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We study the underlying symmetry in a spin-orbit coupled tight-binding model with Hubbard interaction. It is shown that, in the
absence of the on-site interaction, the system possesses the SU(2) symmetry arising from the time reversal symmetry. The influence
of the on-site interaction on the symmetry depends on the topology of the networks: The SU(2) symmetry is shown to be the spin
rotation symmetry of a simply-connected lattice even in thepresence of the Hubbard interaction. On the contrary, the on-site
interaction breaks the SU(2) symmetry of a multi-connectedlattice. This fact indicates that a discrete spin-orbit coupled system has
exclusive features from its counterpart in a continuous system. The obtained rigorous result is illustrated by a simplering system.
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The spin-orbit coupling effect as an important mechanism to
control spin dynamics without introducing an external mag-
netic field [1], has received much attention in the context of
spintronics and of the attempts to build a spin-transistor since
the first proposal by Datta and Das [2] in 1990. Two widely
discussed spin-orbit coupling contributions are the Rashba
and the Dresselhaus effects [3–5]. In the last decade, it has
been shown that the spin-orbit interaction (SOI) can play an
important role in generation, manipulation and detection of
spin polarization and spin current (for review see ref. [6]
and references therein), as well as spin transport in organic
semiconductors [7]. Among many interesting questions the
most important one concerns the underlying symmetry of
this model, which reveals many far-reaching physical impli-
cations that are not obvious at the first glance. A paradigm
example is the SU(2) symmetry discovered by Bernevig et
al. [8] in a class of spin-orbit coupled models including the
model with equal Rashba and Dresselhauss coupling con-
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stants and the Dresselhaus [110] model. This finding pre-
dicted that a spin precession phenomenon should be exper-
imentally observable. Most of the previous investigations
have been focused on non-interacting systems, while less at-
tention has been paid to the existence of the electron cor-
relations arising from the Coulomb interaction. However,
the electron-electron interaction is unavoidable in practice,
which influence to features of the system, such as relaxation
time of the electron spins.

In this article, we study the underlying symmetry in a spin-
orbit coupled tight-binding model, where only the time rever-
sal symmetry is required. It is shown that, in the absence of
the interaction between electrons, the system possesses the
SU(2) symmetry arising from the time reversal symmetry.
Remarkably, we find that the influence of the on-site inter-
action on the symmetry depends on the topology of the net-
works in the following way. This SU(2) symmetry is shown
to be the spin rotation symmetry of a simply-connected lat-
tice, i.e., the system contains no loops, which can be formed
with a set of nodes connected by edges as shown in Figure
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1(a), so it still holds for the case of nonzero on-site interac-
tion. On the contrary, the on-site interaction breaks the SU(2)
symmetry of a multi-connected lattice. Based on the exact so-
lution of a ring system, our result is demonstrated explicitly.
This fact indicates that a discrete spin-orbit coupled system
has exclusive features from its counterpart in a continuous
system.

The article is organized as follows: in sect. 1, we intro-
duce a general spin-orbit coupled Hubbard Hamiltonian with
the time reversal symmetry. In sect. 2, we first construct the
SU(2) operators for an on-site interaction free system by us-
ing the Kramers degeneracy. In sect. 3 we investigate the
influence of the on-site correlation to the SU(2) symmetry.
Sect. 4 is the conclusion and a short discussion.

1 Time reversal symmetry

The HamiltonianH is written as follows:

H = HT + HU ,

HT =
∑

i, j

c†i Ti jc j + H.c. +
∑

i

µic
†
i ci, (1)

HU =
∑

i

Uini↑ni↓,

wherec†i andci are the creation and annihilation fermion op-
erators at theith site that have two components,

c†i =
(
c†i↑, c

†
i↓

)
, ci =

(
ci↑
ci↓

)
. (2)

HereHT describes the motion of free particles, whileHU rep-
resents the on-site interaction of opposite spin electrons. Un-
like the simple Hubbard model,Ti j/

∣∣∣Ti j

∣∣∣ is no longer the unit
matrix arising from the coupling between momentum (and/or
position) operators and spin operators. In this work, we do
not restrict the model to be in a certain explicit form, but to
possess the time reversal symmetry. Therefore the conclu-
sion of this article is available to the Rashba and Dresselhaus
types of spin-orbit interactions.

The time reversal operator for a spin–1/2 particle takes the
form

T = −iσyK, (3)

whereK denotes the complex conjugation operator satisfying

K (c-number) = (c-number)∗ K, (4)

and σα(α = x, y, z) are the Pauli matrices. The Hubbard
HamiltonianH possesses the time reversal symmetry ifT
commutes with all the matricesTi j, i.e.,

[
T , Ti j

]
= 0 for arbi-

trary {i, j}. In the Appendix, we will show that theTi j should
have the form

Ti j = ti j exp

(
i
θi ĵni j

2
· −→σ

)
, (5)

which can be determined by the specific model. Whereti j is
a real number,θi j is an arbitrary angle and̂ni j is a unit vector.
Obviously,Ti j/ti j is a unitary matrix and represents the spin
rotation operation.

As is well known, the spin operators of the whole system
are defined as:

sα =
N∑

i=1

sαi , s
α
i =

1
2

c†iσαci, (6)

which obey the following commutation relations
[
sα, sβ

]
= iεαβγsγ, (7)

whereεαβγ is the Levi-Civita symbol.
At first, we concentrate on the case of the Hamiltonian of

eq. (1) without the spin-orbit interaction. In the absence of
the spin-orbit interaction,θi j = 0, we have

[−→s ,Hθi j=0

]
= 0, (8)

i.e., the systemHθi j=0 possesses the SU(2) spin rotation sym-
metry. The conservation of−→s leads to the spin inversion sym-
metry along an arbitrary direction, which is in accordance
with the result of the time reversal symmetry. According to
the general analysis, the spin inversion symmetry is broken
when the spin-orbit interaction is switched on. However, the
time reversal symmetry still holds for nonzeroθi j. The objec-
tive of this article aims at the inverse problem, namely: Can
the present system acquire a SU(2) symmetry from the time
reversal symmetry? We will find it possible under certain
conditions.

2 On-site interaction free case

We start with the case of zeroU, but nonzeroθi j. Due to the
time reversal symmetry of the present system, the Hamilto-
nian can always be diagonalized in the form

HT =
∑

k,λ=1,2

ǫk f †kλ fkλ =
∑

k

ǫk f †k fk, (9)

whereλ = 1, 2 labels the two fold degeneracy,k labels the
energy levels and the corresponding two component fermion
operators

f †k =
(

f †k1, f †k2

)
, fk =

(
fk1

fk2

)
. (10)

The Kramers degeneracy allows us to construct the operators

̥
α =

N∑

k=1

̥
α
k , ̥

α
k =

1
2

f †k σα fk, (11)

which obey the SU(2) commutation relations
[
̥
α, ̥β

]
= iεαβγ̥

γ. (12)

In this sense, eq. (9) describes a non-interacting Fermi gas
of spin–1/2 particles. The two Kramers degenerate states can
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service as the two components of a pseudo spin. Obviously,
we have [−→̥

,HT

]
= 0, (13)

which means that the systemHT possesses a new type of
SU(2) symmetry. Note that the construction of{̥α} is not
unique, since any linear transformation of

(
f †k1, f †k2

)
cannot

change the facts of eqs. (12) and (13). In other words,HT is
invariant under the local rotation of the pseudo spins

{
̥
α
k

}
.

An interesting question is: Among all the sets of the con-
served quantities{̥α}, which one is close to the familiar phys-
ical quantity and is feasible to measure in experiment. It will
be shown that the geometry and the spin-dependent interac-
tion play an important role in this issue. It is also the main
goal of the present article. To this end, we firstly investigate
the HamiltonianHT on a simply-connected network. It can be
observed that, by taking an arbitrary node as a starting point
there exists a unique path to another. A schematic illustration
of the simply-connected network is presented in Figure 1(a).
This characteristic feature of such networks allowsHT to be
rewritten as:

HT =
∑

i, j

ti jd
†
i d j + H.c. +

∑

i

µid
†
i di, (14)

by absorbing the unitary matrices inTi j into the fermion oper-
atorsd†i andd j. For instance, one can take the transformation

c†i Ti jc j = ti jc
†
i eiθi ĵni j·−→σc j = ti jd

†
i d j, (15)

by the definition

d†i = c†i , d j = eiθi ĵni j ·−→σc j. (16)

The equivalent Hamiltonian (14) represents a non-spin-orbit
interaction system. Accordingly, one can construct the corre-
sponding SU(2) operators

Sα =
N∑

i=1

Sαi ,Sαi =
1
2

d†i σαdi, (17)

satisfying the following commutation:
[
Sα,Sβ

]
= iεαβγSγ. (18)

Similar to eq. (8), we have
[−→S ,HT

]
= 0. (19)

The physics of
−→S can be understood by the following rela-

tionship between operatorsSαi andsαi

Sαi = uis
α
i u
†

i , (20)

whereui is a unitary matrix of the form ei
−→
γ i ·−→σ appearing in

the transformation
di = uici. (21)

This indicates that the operatorsSα act as the real spin opera-
tors under the local transformation{ui}. In this sense, one can
apply the theory of itinerant electron magnetism on the spin-
orbit coupling system on a simply-connected lattice. The fer-
romagnetic state (all the spins being aligned parallel) with
respect to the operatorsSα in a system with nonzeroθi j is
equivalent to the spin helix state with respect to the operators
sα [8]. We will give an extensive discussion about this issue
after taking the on-site interaction into account in the next
section.

On the other hand, the equivalent Hamiltonian (14) can be
diagonalized in the form

HT =
∑

k,σ

ǫkd†kσdkσ, (22)

where

dkσ =
∑

j

Dk
jd jσ,

∑

j

(
Dk

j

)∗Dk′
j = δkk′ , (23)

∑

k

(
Dk

j

)∗Dk
j′ = δ j j′ .

Comparing eqs. (9) and (22), we find that one can have

dk = fk. (24)

From eq. (23), we obtain the identity

∑

k

d†kσdkσ′ =
∑

j

d†jσd jσ′ , (25)

which leads to
−→S = −→̥. (26)

Then we can conclude that the SU(2) symmetry obtained
from the time reversal symmetry of a simply-connected sys-
tem is essentially spin rotational symmetry. The conservative

quantity
−→̥

is connected to an experimental observable
−→S,

which means a persistent spin helix. It is hardly observed in
practice since a natural material with simply-connected ge-
ometry is rare. However, artificial lattices, such as arraysof
quantum dots in semiconductor heterostructures [9,10] con-
fining the conduction electrons, or optical lattices—stable pe-
riodic arrays of potentials created by the standing waves of
laser light [11], can implement this task.

On the contrary, for a multi-connected system illustrated
in Figure 1(b), the above analysis is invalid since one cannot
find a set of unitary matrices{ui} to implement the transfor-
mation of eq. (21). Then for an on-site free system with the
time reversal symmetry, it always possesses a SU(2) symme-
try, but the physics of the symmetry depends on the underly-
ing topology of the network.
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3 On-site interaction effect on the symmetry

In the previous part, we have found that a SU(2) symmetry
in a spin-orbit coupling system obeys the time reversal sym-
metry when the electron-electron interaction is absent. This
indicates the macroscopic emergence of certain physical fea-
tures (as ferromagnet, antiferromagnet, spin helix, etc.)in a
long time scale, especially in a multi-particle system. Never-
theless, the spin-dependent interaction between particles may
break the symmetry. Now we turn to investigate the influence
of the on-site interactionHU on the SU(2) symmetry. Apply-
ing the transformationdi = uici to HU on a simply-connected
system, we have

HU =
∑

i

Uic
†
i↑ci↑c

†
i↓ci↓ =

∑

i

Uid
†
i↑di↑d

†
i↓di↓, (27)

which means it is invariant under the transformation. Conse-
quently for a simply-connected system, we still have

[−→S,HU

]
=

[−→S ,H
]
= 0. (28)

This has many implications on a spin-orbit coupling system.
Mathematically, it can be treated as a normal Hubbard model.
Then all the conclusions for the Hubbard model on a simply-
connected lattice are completely available for the presentsys-
tem. Here we only give a subtle conclusion from the Lieb
theorem [12]. In the following, we present a statement for a
Hubbard model with the spin-orbit interaction on a simply-
connected network by simply modifying the abstract in ref.
[12]. In the attractive Hubbard Model (and some extended
versions of it), the ground state is proved to have spin angu-
lar momentumS = 0 for every (even) electron filling. In the
repulsive case, with a bipartite lattice and a half-filled band,
the ground state hasS = 1/2(|B| − |A|), where|B| (|A|) is the
number of sites in theB (A) sublattice. In both cases the gro-

Figure 1 Schematic illustration of (a) the simply-connected network and

(b) the multi-connected network. If the connection betweeni and j is bro-

ken, the topology is changed from multi- to simply-connected one, which

will affect the SU(2) symmetry of the system, especially in the presence of

the on-site correlation.

und state is unique. We believe that such kind of rigorous
result obtained from the simple Hubbard model is useful for
understanding the feature of the present model, thereby pro-
viding a general guiding principle for spintronics.

Now we consider the case of a multi-connected system.
Since the transformationdi = uici cannot eliminate the
nonzeroθi j term completely, we cannot judge the commu-

tation relation
[−→̥
,H

]
=

[−→̥
,HU

]
in a general manner. How-

ever, a single example can provide the conclusion that the
on-site interaction breaks the SU(2) symmetry generated by
the operators{̥α}, although the time reversal symmetry still
holds.

We exemplify the above analysis by taking a simple multi-
connected network, a ring system as an example. This may
shed light on the role of the topology of the network. Re-
cently, the semiconductor quantum rings received a lot of
theoretical attention due to spin-related transport phenomena
[13–16]. The Hamiltonian of the ring reads

Hring = Hring
T + Hring

U ,

Hring
T = − J

N−1∑

j=1

c†jc j+1 − Jc†1e−i
πσy

2 cN + H.c., (29)

Hring
U = U

N∑

j=1

c†j↑c j↑c
†
j↓c j↓.

Here the spin-orbit interaction only takes place on the tunnel-
ing between sites 1 andN. Despite its simplicity, it reveals
the common properties of the underlying symmetry for more
complex systems. It acts as a Möbius system [17]. For the
solution, by taking the transformation

e−i ( j−1)π
2N c j↑ = a j, (30)

e−i (N+ j−1)π
2N c j↓ = aN+ j, j ∈ [1,N] , (31)

the original Hamiltonian is mapped into

H ring
T = −J

2N∑

j=1

(
ei π

2N a†ja j+1 + H.c.
)
, (32)

where we take the boundary conditiona†2N+1 = a†1. It repre-
sents a 2N-site ring penetrated by a half magnetic flux quanta,
which is schematically illustrated in Figure 2. Such a Hamil-
tonian can be diagonalized in the form

H ring
T = −2J

∑

k

cos
(
k +

π

2N

)
a†kak, (33)

by using the following Fourier transformation

a j =
1
√

2N

∑

k

eik jak, (34)

wherek = πn/N, n ∈ [1, 2N] denotes the momentum. Note
that the momentum shift byπ/(2N) in the dispersion rela-
tion ensures the Kramers degeneracy. Then the correspond-
ing SU(2) operators (11) and the on-site interactionHring

U can



2090 Zhang X Z, et al. Sci China-Phys Mech Astron November (2014) Vol. 57 No. 11

Figure 2 (Color online) Schematic illustration of (a) spin− 1
2 fermionic sys-

tem of anN-site ring with spin-orbit interaction on the bond between 1and

N, and (b) its equivalent system, which is a spinless fermionic system of a

2N-site ring penetrated by a half magnetic flux quanta.

be expressed explicitly as:

̥
α =

1
2

∑

k

(
a†k , a

†
2π−k−π/N

)
σα

(
ak

a2π−k−π/N

)
,

k = nπ/N, n ∈ [0,N − 1] , (35)

and

H ring
U = U

N∑

j=1

a†ja ja
†
j+Na j+N , (36)

respectively. After a lengthy but straightforward algebra, we
have [

̥
α,Hring

]
, 0. (37)

It is clear that the time reversal symmetry is not the sufficient
condition for a SU(2) symmetry, since the validity of the sym-
metry depends on the geometry of the system as well as the
on-site correlation. Only the coexistence of the closed loop
in the network and the on-site interaction between particles
can break the SU(2) symmetry.

4 Conclusion

In conclusion, we studied the underlying symmetry for a
spin-orbit coupled tight-binding model with the time rever-
sal symmetry. We found that the characteristics of the sym-
metry strongly depend on the topology of the network and
the on-site interaction. It follows that a discrete spin-orbit
coupled system has exclusive features from its counterpartin
a continuous system. It is shown that, in the case of zero

on-site interaction, the system possesses the SU(2) symmetry
arising from the Kramers degeneracy. The influence of the
on-site interaction on the symmetry depends on the geome-
try of the networks: The SU(2) symmetry is shown to be the
spin rotation symmetry of a simply-connected lattice, so it
still holds for the case of nonzeroU. We also investigate the
multi-connected system based on the exact solution of a sim-
ple ring. Our result showed that the on-site interaction can
break the SU(2) symmetry of a multi-connected lattice.

Regarding the reason why the topology and on-site corre-
lation affects the symmetry, it may due to its gauge character-
istic. It has been pointed out that one can regard the Rashba
and the Dresselhaus spin-orbit interaction in two-dimensional
semiconductor heterojunctions as a non-Abelian gauge field,
or the Yang-Mills field [18]. The Yang-Mills field generates a
physical field due to which the wave function acquires a spin-
dependent phase factor. Therefore it is not surprising thatthe
topology of the system affects the symmetry.

Appendix

In this Appendix, we will prove that the form ofTi j in eq.
(5) cover all the possible Hubbard Hamiltonian (1) possess-
ing the time reversal symmetry. Without loss of generality,
we define the 2× 2 matricesTi j as:

Ti j =

(
Ai j Bi j
Ci j Di j

)
, (a1)

whereAi j, Bi j, Ci j, andDi j are arbitary complex numbers. It
has been shown that if the time reversal operatorT commutes
with all the matricesTi j, i.e.,

[
T , Ti j

]
= 0 for arbitrary{i, j},

then the Hubbard HamiltonianH isT symmetric. Therefore,
we have

Ai j = D∗i j, Bi j = −C∗i j, (a2)

which leads to the eq. (5)

Ti j = ti j exp

(
i
θi ĵni j

2
· −→σ

)
, (a3)

where

ti j =

√∣∣∣Ai j

∣∣∣2 +
∣∣∣Bi j

∣∣∣2, (a4)

θi j = 2 arccos


Re

(
Ai j

)

√∣∣∣Ai j

∣∣∣2 +
∣∣∣Bi j

∣∣∣2


, (a5)

n̂i j =
(
sinϕi j cosφi j, sinϕi j sinφi j, cosϕi j

)
, (a6)

and

φi j = arctan


Re

(
Bi j

)

Im
(
Bi j

)
 , ϕi j = arctan


Im

(
Ai j

)
∣∣∣Bi j

∣∣∣

 . (a7)

Consequently, the expression ofTi j in eq. (5) are general
form, which cover all the possible HamiltonianH possessing



Zhang X Z, et al. Sci China-Phys Mech Astron November (2014) Vol. 57 No. 11 2091

the time reversal symmetry.
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