

数量地进入锆石晶格. Burton 等人[12]和 Carpena 等人[6]的研究结果显示, 晶面的快速生长可以导致晶体中微量元素的含量的增加.

事实上,不仅锆石中微量元素的含量变化,而且这些含量的离散度的变化也反映了锆石结晶环境的改变.根据晶体生长理论,在相对缓慢生长的晶体内部,由于晶体与熔体之间达到一定程度的平衡作用,其置换元素的含量具有一定的均匀性,且随着温度的下降而降低.因此,在 A 类锆石中,最小离散度的微量元素分布特征(图 3)说明了锆石的结晶环境应该是温度较高、过冷度较小的深部熔融区.在此环境中,较大离子半径的微量元素以较小且稳定的分配

系数进入锆石晶体,导致它们在锆石中的含量既低又离散度较小.相反,在 B 类和 C 类锆石中,趋于增加的微量元素含量的离散度(图 3)说明了锆石是在过冷度较大的环境中快速结晶的. 当锆石的结晶速度加快时,固液界面处产生一个微量元素浓度增大的梯度带,从而增大了晶体中微量元素含量的变化范围.

此外, 我们需要特别注意到 3 个特征: (1) 在 A 类锆石中, 尽管 Y^{3+} 的离子半径比 U^{4+} 的要大, 但 Y_2O_3 含量远远大于 UO_2 含量

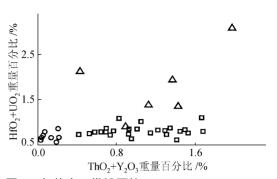


图 3 包体中 3 类锆石的 $HfO_2+UO_2-ThO_2+Y_2O_3$ 图解

○示 A 类锆石, □示 B 类锆石, △示 C 类锆石

(表 2). 显然, A 类锆石结晶时熔体中 Y 含量要高于 U 含量. 基于包体中 F 和 P 等元素丰度均高于寄主花岗岩体 $^{[10]}$, 包体岩浆相对富集 Y 的原因可能与包体岩浆来源于一些含 Y 的暗色矿物(如黑云母)或副矿物(如磷灰石)的熔融作用有关. (2) 在 B 类锆石中, ThO2 和 Y2O3 平均含量分别增加到 0.54%和 0.51%(表 2). 由于 B 类锆石形成于包体岩浆的上侵过程中, 温度的下降使得较大离子半径的 Th4+和 Y3+ (两者的离子半径分别为 0.105 和 0.102 nm $^{[13]}$)首先被排斥在锆石晶体以外, 并在快速生长的锆石的固液界面处相对大量富集. 当它们的浓度(相对不断贫乏的 Zr^{4+})高到一定的数量时,它们在锆石中的绝对含量相应增加. (3) 在 C 类锆石中, HfO2 和 UO_2 含量显著增加(表 2). 由于结晶温度的不断下降,较小离子半径的 Hf^{4+} 和 U^{4+} (两者的离子半径分别为 0.083 和 0.100 nm $^{[13]}$)亦被排斥在锆石晶体以外,并在锆石的固液界面处相对富集,从而增加了它们在锆石中的绝对含量. 此时,虽然 Th^{4+} 和 Y^{3+} 依然在锆石的固液界面处相对富集,但由于 C 类锆石结晶时的温度相对太低,较大离子半径的 Th^{4+} 和 Y^{3+} 在锆石中的分配系数明显下降,故它们进入锆石晶格的绝对数量不再显著提高.

4 锆石晶型与化学成分的关系

比较锆石的外部晶型与内部成分的演化趋势(图 2×3),我们可以看到在 A 类锆石至 C 类 锆石的演化过程中存在着以下两个明显的规律:

- (1) 在数值的大小上, $I_{\rm pr}$ 与(HfO₂+UO₂)含量之间、 $I_{\rm py}$ 与(ThO₂+Y₂O₃)含量之间具有密切的正相关性.从 A 类锆石至 B 类锆石, $I_{\rm pr}$ 与(HfO₂+UO₂)含量的增加非常有限,而 $I_{\rm py}$ 与(ThO₂+Y₂O₃)含量的增加则非常显著;从 B 类锆石至 C 类锆石, $I_{\rm pr}$ 与(HfO₂+UO₂)含量的增加变得较为显著,而 $I_{\rm py}$ 与(ThO₂+Y₂O₃)含量的增加则变得较为有限.
- (2) 在数值的离散度上, $I_{\rm pr}$ 与(HfO₂+UO₂)含量之间、 $I_{\rm py}$ 与(ThO₂+Y₂O₃)含量之间具有密切的负相关性. A 类锆石的(HfO₂+UO₂)和(ThO₂+Y₂O₃)含量具有最小的的离散度,而 $I_{\rm pr}$ 和 $I_{\rm py}$ 具有最大的离散度;C 类锆石的(HfO₂+UO₂)和(ThO₂+Y₂O₃)含量具有最大的离散度,而 $I_{\rm pr}$ 和 $I_{\rm py}$ 则具有最小的离散度. 至于 B 类锆石,它不仅显示了介于前两者的特征,而且本身也显示了这种规律性,如它的(HfO₂+UO₂)含量具有较小的离散度,则它的 $I_{\rm pr}$ 具有较大的离散度;而它的(ThO₂+Y₂O₃)含量具有较大的离散度,则它的 $I_{\rm py}$ 具有较小的离散度.

由干不同的晶面上原子的分布状态及分布密度存在着一定的差异性,在非平衡的结晶条

件下晶体的快速生长将导致不同的晶面上杂质元素发生选择性地类质同像置换作用[14]. 锆石 剖面上的裂变径迹和电子荧光观察已经证实, 许多砂钟构造是由于不同的生长锥中杂质元素 含量(包括具有较大离子半径的微量元素)的显著差异而表现出来的[2,3,6,7].

据此,我们认为: (1)锆石的{100}和{110}柱面生长锥之间存在着 Hf^{4+} 和 U^{4+} 含量上的差别. 由于{110}面的面网密度小于{100}面,较大离子半径的 U^{4+} 主要分布在{110}生长锥中,而较小离子半径的 Hf^{4+} 优先地分布在{100}生长锥中。(2)锆石的{101}和{211}生长锥之间存在着 Th^{4+} 和 Y^{3+} 含量上的差别。其中, Th^{4+} 主要分布在面网密度较大的{101}生长锥中,而 Y^{3+} 与 $[PO_4]^{3-}$ 结合在一起(为了保持电价平衡 $[^{15]}$)分布在面网密度较小的{211}生长锥中。由于晶面上杂质元素的增加会阻滞晶面的法向生长,从而达到增加该晶面发育程度的效应 $[^{6,-16]}$ 。因此,当锆石中 UO_2/HfO_2 , ThO_2/Y_2O_3 以及 $UO_2/(ThO_2+Y_2O_3)$ 比值趋于增加时(表 2),它们的{110}柱面、{211}双锥面以及柱面的法向生长速度逐渐变小,从而导致从 A 类锆石至 C 类锆石 I_{pr} , I_{pr} 和 I_{el} 数值趋于下降。由于分析手段的限制,我们还不能在实际上确定锆石中不同生长锥之间微量元素分配的差异性,但从仅有的一些资料上看,锆石的{110}柱面发育程度确实与 U 含量成正比关系 $[^{3,7,17]}$ 。

另一方面,当锆石中微量元素含量较低时,它们对晶面生长速度的制约作用较小,故造成锆石的晶型具有较大的变化范围(如 A 类锆石);当锆石中($ThO_2+Y_2O_3$)含量(如 B 类锆石)以及 (HfO_2+UO_2)含量(如 C 类锆石)较高时(表现为这些数据的离散度较大),锆石的{101}锥面以及{110}柱面的晶面生长速度的就有可能受到限制,从而导致晶体的锥面以及柱面的发育状况趋于一致(表现为晶型数据的离散度降低). 这种特定的微量元素含量与特定的晶型指数在离散度上的负相关性,从另一个角度证实了锆石的不同生长锥中可以存在着不同的微量元素的富集,从而制约相应生长锥的生长速度,导致锆石晶体的晶型指数的演化.

5 结论

在浙江青田钙碱性花岗岩的微粒暗色包体中存在着 3 种不同类型的锆石. 晶型学研究表明, A 类锆石具有最小的、但变化范围最大的 $I_{\rm pr}$, $I_{\rm py}$ 和 $I_{\rm el}$ 值; C 类锆石与 A 类锆石相反,具有最大的、但变化范围最小的 $I_{\rm pr}$, $I_{\rm py}$ 和 $I_{\rm el}$ 值; B 类锆石的晶型特征介于 A 类锆石与 C 类锆石之间. 地球化学研究表明,微量元素(Hf, U, Y, Th)含量从 A 类锆石至 C 类锆石呈现为连续增大的趋势,且伴随着含量的变化范围亦趋于增大. 这些特征反映了 A 类锆石、B 类锆石和 C 类锆石依次形成于包体岩浆冷凝过程的不同阶段或包体岩浆侵入过程的不同位置,即包体岩浆侵入前的深部熔融区、包体岩浆侵入时的上侵通道区和包体岩浆侵入后的寄主花岗岩中.

另一方面,我们发现锆石中 UO_2/HfO_2 , ThO_2/Y_2O_3 和 $UO_2/$ $(ThO_2+Y_2O_3)$ 比值分别与锆石的 I_p , I_p ,和 I_e 1数值紧密相关。因此,我们认为锆石的晶型变化是由于锆石结晶时不同生长锥之间的微量元素含量的差异性造成的,而后者主要取决于锆石结晶环境过冷度的变化。

由于包体中 3 类锆石的存在及其连续的岩浆结晶属性,包体既不能被认作寄主花岗岩的析离体,也不能被认作岩浆源区的残留体.结合包体的塑性变形、富锆(3 期锆石结晶作用)富钇的特征,我们推测在抽取了寄主花岗岩浆的部分熔融区,部分残留物质(含有大量暗色矿物和副矿物)遭受熔融作用而形成包体岩浆.

致谢 王文魁教授和罗谷风教授对本文提出了许多宝贵意见, 谨致谢忱,

参 考 文 献

- 1 Pupin J P. Zircon and granite petrology. Contrib Mineral Petrol, 1980, 73: 207 ~ 220
- 2 Vavra G. Systematics of internal zircon morphology in major Variscan granitoid types. Contrib Mineral Petrol, 1994, 117: 331 ~ 344
- 3 Benisek A, Finger F. Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib Mineral Petrol. 1993, 114: 441 ~ 451
- 4 Kostov I. Zircon morphology as a crystallogenetic indicator. Kristall und Technik, 1973, 8: 11 ~ 19
- 5 Larsen L H, Effimoff I. Composition and habits of individual zircons and zircon crystallization in the Northern Boulder Batholith, Montana. Geol Soc Am Abs Prog, 1973, 5: 707 ~ 708
- 6 Carpena J, Gagnol I, Mailhe D, et al. L'uranium marqueur de la croissance cristalline: mise en evidence par les traces de fission dans les zircons gemmes d'Espaly (Haute-Loire, France). Bull Mineral, 1987, 110: 459 ~ 463
- 7 Wang X. Typologie et geochimie du zircon: une approche nouvelle appliquee a la genese des granites. Thèse, Univ Nice, 1989, 309
- 8 Vernon R H. Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment. Nature, 1984, 309: 438 ~ 439
- 9 Bacon J C. Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res, 1986, 91B: 6 091 ~ 6 112
- 10 董传万, 彭亚鸣. 浙江青田花岗岩中岩石包体的特征及成因. 岩石矿物学杂志, 1992, 11: 21~31
- 11 汪 相, 锆石形态的定量描述及其动力学分析, 中国科学, D 辑, 1998, 28 (3): 232~238
- 12 Burton J A, Prim R C, Slichter W P. The distribution of solute in crystals grown from the melt (part I). J Chem Phys, 1953, 21: 1987 ~ 1991
- 13 Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halide and chalcogenides. Acta Crystallogr, 1976, A32: 751 ~ 767
- 14 Sunagawa I. Morphology of minerals. In: Sunagawa I, ed. Morphology of Crystals. Terra Sci Pub Com, Tokyo, 1987. 63~105
- 15 Romans P A, Brown L L, White J C. An electron microprobe study of yttrium, rare earth, and phosphorus distribution in zoned and ordinary zircon. Am Mineral, 1975, 60: 475 ~ 480
- 16 Knakke O, Stranski I N. Die Theorie des Kristallwachstums. Ergebnisse der exakten Naturwissenschaften XXVI. Berlin-Heidelberg: Springer-Verlag, 1952
- 17 Hoppe G. Petrogenetisch auswertbare morphologische Erscheinungen an akzessorischen Zirkonen. N Jb Miner Abh, 1962, 98: 35 ~ 50