SCIENCE CHINA
Physics, Mechanics & Astronomy

- Article - November 2014 Vol. 57 No.11: 2086—2091
doi: 10.1007511433-014-5500-7

SU(2) symmetry in a Hubbard model with spin-orbit coupling
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We study the underlying symmetry in a spin-orbit coupledhttiginding model with Hubbard interaction. It is shown thatthe
absence of the on-site interaction, the system posse&s88)(2) symmetry arising from the time reversal symmetne ififluence
of the on-site interaction on the symmetry depends on thelagy of the networks: The SU(2) symmetry is shown to be the sp
rotation symmetry of a simply-connected lattice even in fihesence of the Hubbard interaction. On the contrary, thsiten
interaction breaks the SU(2) symmetry of a multi-connetaététe. This fact indicates that a discrete spin-orbitpded system has
exclusive features from its counterpart in a continuousesys The obtained rigorous result is illustrated by a sinniplg system.
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The spin-orbit couplingféect as an important mechanism to stants and the Dresselhaus [110] model. This finding pre-
control spin dynamics without introducing an external mag-dicted that a spin precession phenomenon should be exper
netic field [1], has received much attention in the context ofimentally observable. Most of the previous investigations
spintronics and of the attempts to build a spin-transistares ~ have been focused on non-interacting systems, while less at
the first proposal by Datta and Das [2] in 1990. Two widely tention has been paid to the existence of the electron cor-
discussed spin-orbit coupling contributions are the Rashb relations arising from the Coulomb interaction. However,
and the Dresselhausfects [3-5]. In the last decade, it has the electron-electron interaction is unavoidable in pcact
been shown that the spin-orbit interaction (SOI) can play anwhich influence to features of the system, such as relaxation
important role in generation, manipulation and detectibn o time of the electron spins.

spin polarization and spin current (for review see ref. [6] |nthis article, we study the underlying symmetry in a spin-
and references therein), as well as spin transport in otganiorhit coupled tight-binding model, where only the time neve
semiconductors [7]. Among many interesting questions thesa| symmetry is required. It is shown that, in the absence of
most important one concerns the underlying symmetry ofthe interaction between electrons, the system possesses th
this model, which reveals many far-reaching physical impli SU(2) symmetry arising from the time reversal symmetry.
cations that are not obvious at the first glance. A paradignRemarkably, we find that the influence of the on-site inter-
example is the SU(2) symmetry discovered by Bernevig etaction on the symmetry depends on the topology of the net-
al. [8] in a class of spin-orbit coupled models including the works in the following way. This SU(2) symmetry is shown
model with equal Rashba and Dresselhauss coupling conp be the spin rotation symmetry of a simply-connected lat-
- tice, i.e., the system contains no loops, which can be formed
*Corresponding author (email: songtc@nankai.edu.cn) with a set of nodes connected by edges as shown in Figure
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1(a), so it still holds for the case of nonzero on-site intera which can be determined by the specific model. Whigrie
tion. On the contrary, the on-site interaction breaks th€pU  a real numbe;; is an arbitrary angle ar; is a unit vector.
symmetry of a multi-connected lattice. Based on the exact soObviously, Tij/tj; is a unitary matrix and represents the spin
lution of a ring system, our result is demonstrated expjicit rotation operation.
This fact indicates that a discrete spin-orbit coupledesyst As is well known, the spin operators of the whole system
has exclusive features from its counterpart in a continuousre defined as:
system. N .

The article is organized as follows: in sect. 1, we intro- & = ZSY’ § = Sclo,a, (6)
duce a general spin-orbit coupled Hubbard Hamiltonian with ) 2
the time reversal symmetry. In sect. 2, we first construct the . . . .
SU(2) operators for an on-site interaction free system by usWh'Ch obey the following commutation relations

ing the Kramers degeneracy. In sect. 3 we investigate the [sa 38] = igapy S (7)
influence of the on-site correlation to the SU(2) symmetry.
Sect. 4 is the conclusion and a short discussion. wheree,g, is the Levi-Civita symbol.
At first, we concentrate on the case of the Hamiltonian of
1 Timereversal symmetry eg. (1) without the spin-orbit interaction. In the absente o
the spin-orbit interactiors;; = 0, we have
The HamiltoniarH is written as follows:
[_S), Heijzo] =0, (8)
H = Ht + Huy, i.e., the systently —o possesses the SU(2) spin rotation sym-
Hr = Z ¢/ Tijcj + He + ZﬂiCiTCi, (1) metry. The conservation a8 leads to the spin inversion sym-
i#] i metry along an arbitrary direction, which is in accordance
Hy = Z Uinipniy, with the result of the time reversal symmetry. According to
i

the general analysis, the spin inversion symmetry is broken
: _ o _ when the spin-orbit interaction is switched on. Howeveg, th
wherec; andc; are the creation and annihilation fermion op- time reversal symmetry still holds for nonzekn The objec-

erators at théth site that have two components, tive of this article aims at the inverse problem, namely: Can
the present system acquire a SU(2) symmetry from the time
¢ = (ciTT,CITl), G = ( 'T) (2)  reversal symmetry? We will find it possible under certain
Ciy conditions.

HereHt describes the motion of free particles, whilg rep-
resents the on-site interaction of opposite spin electrdns

like the simple Hubbard modeT;;/ [Tij| is no longer the unit  \ve start with the case of zetd, but nonzerd;;. Due to the

mat_rl_x arising from the COUP"”Q between momentum (and time reversal symmetry of the present system, the Hamilto-
position) operators and spin operators. In this work, we do,

) X ; o nian can always be diagonalized in the form
not restrict the model to be in a certain explicit form, but to
possess _the ti_me _rever_sal symmetry. Therefore the conclu- Hr = Z ekflj/] fi, = Z ekfkT fi, 9)
sion of this article is available to the Rashba and Dressslha Ka=1.2 K
types of spin-orbit interactions.
The time reversal operator for a spii2particle takes the
form

2 On-siteinteraction free case

whered = 1,2 labels the two fold degenerady/abels the
energy levels and the corresponding two component fermion

T = —iYK, 3) operators

f
= (). fic= ( kl). (10)

whereK denotes the complex conjugation operator satisfying fio

The Kramers degeneracy allows us to construct the operators

K (c-numbey = (c-numbe)y” K, 4)
N
(04 (04 (04 1

and o®(a@ = x,y,2) are the Pauli matrices. The Hubbard F* = ZF Fy= EfkTO-Q fis (11)
HamiltonianH possesses the time reversal symmetry if k=1
commutes with all the matriCéﬁj, i.e.,[(]_, T”] = 0 for arbi- which Obey the SU(Z) commutation relations
trary {i, j}. In the Appendix, we will show that th&; should _
have the form [Fo.F?] = igagyF. (12)

Gimij In this sense, eq. (9) describes a non-interacting Fermi gas
Tij =tjexpli—="- 7/ (3)  of spin-12 particles. The two Kramers degenerate states can
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service as the two components of a pseudo spin. ObviouslyThis indicates that the operata$$ act as the real spin opera-

we have = tors under the local transformatifum}. In this sense, one can
[F, Hr| =0, (13)  apply the theory of itinerant electron magnetism on the-spin

orbit coupling system on a simply-connected lattice. The fe

which means that the systehly possesses a new type of romagnetic state (all the spins being aligned paralleljwit

SU(2) symmetry. Note that the construction{6f} is not  respect to the operato$” in a system with nonzeré; is

unique, since any linear transformation (df;., ) cannot  equivalent to the spin helix state with respect to the opesat

change the facts of egs. (12) and (13). In other worlisis & [8]. We wiill give an extensive discussion about this issue

invariant under the local rotation of the pseudo SI{’Hﬁ after taking the on-site interaction into account in thetnex

An interesting question is: Among all the sets of the con- ggction.

served quantitie§}, which one s close to the familiar phys-  op, the other hand, the equivalent Hamiltonian (14) can be

ical quantity and is feasible to measure in experiment. lit wi diagonalized in the form

be shown that the geometry and the spin-dependent interac-

tion play an |mp0rtant_role in th|§ issue. It is alsq the main Hy = Z fkdl,.dkm (22)

goal of the present article. To this end, we firstly invedtga :

the HamiltoniarHt on a simply-connected network. It can be

observed that, by taking an arbitrary node as a startingt poinwhere

there exists a unique path to another. A schematic illustrat

o

of the simply-connected network is presented in Figure.1(a) dr = Z z)']fdj(,,

This characteristic feature of such networks alld#sto be i

rewritten as: Z (D'J‘) DK = 6w (23)
Hr = ) tjddj + He + > ud/d, (14) :

i#] i Z(DIJ()* DI]-(, = 0jj-
k

by absorbing the unitary matricesTg into the fermion oper-
atorsdiT andd;. For instance, one can take the transformationComparing egs. (9) and (22), we find that one can have

CiTTijCj = tijcfeig”ﬁ”'_")cj = tijd;rdj, (15) dk = fk~ (24)
by the definition From eq. (23), we obtain the identity
f_ ol d = diMivc,
dl = CI 5 d] - el I CJ' (16) Z dio_dk()" = Z d}L(deU": (25)
k j

The equivalent Hamiltonian (14) represents a non-spirit-orb

interaction system. Accordingly, one can construct theezor which leads to

sponding SU(2) operators
ponding SU(2) op S-=F. (26)
N
S* = Zsiﬂ,sg = Ed;%di, (17) Then we can conclude that the SU(2) symmetry obtained
i1 2 from the time reversal symmetry of a simply-connected sys-

tem is essentially spin rotational symmetry. The conser@at

satisfying the following commutation: L= . =
quantity £ is connected to an experimental observaBle

|7, | = icap,S”. (18)  which means a persistent spin helix. It is hardly observed in
practice since a natural material with simply-connected ge
Similar to eq. (8), we have ometry is rare. However, artificial lattices, such as armafys
- guantum dots in semiconductor heterostructures [9,10] con
[S, Hr|=0. (19)  fining the conduction electrons, or optical lattices—stgis-

riodic arrays of potentials created by the standing waves of
The physics ofS can be understood by the following rela- laser light [11], can implement this task.

tionship between operatof ands’ On the contrary, for a multi-connected system illustrated
in Figure 1(b), the above analysis is invalid since one canno
S = Uiﬁau?, (20) find a set of unitary matricefg);} to implement the transfor-

mation of eq. (21). Then for an on-site free system with the
whereu; is a unitary matrix of the form &< appearing in  time reversal symmetry, it always possesses a SU(2) symme-
the transformation try, but the physics of the symmetry depends on the underly-
d = uic;. (22) ing topology of the network.
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3 On-siteinteraction effect on the symmetry und state is unique. We believe that such kind of rigorous
result obtained from the simple Hubbard model is useful for

In the previous part, we have found that a SU(2) symmetryynderstanding the feature of the present model, thereby pro

in a spin-orbit coupling system obeys the time reversal sym-;iding a general guiding principle for spintronics.

metry when the electron-electron interaction is absents Th  Now we consider the case of a multi-connected system.

indicates the macroscopic emergence of certain physiaal fe Since the transformatiod; = uic, cannot eliminate the

tures (as ferromagnet, antiferromagnet, spin helix, 8cd  nonzerog;; term completely, we cannot judge the commu-
long time scale, especially in a multi-particle system. &ev

theless, the spin-dependentinteraction between particdsy i ] )
break the symmetry. Now we turn to investigate the influence€Ver, & single example can provide the conclusion that the
of the on-site interactioRly on the SU(2) symmetry. Apply- On-Site interaction breaks the S_U(Z) symmetry generatec_j by
ing the transformatiod; = u;c; to Hy on a simply-connected the operatorgF*}, although the time reversal symmetry still

system, we have holds. _ _ _ _ _
We exemplify the above analysis by taking a simple multi-

Hy = Z UiCiTTCiTCiTlCil = Z UidiTTddeiTldu, (27)  connected network, a ring system as an example. This may

i i shed light on the role of the topology of the network. Re-
cently, the semiconductor quantum rings received a lot of
theoretical attention due to spin-related transport phera
[13-16]. The Hamiltonian of the ring reads

tation relation[?, H] = ? Hy | in a general manner. How-

which means it is invariant under the transformation. Cense
quently for a simply-connected system, we still have

— - . .
[S, HU] = [S, H] =0. (28) Hring — H_Ii_lng + H[ng
N-1
This has many implications on a spin-orbit coupling system. ring + §ojTy
. . Hr = -J ) cicjyp—Jc,e' 2 ey + H.C., 29
Mathematically, it can be treated as a normal Hubbard model. T ; i N (29)
Then all the conclusions for the Hubbard model on a simply- N
connected lattice are completely available for the presgsit i g i
pietely P Hy¢=U 2, CiCinCi Cit-

tem. Here we only give a subtle conclusion from the Lieb
theorem [12]. In the following, we present a statement for a ) o )
Hubbard model with the spin-orbit interaction on a simply- Here the spin-orbitinteraction only takes place on the élnn
connected network by simply modifying the abstract in ref. INg between sites 1 anld. Despite its simplicity, it reveals
[12]. In the attractive Hubbard Model (and some extendedtN® common properties of the underlying symmetry for more
versions of it), the ground state is proved to have spin anguSOMPpIex systems. It acts as a Mobius system [17]. For the
lar momentunsS = 0 for every (even) electron filling. In the Solution, by taking the transformation

repulsive case, with a bipartite lattice and a half-fillechdba T e —a (30)

the ground state ha$ = 1/2(/B| - |Al), where|B| (|A)) is the e

number of sites in th& (A) sublattice. In both cases the gro- €' N Cj =ans+j. ) €[4, N], (31)

j=1

the original Hamiltonian is mapped into

2N
7{_:_mg -] Z (ei%a}faj” + H.C.) , (32)
=1

where we take the boundary conditiel,, = al. It repre-

@ sents a R-site ring penetrated by a half magnetic flux quanta,
which is schematically illustrated in Figure 2. Such a Hamil
tonian can be diagonalized in the form

. ring _ _ T\ Af
i H ™ = ZJZK: cos(k + 2N ) a a, (33)
by using the following Fourier transformation

(b) aj = \/L_ Z e""ak, (34)
Figure 1 Schematic illustration of (a) the simply-connected netwand 2N k
(b) the multi-connected network. If the connection betweend j is bro- wherek = tin/N, n € [1, 2N] denotes the momentum. Note
ken, the topology is changed from multi- to simply-conndotme, which  that the momentum shift by/(2N) in the dispersion rela-
will affect the SU(2) symmetry of the system, especially in the pesef ~ tion ensures the Kramers degeneracy. Then the correspond-
the on-site correlation. ing SU(2) operators (11) and the on-site interactifi’ can
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(b)
Figure2 (Coloronline) Schematic illustration of (a) spié fermionic sys-
tem of anN-site ring with spin-orbit interaction on the bond betweeant!
N, and (b) its equivalent system, which is a spinless fernsisgstem of a
2N-site ring penetrated by a half magnetic flux quanta.

be expressed explicitly as:

1
F* = E Zk: (alt’ a;n—k—n/N) O-“(
k=nm/N, ne[0,N-1],

ak
aZn—k—n/N

)

(35)

and

N
ring _ Tay.aT .
H,~=U Z a;aja;, \aj+N,
=1

(36)

respectively. After a lengthy but straightforward algelwa
have ]
[F*.H™9] £ 0. (37)

Itis clear that the time reversal symmetry is not thffisient
condition for a SU(2) symmetry, since the validity of the sym
metry depends on the geometry of the system as well as th
on-site correlation. Only the coexistence of the closeg loo
in the network and the on-site interaction between pa#icle
can break the SU(2) symmetry.

4 Conclusion

In conclusion, we studied the underlying symmetry for a
spin-orbit coupled tight-binding model with the time rever

sal symmetry. We found that the characteristics of the sym-

metry strongly depend on the topology of the network and
the on-site interaction. It follows that a discrete spibibr
coupled system has exclusive features from its counteirpart

Sci China-Phys Mech Astron
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on-site interaction, the system possesses the SU(2) symmet
arising from the Kramers degeneracy. The influence of the
on-site interaction on the symmetry depends on the geome-
try of the networks: The SU(2) symmetry is shown to be the
spin rotation symmetry of a simply-connected lattice, so it
still holds for the case of nonzetd. We also investigate the
multi-connected system based on the exact solution of a sim-
ple ring. Our result showed that the on-site interaction can
break the SU(2) symmetry of a multi-connected lattice.

Regarding the reason why the topology and on-site corre-
lation dfects the symmetry, it may due to its gauge character-
istic. It has been pointed out that one can regard the Rashba
and the Dresselhaus spin-orbitinteraction in two-dimemesi
semiconductor heterojunctions as a non-Abelian gauge field
or the Yang-Mills field [18]. The Yang-Mills field generates a
physical field due to which the wave function acquires a spin-
dependent phase factor. Therefore it is not surprisingttieat
topology of the systemfiects the symmetry.

Appendix

In this Appendix, we will prove that the form dffj; in eq.
(5) cover all the possible Hubbard Hamiltonian (1) possess-
ing the time reversal symmetry. Without loss of generality,
we define the % 2 matricesT;; as:

Tij = ( )

Aj
Cij

whereA;j, Bij, Cij, andD;; are arbitary complex numbers. It

has been shown that if the time reversal operataommutes

with all the matricesTyj, i.e.,[7, Ty;| = O for arbitrary(i, j},

then the Hubbard Hamiltoniad is 7~ symmetric. Therefore,

we have

g (a1)

Aij = Djj, Bij =-Cjj, (a2)
which leads to the eq. (5)
Tij =t eXp(Iel]—j” EZ) s (al)
where
e tij = \/|A51|2+ |Bij|2, (ad)
0 2 arcco —Re(Ajj) (ab)
i = ,
VIAl + 1Bl
ﬁij = (Singoij cosq)ij,simpi,- sin¢ij,cos<pi,—), (ab)
and
¢ij = arctar{ e( ”)}’%i = arctar{ m(A”) . (@7
Im(Bij) 'Bijl

Consequently, the expression@f in eq. (5) are general

a continuous system. It is shown that, in the case of zerdorm, which cover all the possible Hamiltoni&hpossessing
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the time reversal symmetry.
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