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Abstract Dictionary learning is still a challenging problem in signal and image processing. In this paper, we

propose an efficient block-structured incoherent dictionary learning algorithm for sparse representations of image

signals. The constrained minimization of dictionary learning is achieved by iteratively alternating between sparse

coding and dictionary update. Without relying on any prior knowledge of the group structure for the input

data, we develop a two-stage clustering method that identifies the underlying block structure of the dictionary

under certain restricted constraints. The two-stage clustering method mainly consists of affinity propagation

and agglomerative hierarchical clustering. To meet the conditions of both the upper bound and the lower bound

of the mutual coherence of dictionary atoms, we introduce a regularization term for the objective function to

adjust the block coherence of the overcomplete dictionary. The experiments on synthetic data and real images

demonstrate that the proposed dictionary learning algorithm has lower representation error, higher visual quality

and better reconstructed results than most of the state-of-the-art methods.
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1 Introduction

Sparse signal representations over redundant dictionaries have attracted great attention and interest in

the fields of signal processing and computer vision [1,2]. The sparse coding for representing natural

images resembles the receptive fields of simple cells in the mammalian visual cortex [3–5]. This provides

the physiological basis for sparse representation and its application to image processing [6]. For sparse

representation of signals, there are generally two methods: the synthesis model and the analysis model [7].

The analysis model being out of the scope of this paper, we will focus on the research of the synthesis

model in this paper. In the past decade, the synthesis model has been a very popular approach for

sparse representations [8,9]. Such a model assumes that a signal X ∈ R
d can be composed of a linear

combination of a few atoms chosen from a given dictionary Dd×K , satisfying ‖X −DA‖p 6 ε, where ε
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is an arbitrarily small positive number. The vector A ∈ R
K denotes the sparse coefficients of the signal

X. Indeed, this general problem has been proven to be NP-hard. So far, the development of many sub-

optimal solutions for the above model has estimated the sparse representation A from a corrupted signal

X (i.e., sparse coding) by inferring the dictionary D from signal examples (i.e., dictionary learning).

Sparse coding has been extensively studied in recent years. The literature on sparse recovery can be

broadly categorized into two basic approaches. One of them is greedy algorithm that iteratively selects

locally optimal basis vectors. This includes Matching Pursuit (MP) [10], Orthogonal Matching Pursuit

(OMP) [11,12], Block Orthogonal Matching Pursuit (BOMP) [13,14], Stage-wise Orthogonal Matching

Pursuit (StOMP) [15,16], CoSaMP [17], Least-Angle Regression (LARS) [18], Subspace Pursuit (SP) [19]

and Gradient Pursuit(GP) [20]. The other approach is convex optimization methods, such as Basis

Pursuit (BP) [21], Block Basis Pursuit (BBP) [22], FOCUSS [23], interior point methods [24], and

shrinkage-based algorithms [25,26]. Currently, adaptive dictionary learning is an efficient technique for

signal modeling.

The choice of dictionary of the synthesis model has been extensively studied in the recent literature.

These literature are generally divided into two groups: the analytical approaches and the learning-based

approaches. In the first group, natural signals and images have an essentially sparse representation in

analytical transform domains. The dictionaries of this type are highly structured and efficient, which

include discrete cosine transform (DCT) [27], Wavelets [28], Curvelets [29], Contourlets [30], Ridgelet-

s [31], Bandelets [32] and Shearlets [33]. However, although such analytical dictionaries provide fast

transforms, they have a fixed data representation and limited ability to adapt to different types of data.

The second group uses machine learning techniques to optimize the sparsity of the representation for a

large set of examples. These learning-based dictionary methods can be further divided into three cat-

egories: the probabilistic learning, the clustering-based learning and learning dictionaries with specific

structures [34]. In the first category, Olshausen and Field [35] developed a maximum likelihood (ML)

method consisting of two-step optimization structure: the sparse approximation and the dictionary learn-

ing. They also introduced two main assumptions: the independent sparse coefficients and the additive

zero-mean Gaussian noise. However, this iterative algorithm may converge to a local minimum. Sub-

sequently, the method of optimal directions (MOD) [36] uses the OMP algorithm [11,12] to find sparse

representations and introduces a closed-form solution for the dictionary update. The MOD method is

faster, but its convergence cannot be guaranteed. The maximum a posteriori (MAP) method [37] uses an

additional constraint like the unit Frobenius norm for the dictionary and applies FOCUSS [23] for sparse

approximation. The majorization method [38] adopts an iterative thresholding technique for the sparse

approximation and the different constraints for the dictionary update. To avoid expensive computations,

the online learning algorithm [39] is performed with a subset of the training data and can also be applied

to dynamic systems. The task-driven method [40] provides a supervised general formulation for learning

dictionaries adapted to a wide variety of tasks instead of dictionaries only adapted to data reconstruction.

In the second category, the vector quantization (VQ) approach [41] for dictionary learning is achieved by

K-means clustering in MP-based video coding. As an extension of the K-means method for dictionary

learning, the K-SVD algorithm [42] adopts a singular value decomposition (SVD) [43–45] to update each

column of the dictionary sequentially after the sparse coding with the OMP method [11,12]. To optimize

the K-SVD method [42], the BK-SVD+SAC algorithm [46] uses the agglomerative clustering to exploit

the block structure of the dictionary. Eksioglu [47] also proposed a general framework for the block

structure identification to optimize the dictionary design. However, these algorithms are not guaranteed

to converge in the finite time and tend to generate visual artifacts. In the third category, the paramet-

ric dictionaries can be built on the atom parameters and prior knowledge about the signal formation

or the target task. Since they are usually structured, some desired constraints can be enforced for the

dictionary learning, such as feature-aware regularization [48], minimal dictionary coherence [38,49], the

orthogonality between subspaces [50,51], block-based structures [52,53], multi-scale characteristics of the

atoms [54,55], shift and rotation invariance properties [56], global sparsity constraint [57] and nonlocal

tensor decomposition [58]. These prior constraints are beneficial for designing a learning strategy and

its approximate performance. However, each of these learning methods mentioned above has its own
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drawbacks, e.g., the first two categories lack consideration on the priors about the dictionary, whereas

the third category is only concerned with some general constraints.

It is found that the K-SVD method [42] has been widely used in many applications. The group sparse

coding [59,60] and block-sparse signals [14,61] have become the focus of ongoing research in the fields

of sparse representations. Recently, the optimized K-SVD method [46] has appeared, which adopts the

sparse agglomerative clustering (SAC) approach to identify the block structure of atoms in the dictionary.

However, the major drawbacks of the SAC approach are its susceptibility to errors in the initial steps

that propagate all the way to its final output. Although the literature [49] pointed out the constraints

of both the upper bound [11] and the lower bound [62] of the mutual coherence of dictionary atoms, the

coherence of the dictionary trained by the K-SVD method [42] or its variant [46,47] has received little

attention in the reported literatures. In this paper, we focus on the dictionary learning of the synthesis

model and propose a block-structured incoherent K-SVD (BSIK-SVD) algorithm that would identify

and extract inherent structures of the dictionary and regulate intra-block coherence. To learn a universal

adaptive over-complete dictionary for sparse representation of image signals, we need to explore the priors

of image signals before designing an efficient sparse signal model. Different from the current methods, our

proposed dictionary learning algorithm utilizes the prior knowledge of both block sparsity and mutual

coherence of dictionary. The main contributions of our work can be summarized as follows: 1) the

two-stage clustering technique, mainly consisting of affinity propagation and agglomerative hierarchical

clustering method, is employed to extract the inherent block structures of the learned dictionary, and 2)

the proposed BSIK-SVD framework incorporates a regularization constraint by adjusting the intra-block

coherence of dictionary atoms. The purpose of this work is to find an efficient block-structured incoherent

dictionary for sparse represents of signals. The advantages of this optimized dictionary include compact

representation, the rapid convergence, and robust stability under the noise.

The rest of this paper is organized as follows. The previous work is reviewed in Subsection 2.1.

Subsections 2.2–2.4 provide the descriptions of the proposed algorithm in detail. The experimental

results and analysis are given in Section 3. The conclusions and future work are elaborated in Section 4.

2 Dictionary optimization

In this section, the previous work involved with the basic concepts is first described that justify the

purpose of our work. We then formulate the problem of the block-structured incoherent dictionary design,

and propose a dictionary learning algorithm. As a generalization of the K-SVD method, this proposed

algorithm incorporates the block structure identification and the intra-block coherence adjustment for

block sparse representations of the image signals.

2.1 Previous work

Many problems in signal and image processing can be cast as inverting the linear system:

X = DA+ υ, (1)

where X ∈ R
d×L is the vectors of noisy observations (or measurements), D ∈ R

d×K with d < K is a

bounded linear operator, A ∈ R
K×L is the data to recover, and υ is an additive noise with bounded

variance.

For this observation model (1) of natural images, in order to recover A from the measurement X, the

problem of dictionary learning is formulated as:

argmin
D,A

‖X −DA‖
2
F , s.t. ‖αi‖0 6 κ, i = 1, . . . , L, (2)

where A ∈ R
K×L contains all the sparse coefficients, αi is a column of the sparse matrix A, D ∈ R

d×K

with d < K is the overcomplete dictionary, X ∈ R
d×L is a matrix containing L given training examples,

and κ is the known sparsity level that is fixed with a predetermined number of nonzero entries. Note

that each column of D is normalized so that its l2 norm is 1.
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Since no general analytic solution can be found for this challenging optimization problem (2), the

numerical strategy is commonly employed in practice. The K-SVDmethod [42] uses a relaxation technique

to provide an approximate solution to Problem (2) by taking the l1 norm instead of the l0 norm. However,

the performance of the K-SVD method [42] strongly depends on the initial dictionary, and its convergence

to the global optimum cannot be guaranteed. Subsequently, the block sparse model [14,22,63] is developed

based on the assumption of the block structure from the dictionary. Furthermore, the optimized K-SVD

method [46,47] uses the clustering approach to identify the block structure of atoms in the dictionary,

and then adopts the BOMP [14] for the sparse coding. For the block-sparse model, the optimization

problem for (1) can be reformulated in another form as follows:

arg min
D,b,A

‖X −DA‖2F , s.t. ‖αi‖0,b 6 κ, i = 1, . . . , L, |bj | 6 s, j ∈ [1, B] , (3)

where b is a block structure with maximal block size s, bj = {i ∈ 1, . . . ,K |b [i] = j } is the set of indices

for the block j, and B is the number of the blocks. In most previous works, the block structure is assumed

to be known by prior information, or directly obtained by a certain clustering method. However, the

underlying block structure contained in the data is unknown in most cases. To solve this problem, we

need to extract the underlying block structure automatically and efficiently from the data. In fact, since

the two different atoms located in different sub-blocks have low coherence level, the maximum coherence

between two different atoms only appears in the intra-block. Therefore, we focus on the minimization of

the intra-block coherence of the dictionary.

2.2 Problem statement

For a given set of the signals X ∈ R
d×L, our goal is to find a dictionary D ∈ R

d×K whose atoms are

block-structured and incoherent, ensuring that the signals can be accurately reconstructed through a

computationally efficient algorithm. Then we formulate the following optimization problem:

arg min
D,b,A

{

‖X −DA‖
2
F + λΦ (D)

}

, s.t. ‖αi‖0,b 6 κ, ∀i, |bj | 6 s, j ∈ [1, B] , (4)

where λ is a balance parameter and Φ (D) is the regularization term on the bounded coherence of the

learned dictionary D, which is defined as

Φ (D) =

B
∑

j=1





∑

p,q∈bj ,p6=q

∥

∥ϕT
p ϕq

∥

∥

2



, (5)

where B is the total number of sub-blocks, T is the transpose operator, ϕp and ϕq denote the different

atoms in the sub-block bj of the current dictionary, respectively.

Let Aj denote the jth block of sparse representation A that corresponds to the jth block of the dictio-

nary D. Figure 1 illustrates the proposed block-structured and incoherent dictionary learning problem.

The proposed BSIK-SVD framework extends BK-SVD+SAC [46] and K-SVD [42], and incorporates an

additional constraint on the mutual coherence suppression of the dictionary. Furthermore, an efficient

cluster-based approach is proposed to distinguish the underlying block structure existed in the dictionary.

2.3 Method preview

In this section, we develop a dictionary learning framework that employs the block coordinate relaxation

method for solving the optimization problem (4). The collection of K random vectors is used to initialize

the dictionary whose atoms are normalized to unit l2 norm. The proposed BSIK-SVD algorithm starts

from an initial dictionary and iteratively alternates between a local sparse coding step and a dictionary

update step. At each iteration t, the two successive steps are performed as follows:

(1) Sparse coding: calculate the sparse approximation coefficients A and extract inherent structures b

while keeping the dictionary D(t−1) fixed:

[

b(t),A(t)
]

= argmin
b,A

∥

∥

∥X −D(t−1)A
∥

∥

∥

2

F
, s.t. ‖αi‖0,b 6 κ, ∀i, |bj | 6 s, j ∈ b. (6)
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X1   X2                              XL

X                                                      D

D1       D2                             DB

A1

   

A2                              

AB

A

Figure 1 Illustration of the proposed block-structured and incoherent dictionary learning algorithm. A group of signals

X = [X1, . . . ,XL] can be represented by the block-sparse matrix A =
[

AT
1 , . . . ,AT

B

]T
with respect to the block-structured

dictionary D = [D1, . . . ,DB].

We propose an approximate solution to Problem (6), which adopts a two-stage clustering technique to

identify the block structure. That is, the BOMP method [14] is first used to calculate sparse coefficients.

Then the two-stage clustering technique is applied to these sparse coefficients to extract the underlying

block structure that is repeatedly used for sparse coding.

(2) Dictionary update: adapt the dictionary D to the data X by solving Problem (4) for D and A

and then suppress the mutual coherence between different atoms in the dictionary D while keeping the

block structure b(t) fixed:
[

D(t),A(t)
]

= argmin
D,A

{

‖X −DA‖2F + λΦ (D)
}

, s.t. ‖αi‖0,b(t) 6 κ, ∀i. (7)

In fact, the proposed BSIK-SVD method can be seen as a generalized case of K-SVD [42] or BK-

SVD+SAC [46]. When the blocks of atoms in the dictionary D(t) are sequentially updated, the corre-

sponding non-zero blocks of coefficients in the sparse representationA(t) are also updated simultaneously.

In the following sections, we give the detailed descriptions and the specific steps of the proposed BSIK-

SVD algorithm. In brief, the overview of the procedures of our BSIK-SVD algorithm is summarized as

follows (See Algorithm 1).

Algorithm 1 Block-structured incoherent dictionary learning algorithm

Input: A set of observed signals X, block sparsity κ and maximal block size s.

Output: A learned dictionary D, block structure b and the sparse representation A.

• Initialization: set the initial dictionary D(0) with unit l2 norm columns.

• Repeat from t = 1 until convergence:

1. Fix the dictionary D
(t−1), and compute the sparse representation A

(t−1);

2. Extract the block structure b(t) by applying the two-stage clustering technique to the sparse coefficients

A(t−1), and then update the sparse representation A(t) again;

3. Fix the block structure b(t), update the dictionary D(t) and the sparse representation A(t) by applying

block K-SVD;

4. Regulate the intra-block coherence of D(t);

5. t = t+ 1.

2.4 BSIK-SVD algorithm

For input signalsX, we propose the BSIK-SVD algorithm to infer the dictionary D, the block structure b

and the sparse representation A by solving Problem (4). To solve this problem, we employ the coordinate

relaxation technique to minimize the objective function based on alternating A and D. Assume that

the block structure b is initialized as K blocks of size 1, i.e., b(0) = [1, . . . ,K] and the dictionary D is

initialized as the Gaussian random matrix D(0) of size d×K such that the l2 norm of each column equals

to 1. The signals X are also supposed as the combinations of κ blocks of atoms with a maximum size

constraint s. For the given D(0) and b(0), the sparse representation A(0) is initialized as the solution to
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Problem (6) over A, which is solved by using the OMP method with κ× s instead of κ non-zero entries.

At each iteration t, the dictionary D(t−1) is first fixed so that Problem (4) is reduced to Problem (6).

Then the BOMP method is used to calculate the sparse representation A(t−1) by solving Problem (6).

Next, the two-stage clustering technique identifies the intrinsic block structure b(t) of the block sparse

representation A(t−1), and then the BOMP method is used to re-update A(t). Apparently, we would

solve Problem (6) to update b while keeping A(t−1) fixed. Therefore, Problem (6) finds a block structure

b(t) with maximal block size s satisfying the block-sparsity constraint of A(t−1). To update the block

structure b(t), we minimize the cost function of the block sparse representation A(t−1) mentioned by

Zenlnik-Manor et al. [46] as follows:

b(t) = min
b

L
∑

i=1

∥

∥

∥A
(t−1)
i

∥

∥

∥

0,b
, s.t. |bj | 6 s, ∀j ∈ [1, B], (8)

where B is the current number of blocks. Note that the non-zero patterns of rows in A(t−1) may coincide

with the corresponding columns of the same blocks in D(t−1). That is, according to the block-sparse

structure, classifying the atoms of the dictionary D(t−1) is equivalent to classifying the rows of the sparse

representationA(t−1). Assume that ωj

(

A(t−1), b
)

denotes the set of columns which contains the non-zero

rows in the sub-block bj of A(t−1). Therefore, Problem (8) can be reformulated as follows:

b(t) = min
b

∑

j∈[1,B]

∣

∣

∣ωj

(

A(t−1), b
)∣

∣

∣, s.t. |bj | 6 s, j ∈ [1, B], (9)

where |ωj | denotes the number of non-zero values in ωj.

To solve Problem (9), the BK-SVD+SAC method [46] uses the agglomerative clustering algorithm [64]

extracting the block structure of the dictionary. However, the agglomerative clustering algorithm [64] has

the disadvantage that the blocks may have been incorrectly grouped at an early stage owing to lack of

relocation provision. In fact the maximal block size may be larger than the predetermined fixed number s

because it is possibly less than the number of the most similar atoms. To overcome these drawbacks, while

considering the nonlocal similarity property of natural images [50], we propose a two-stage clustering

approach to automatically extract the underlying block structure for dictionary optimization in this

paper. The two-stage clustering approach is based on affinity propagation and agglomerative hierarchical

clustering. The first stage yields an initial estimation of the block structure by affinity propagation

clustering, which uses the city block distance criterion to build the similarity matrix. The similar blocks

are grouped into a single block by maximizing the sum of responsibility and availability messages. The

second stage will further merge the pair of blocks with the shortest distance repeatedly until all blocks

are in one cluster. Since the initial block structure is estimated by affinity propagation in the first stage,

the agglomerative clustering accuracy will be comparatively improved in the second stage so that the

final clustering result is much better than the traditional agglomerative clustering algorithm [64].

Specifically, in the first stage, the affinity propagation (AP) clustering [65] considers all the vectors

ωj , j ∈ b(0) as the potential exemplars. It is carried out to produce a final set of exemplars and clusters by

iteratively exchanging messages between the vectors until the convergence is achieved. Particularly, let

Ω
(

ωj , ωcj

)

be the similarity between the vectors ωj and ωcj , which denotes the suitability of the vector

ωcj to serve as the exemplar for the vector ωj . For affinity propagation, if j 6= cj , then our choice for

similarity measure is the negative city block distance:

Ω
(

ωj, ωcj

)

= −
L
∑

i=1

∣

∣ωj − ωcj

∣

∣. (10)

Incorporating the similarity metric between the different items, the objective function of the affinity

propagation algorithm is given by

c∗ = argmin
c







−

B
∑

j=1

Ω
(

ωj , ωcj

)

+

B
∑

i=1

δi (c)







(11)
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with

δi (c) =

{

∞, ci 6= i and ∃j : cj = i;

0, else,
(12)

where c = [c1, . . . , cB] and cj ∈ {1, . . . , B} is the exemplar label that assigns each vector ωj to its ex-

emplar ωcj . The function δi (c) is an exemplar-consistency constraint ensuring the possibility of only

valid configurations. The preference of each vector ωj is also called the self-similarity Ω (ωj, ωj), which

influences the number of the identified exemplars. For simplicity, the preference ρc is set to a global

value in our algorithm. To solve the optimization problem (11), affinity propagation [65] takes the input

similarities between data points and utilizes the max-product belief propagation algorithm to generate

clusters insensitive to initialization after convergence [66]. There are two kinds of messages: respon-

sibility r (ωi, ωj) and availability a (ωi, ωj). After setting their initial value to zero, responsibility and

availability messages are iteratively updated, respectively. To avoid numerical oscillations, the message

updates with the damping factor βc are attenuated to guarantee the convergence of the algorithm. When

affinity propagation converges, a vector ωj becomes the exemplar with its self-responsibility plus self-

availability being positive, i.e., r (ωj, ωj) + a (ωj , ωj) > 0. Then the non-exemplars are assigned to their

respective exemplars and the valid configuration of labels c = [c1, . . . , cB] for all the vectors ωj, j ∈ b(0)

is computed as

ci = max
ωj∈c

{r (ωi, ωj) + a (ωi, ωj)} . (13)

When affinity propagation is finished, the updates of both the block structure b(t) and the sparse

representations are carried out at the end of the first stage. Therefore, the initial estimation b̃(t) of the

block structure is constructed and the clustering result of A(t−1) is denoted by Ã(t−1) with its vectors ω̃j.

Subsequently, in the second stage the estimated block structure in the first stage is used as the starting

values. Like the traditional agglomerative clustering algorithm [46,64], at each loop we find the closest

pair [i∗, j∗] of blocks satisfying the following formula:

[i∗, j∗] = argmax
i6=j

|ω̃i ∩ ω̃j | , s.t.
∣

∣

∣b̃i

∣

∣

∣+
∣

∣

∣b̃j

∣

∣

∣ 6 s. (14)

Then we aggregate the closest pair of blocks i∗ and j∗ and update the block structure b(t). Specifically,

the blocks i∗ and j∗ are combined by enforcing ∀j′ ∈ bj : i → b[j′], {ω̃i ∪ ω̃j} → ω̃i and φ → ω̃j . This

loop procedure is repeated until no blocks can be merged without breaking the constraint on the block

size. After the two-stage clustering applied to the sparse representation A(t−1), the block structure b(t)

of the dictionary is obtained. Figure 2 explains the procedures for our two-stage clustering approach.

According to the block structure b(t) provided by the two-stage clustering process, we employ the

BOMP method with κ non-zero entries to solve Problem (6) and then update the sparse representation

A(t) again. After the block structure b(t) and the sparse representation A(t) are available, we look for

the solution of Problem (7) instead of Problem (4). According to the definition of block coherence of the

overcomplete dictionary [14,63,67], we can reformulate Problem (7) in another form:

[

D(t),A(t)
]

= argmin
D,A







‖X −DA‖
2
F + λ

B
∑

j=1

∑

p,q∈bj ,p6=q

∥

∥ϕT
p ϕq

∥

∥

2







, s.t. ‖αi‖0,b(t) 6 κ, ∀i, (15)

where ϕp and ϕq denote the various atoms of different blocks in the current dictionary, respectively.

This Problem (15) can be solved in two steps: first by updating dictionary, then regulating the block

coherence for the available dictionary. In the first step, by omitting the second term on the right-hand

side of the equation defined in Problem (15), we can solve the reduced version of Problem (15) as follows:

[

D(t),A(t)
]

= argmin
D,A

‖X −DA‖2F , s.t. ‖αi‖0,b(t) 6 κ, ∀i . (16)

Like block K-SVD method [46], we sequentially update every block of atoms in the dictionary D(t) and

the corresponding nonzero values in A(t) to minimize the representation error in Problem (16). For each
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Input training signals

Initialize dictionary

Set initial block

structure b=[1,...,K]

Approximate sparse

representations A

Parameter setting

Compute the

similarity matrix

Affinity propogation

Update block

structure b and sparse

representation A

Stage 1

Sparsing code with
block structure b

Output block structure b

Update block structure b
and the sparse matrix A

Merge block i* with j*

Find the closest pair of
blocks (i*, j*)

Can blocks be merged
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Figure 2 The procedures of our two-stage clustering approach.

block j ∈ [1, B], the dictionary update step proceeds as follows. Let Rωj
denote the representative error

for the signals Xωj
excluding the contribution by the jth block, i.e. Rωj

= Xωj
−

∑

i6=j DbiA
bi
ωj
. We

deduce that ‖Rωj
−DbjA

bj
ωj‖F is the representative error for the signals with the indices ωj . Apparently,

the value of each atom in the dictionary depends not only on how much it is used to encode X, but also

on how much other atoms are being used to encode X. In order to minimize this error, we take the

matrix of maximum rank |bj | that best approximates of Rωj
as DbjA

bj
ωj . According to the singular value

decomposition (SVD) of a matrix, Rωj
can be written as the following formula:

Rωj
= U∆V T. (17)

Therefore, the dictionary update process is carried out in the following form:

Dbj =
[

U1, . . . ,U|bj |

]

, (18)

Abj
ωj

=
[

∆1
1V1, . . . ,∆

|bj |

|bj |
V|bj |

]T

, (19)

where the first |bj| principal components of Rωj
are truncated to update the block of atoms Dbj and

the group sparse coefficients A
bj
ωj . Note that the |bj | − |ωj | excess atoms in block j can be discarded in

case |bj | > |ωj |. The simultaneous updates of atoms in the same block speeds up the convergence of the

dictionary update step in the block K-SVD algorithm than that in the K-SVD method [42].

Finally, the second step of the solution to Problem (15) is to regulate the block coherence of the updated

dictionary D(t). Suppose that the optimal solution for each atom has a non-zero norm. We compute the

gradient of the objective function with respect to ϕr and equate it to zero. Thus the closed-form solution

of Problem (15) on ϕr is given as follows:

ϕr =



Idαrα
T
r + λ

∑

j∈bj ,j 6=r

ϕjϕ
T
j





∖



XαT
r −

∑

k 6=r

ϕkαkα
T
r



 , (20)
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where Id is the identity matrix of size d× d, αr is the rth row group of the sparse representation A(t),

ϕr is in the sub-block of atoms for bj and αrα
T
r indicates the weight of the atom ϕr used to encode X.

Furthermore, the zero atoms may be filled with random vectors for the overcomplete representation of

signals.

3 Experimental results and analysis

In this work, we carried out the experiments on simulated data as well as real-world images. The

proposed BSIK-SVD algorithm was compared with the state-of-the-art methods published recently [42,

46] for verifying its validity subjectively and objectively. For a fair comparison, the Gaussian random

initialization is carried out for these different methods in the simulation and experiments.

3.1 Simulation evaluation

To test the performance of the proposed BSIK-SVD algorithm comprehensively, we have implemented the

qualitative and quantitative evaluation on the simulated data. The capability of the proposed algorithm

was tested and analyzed in retrieving the underlying block structure and optimizing the structured

dictionary update. The simulation setting is given as follows. A random matrix of size d×K is generated

as the dictionary D ∈ R
64×96 with independent and identically normally distributed entries. Each

column of the dictionary is normalized so that its Euclidean norm equals to 1. The block structure

for the dictionary D ∈ R
64×96 is chosen as b = [1, 1, 1, 2, 2, 2, . . . , 32, 32, 32]. That is, the dictionary D

consists of 32 subspaces with 3 atoms in each one. X is a set of the L = 2500 test signals of dimension

64 with a 2-block sparse representation over D. The active blocks in A are chosen randomly and the

coefficients are uniformly redistributed random entries. According to the signal modeling defined in (1),

the additive white Gaussian noise (AWGN) with variant noise levels is added to the data set X in order to

generate the simulated data synthetically with the desired SNR values. We also assessed the performance

of our BSIK-SVD by using the objective evaluation indexes, one of which is the normalized representation

error (NRE) defined as follows:

NRE = ‖X −DA‖F /‖X‖F , (21)

where ‖·‖F is the Frobenius norm.

In this simulation, for the given signal X, we evaluated our proposed algorithm for recovering the

overcomplete dictionary D with the underlying block structure b. The NRE was computed as a function

of the signal-to-noise ratio (SNR) of the signals X corrupted by the Gaussian noise according to (1). For

a quantitative comparison, the oracle method assumes that the dictionary D and the sparse matrix A

are known for the given signals X. For the synthetic signals X with the variant SNR, the results of the

proposed BSIK-SVD algorithm are compared with those of the oracle method, the K-SVD method [42]

and the BK-SVD+SAC method [46] shown in Table 1. Note that for SNR 6 25 dB, K-SVD [42] reaches

lower reconstruction error than BK-SVD+SAC [46] and our BSIK-SVD, which implies that the use of

block-sparsifying dictionaries is unjustified. That is, the block structure is absent in the data when the

SNR is very low, whereas the block structure appears when the SNR is high. Therefore, the dictionary

learning methods based on the block structure incurs incorrect results at the low SNR values. Since

there are unpredictable fluctuations of NRE in the iterative process for our proposed algorithm and the

competing methods [42,46], we repeated this simulation 100 times in the noiseless setting and computed

the average values as the final NREs for each of these methods, respectively. Figure 3 compares the

averaged NRE results of these different algorithms evaluated as a function of the number of iterations

in the noiseless setting. As can be seen from simulation results, the proposed BSIK-SVD algorithm has

smaller representation errors in high SNR cases and faster convergence rate than the existing state-of-

the-art methods.
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Table 1 The compared NRE results of our proposed BSIK-SVD algorithm, K-SVD [42], BK-SVD+SAC [46] and the

oracle for simulated data with the variant SNR values

SNR 5 10 15 20 25 30 35 40 45 50

Oracle 0.6224 0.4088 0.2443 0.1401 0.0793 0.0447 0.0252 0.0142 0.0080 0.0045

Ref. [42] 0.4736 0.3282 0.2104 0.1274 0.0734 0.0424 0.0264 0.0162 0.0128 0.0106

Ref. [46] 0.5691 0.3835 0.2298 0.1326 0.0756 0.0424 0.0243 0.0135 0.0077 0.0044

BSIK-SVD 0.5645 0.3814 0.2293 0.1330 0.0745 0.0422 0.0240 0.0133 0.0075 0.0042

N
R

E

0.4

0.3

0.2

0.1

0

Iterations

0                 10                 20                30                40                 50

K-SVD

BK-SVD+SAC

BSIK-SVD

Figure 3 The compared average NRE results of the proposed BSIK-SVD algorithm, K-SVD [42] and BK-SVD+SAC [46]

evaluated as a function of the number of iterations in the noiseless setting.

3.2 Experiments on real images

To further measure the sparse representation performance of the proposed BSIK-SVD algorithm, we com-

prehensively compared it with the state-of-the-art methods [42,46]. Besides the simulations on synthetic

signals, we have also implemented the qualitative and quantitative evaluation on a set of test images from

standard image databases1)2) and the literature [46]. The well-known full-reference quality metrics were

considered for measuring the similarity between the restored image and the original image. We adopted

the Structural SIMilarity (SSIM) [68] that was reportedly more reliable than PSNR [69] for evaluating

the performance of these different algorithms. For sparse representation of signals, each patch of the test

image can be represented as a linear combination of several atoms selected from the given overcomplete

dictionary satisfying the limited error criterion.

In this experiment, the specific parameters of our BSIK-SVD algorithm are set as follows: d = 64,

K = 96, κ = 2, λ = 1, s = 3 and βc = 0.99. We first initialized the dictionary D as a random matrix of

size d×K with normally distributed entries and its normalized columns. All the non-overlapping image

patches of the same size 8×8 extracted from a test image were reshaped as the training signalsX. Then we

adopted the proposed BSIK-SVD algorithm and other popular methods [42,46] to optimize the dictionary

where the number of iteration is 50. Like K-SVD [42] and BK-SVD+SAC [42], the dictionary atoms of our

BSIK-SVD algorithm are normalized in each iteration. Next, after extracting all the overlapping patches,

we adopted a sensing matrix [70] to compress the 64 long vectors into 16 dimensions and then detected the

corresponding sparse representation of each patch. Technically, both the proposed BSIK-SVD algorithm

and the BK-SVD+SAC method were used to find a κ-block sparse solution, while the K-SVD method was

used to find a κ×s sparse representation. Finally, we evaluated the results of these algorithms by the NRE

and their convergence. For a set of noiseless test images, Table 2 shows the comparison of the NRE/SSIM

results obtained by the prevalent methods [42,46] and our BSIK-SVD algorithm separately. To evaluate

the computational complexity of dictionary learning, the runtime of our BSIK-SVD algorithm is compared

with that of the baseline methods using Matlab version 8.2 on the platform of Intel(R) Core(TM) i7-

3537U CPU @ 2.00 GHz, 8.00 GB RAM. Table 3 shows the comparison of the computation time of

these methods. Since both the two-stage clustering approach and the incoherence regularization term are

1) CIPR Still Images, May 26, 2014. http: //www.cipr.rpi.edu/resource/stills/index.html.
2) CVG, Test images, May 26, 2014. http: //decsai.ugr.es/cvg/dbimagenes/.
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Table 2 The NRE/SSIM results of K-SVD [42], BK-SVD+SAC [46] and the proposed BSIK-SVD algorithm separately

applied to a test set of noiseless images*

Images Ref. [42] Ref. [46] BSIK-SVD

Cutebaby 200 × 201 0.5048/0.7054 0.0744/0.8714 0.0585/0.8990

Einstein 256 × 256 0.2735/0.8100 0.1228/0.8087 0.1082/0.8423

House 256× 256 0.1603/0.8939 0.0773/0.9118 0.0737/0.9182

Monarch 256 × 256 0.3292/0.8463 0.2629/0.8584 0.2359/0.8640

Barbara 512× 512 0.1621/0.8834 0.1095/0.8948 0.1073/0.9004

Boat 512× 512 0.1546/0.8530 0.1031/0.8571 0.1016/0.8604

Elaine 512 × 512 0.1047/0.8350 0.0586/0.8473 0.0577/0.8511

Hill 512× 512 0.2082/0.8516 0.1290/0.8314 0.1064/0.8509

Lena 512 × 512 0.1326/0.9011 0.0791/0.9049 0.0713/0.9107

Milkdrop 512 × 512 0.1142/0.9212 0.0861/0.9073 0.0552/0.9317

Peppers 512 × 512 0.1190/0.8848 0.0860/0.8774 0.0789/0.8880

Plane 512 × 512 0.1734/0.8680 0.1295/0.9043 0.0754/0.9238

*Note that the best results are highlighted in bold.

Table 3 Runtime results of K-SVD [42], BK-SVD+SAC [46] and our BSIK-SVD algorithm (Unit: second)

Images Ref. [42] Ref. [46] BSIK-SVD

House 256× 256 20.31 21.92 40.97

Lena 512× 512 53.32 50.86 87.75

incorporated in the design of our proposed dictionary learning model, the computational complexity of our

proposed algorithm is increased. To further inspect the performance of dictionary learning, the detailed

reconstructed results of the proposed BSIK-SVD algorithm, K-SVD [42] and BK-SVD+SAC [46] for the

fragments of the Cutebaby, Monarch, Hill and Plane images are shown in Figures 4–7, respectively. As can

be seen from Tables 2 and 3, although our proposed BSIK-SVD algorithm has a little longer computation

time, it has less NRE and higher SSIM results than those from K-SVD [42] and BK-SVD+SAC [46].

The visual comparisons in Figures 4–7 demonstrate that the proposed BSIK-SVD algorithm have better

recovery of real images than the baseline methods. It is observed that the results of our proposed algorithm

have sharper edges and clearer structures than those of the state-of-the-art methods. The experimental

reslults on sparse representation of synthetic and real images demonstrate that the proposed algorithm

has the high reconstruction accuracy, the good robustness and visual quality.

4 Conclusion and future work

In this paper, we addressed the problem of block-structured incoherent dictionary learning for block

sparse representations of image signals. Unlike the traditional method, e.g., BK-SVD+SAC [46], our

proposed BSIK-SVD framework of dictionary learning can break the assumption of the maximal block

size of similar atoms. In fact, our BSIK-SVD algorithm, which can be seen as an extension of K-SVD [42]

or BK-SVD+SAC [46], consists of two successive steps at each iteration: sparse coding and dictionary

update. In sparse coding step, we employed the two-stage clustering technique to identify the existence

of intrinsic block structure in the dictionary for structured sparse coding. For dictionary update step, we

solved the minimization problem that incorporated the desired constraints of the bounded block coherence

between the dictionary atoms after the block-sparsifying dictionary update. From the simulation and

experiments, we have shown that the procedures of the two-stage clustering and the block coherence

adjustment greatly influence the reconstructed results. The experimental results of synthetic data and

real images demonstrate that our BSIK-SVD algorithm has less representation error and fewer artifacts

when the SNR is high enough, which leads to accurate sparse representations of signals. Our BSIK-SVD

algorithm outperforms the state-of-the-art methods both visually and quantitatively, especially in the
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(a) (b) (c) (d)

Figure 4 Visual comparisons of the results of the proposed algorithm and other state-of-the-art methods for the Cutebaby

image. From left to right. (a) Baseline image; (b) the proposed algorithm (NRE = 0.0585, SSIM = 0.8990, PSNR = 33.43

dB); (c) BK-SVD+SAC [46] (NRE = 0.0744, SSIM = 0.8714, PSNR = 32.30 dB); and (d) K-SVD [42] (NRE = 0.5048,

SSIM = 0.7054, PSNR = 18.54 dB).

(a) (b) (c) (d)

Figure 5 Visual comparisons of the results of the proposed algorithm and other state-of-the-art methods for the Monarch

image. From left to right. (a) Baseline image; (b) the proposed algorithm (NRE = 0.2359, SSIM = 0.8640, PSNR = 24.44

dB); (c) BK-SVD+SAC [46] (NRE = 0.2629, SSIM = 0.8584, PSNR = 23.72 dB); and (d) K-SVD [42] (NRE = 0.3292,

SSIM = 0.8463, PSNR = 23.02 dB).

(a) (b) (c) (d)

Figure 6 Visual comparisons of the results of the proposed algorithm and other state-of-the-art methods for the Hill

image. From left to right. (a) Baseline image; (b) the proposed algorithm (NRE = 0.1064, SSIM = 0.8509, PSNR = 31.12

dB); (c) BK-SVD+SAC [46] (NRE = 0.1290, SSIM = 0.8314, PSNR = 30.06 dB); and (d) K-SVD [42] (NRE = 0.2082,

SSIM = 0.8516, PSNR = 29.03 dB).

(a) (b) (c) (d)

Figure 7 Visual comparisons of the results of the proposed algorithm and other state-of-the-art methods for the Plane

image. From left to right. (a) Baseline image; (b) the proposed algorithm (NRE = 0.0585, SSIM = 0.8990, PSNR = 33.43

dB); (c) BK-SVD+SAC [46] (NRE = 0.0744, SSIM = 0.8714, PSNR = 32.30 dB); and (d) K-SVD [42] (NRE = 0.5048,

SSIM = 0.7054, PSNR = 18.54 dB).
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case of image regions containing the abundant edges and the fine structures. Finally, the issues of the

convergence and the efficiency of dictionary learning algorithms are left for our future research.
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