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0 Introduction

A compact complex manifold is called obstructed if the base space of its semiuniversal deformation is

a singular germ of complex space; equivalently, a manifold X is obstructed if and only if there exist

elements of H1(X,TX) not belonging to the image of the Kodaira-Spencer map of a deformation of X

over a smooth base.

In their foundational work on deformation theory, Kodaira and Spencer [24, 25] proved that, for a

compact complex manifold X, if the cup product H1(TX)⊗H1(TX)−→H2(TX) is non-trivial, then X is

obstructed. Using this criterion, it is very easy to produce examples of obstructed manifolds of dimension

greater than of equal to 3: the simplest example is probably the product A× Pn, where n > 0 and A is

a complex torus of dimension greater than of equal to 2 [25, p. 436].

The search for obstructed surfaces is a more challenging problem; in fact the first, examples of ob-

structed surfaces were given in 1966 by Kas [20], while the first examples of obstructed surfaces with

ample canonical bundle were given in 1975 by Horikawa [16,17].

The examples of Kas and Horikawa are basically different and, in some sense, are the ancestors of two

classes of examples: almost all the known examples of obstructed surfaces belong to such classes. The

first is the class of surfaces containing smooth rational curves with self-intersection −2. The effect of

such curves on the deformations has been clarified by Burns and Wahl in [3], Kas in [21] and Pinkham

in [35]. Other examples of obstructed surfaces with −2 curves are described in [2, 5, 26, 32]. Moreover,

Catanese [5] produced examples of surfaces with −2 curves with non reduced Kuranishi family; also an

immediate application of the results of Burns and Wahl shows also that the minimal resolutions of the

surfaces described in Example 3.24 of [28] are obstructed.
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The second class of examples are constructed by using Horikawa theorems and their refinements, in

order to compare the deformation spaces of geometric objects related by some standard procedure, such

as blow-up, general hyperplane section and branched covering. For example, starting from Mumford’s

famous example of an obstructed curve C ⊂ P3, Horikawa [17] proved that a sufficiently ample hyperplane

section of the blow-up of P3 along C is an obstructed surface with very ample canonical bundle. The

obstructed surfaces described in [9, 10] as abelian covering branched over “obstructed” building data

belong to the same class of examples. Finally, following the same ideas, Vakil proved in [42] that the

moduli space of regular surfaces satisfies “Murphy’s law”. More precisely, every singularity type defined

over Z is obtained as the deformation space of a regular surface.

One of the main tools used in the second construction is Kodaira’s stability theorem [23]: if Z ⊂ X is

a smooth submanifold with H1(NZ|X) = 0 (e.g., if H2(OX) = 0 and Z is a sufficiently ample hyperplane

section), then every deformation of X lifts to a deformation of the pair (X,Z).

The main theme of this paper is to use the theory of differential graded Lie algebras in order to compute

the deformation space of sufficiently ample hyperplane sections in some cases when Kodaira’s theorem

does not apply; as a by-product, we obtain the following examples of obstructed irregular surfaces.

Example A. Let A be an abelian surface and S a smooth surface of general type contained in A×P1.

Then the base space of the Kuranishi family of S is analytically isomorphic to the germ at 0 of Cs × C,

where s = h1(S, TS)− 6 and C is the affine cone over the Segre variety P2 × P1 ⊂ P5 (Example 5.4).

It is a great pleasure to dedicate this paper to Fabrizio Catanese on the occasion of his sixtieth birthday:

several years ago, I was beginning to work to my PhD thesis under the supervision of Fabrizio and, as

usual, he suggested a lot of good ideas and interesting problems about moduli of algebraic surfaces. One

of them was concerned with deformation theory and, in particular, with the last section of the famous

paper of Palamodov [34]. As I remember, Fabrizio told me something similar to “the Massey powers seem

very powerful but until now nobody has used them to compute the universal family of a concrete example

of an algebraic surface”.

At that time, I had not really understood the Massey powers and this idea was not pursued. On

the other hand, working with Massey powers is quite difficult; as well explained in [38] “Massey product

structures can be very helpful, though they are in general described in a form that is unsatisfactory”.

In the same papers Schlessinger and Stasheff gave the basis for more satisfying structures which are a

refinement of the Massey products (see the following Remark 2.5). The goal of this paper is to use these

refinements to compute the universal deformation for a particular class of obstructed irregular surfaces.

1 Singularity type of commuting varieties

We work over the field C of complex numbers; every complex manifold is assumed to be compact and

connected.

Following Vakil [42], we shall say that two analytic singularities (X, 0) and (Y, 0) have the same

singularity type if there exists a diagram

(Z, 0)

f

{{vvv
vv

vv
vv g

##HH
HH

HH
HH

H

(X, 0) (Y, 0),

(1.1)

where f and g are smooth morphisms of analytic singularities. Since smoothness is stable under base

change, having the same singularity type is an equivalence relation. The following lemma implies that

every analytic singularity is determined up to isomorphism by its singularity type and the dimension of

its Zariski tangent space.

Lemma 1.1. Assume that (X, 0) and (Y, 0) have the same singularity type and dim(X, 0) > dim(Y, 0),

then there exists an isomorphism (X, 0) ∼= (Y × Ck, 0) for some k > 0.
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Proof. Let (Z, 0)
f−→(X, 0) be a smooth map of analytic singularities. If dim(Z, 0) = dim(X, 0), then f

is an isomorphism. If dim(Z, 0)−dim(X, 0) = k > 0, then there exists an isomorphism (Z, 0) ∼= (X×Ck, 0)

and, if (W, 0) ⊂ (Z, 0) is a generic hyperplane section, then the restriction f : (W, 0) → (X, 0) is smooth.

Taking possibly generic hyperplane sections of the singularity (Z, 0) in the diagram (1.1), we can

assume that f is an isomorphism.

Let L be a finite-dimensional complex Lie algebra and q a positive integer. The (possibly non reduced)

affine scheme

C(q, L) = {(a1, . . . , aq) ∈ L⊕q | [ai, aj ] = 0 for every i, j}

is called the q-th commuting variety of L.

Example 1.2. Since two matrices in sl(2,C) commute if and only if they are linearly dependent, the

commuting variety C(q, sl(2,C)) is isomorphic to determinantal variety of matrices q × 3 of rank 6 1, or

equivalently, to the affine cone over the Segre variety Pq−1 × P2 ⊂ P3q−1.

Remark. The structure of the varieties C(q, L) has been studied by several people. The case L =

sl(n,C) was studied in Gerstenhaber [11]; he proved, in particular, that C(2, sl(n,C)) is irreducible for

every n (this fact was also proved independently by Motzkin and Taussky [33]). It is a well-known open

(and hard) problem to determine whether C(2, sl(n,C)) (defined by the ideal generated by brackets) is

a reduced scheme. Moreover, according to Richardson [36], the variety C(2, L) is irreducible for every

reductive Lie algebra L.

Proposition 1.4. Let L be a finite dimensional complex Lie algebra with trivial center. Then, for

every q > 2, the analytic singularity (C(q, L), 0) is minimal in its singularity type class.

Proof. Since C(q, L) is defined in L⊕q by quadratic equations, its Zariski tangent space at 0 is equal

to L⊕q. Let a = (a1, . . . , aq) ∈ C(q, L)− {0} and assume for simplicity a1 ̸= 0. Then there exists b ∈ L

such that [a1, b] ̸= 0 and thus the vector (0, b, 0, . . . , 0) does not belong to the Zariski tangent space of

C(q, L) at the point a. Therefore,

dimT0C(q, L) > dimTaC(q, L), ∀ a ̸= 0,

and the singularity (C(q, L), 0) cannot be of the form (X × C, 0).
Corollary 1.5. Assume that the analytic singularity (X, 0) has the same singularity type as C(q, sl(n,

C)) for some q, n > 2. Then there exists an isomorphism

(X, 0) ∼= (Ck × C(q, sl(n,C)), 0), k = dimT0X − q(n2 − 1).

Proof. The center of sl(n,C) is trivial for n > 2.

2 Differential graded Lie algebras and deformations

A differential graded vector space is a pair (V, d), where V =
⊕

V i is a graded vector space and d is a

differential of degree +1.

Definition 2.1. A differential graded Lie algebra (DGLA for short) is the data of a differential graded

vector space (V, d) and a bilinear map [−,−] : V × V → V (called bracket) of degree 0 such that :

(1) (graded skewsymmetry) [a, b] = −(−1)deg(a) deg(b)[b, a].

(2) (graded Jacobi identity) [a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]].

(3) (graded Leibniz rule) d[a, b] = [da, b] + (−1)deg(a)[a, db].

A morphism of DGLA is a morphism of complexes commuting with the brackets.

The reader may consult [12,27,29,30] for a more detailed exposition of differential graded Lie algebras

and their associated deformation functors.

In this paper, we are mainly interested in two examples of differential graded Lie algebras. Given a

holomorphic vector bundle E on a complex manifold X, we denote by Ap,q
X (E) the sheaf of differentiable

(p, q)-forms of X, with values in E and Ap,q
X (E) = Γ(X,Ap,q

X (E)) the space of its global sections.
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Example 2.2. The graded vector space

A0,∗
X (TX) =

⊕
i

A0,i
X (TX),

where TX is the holomorphic tangent sheaf, has the natural structure of a DGLA, when endowed with

the opposite of the Dolbeault differential and with the antiholomorphic extension of the standard bracket

of A0,0
X (TX).

Example 2.3. For every line bundle L on a complex manifold X, we denote by D(L) the locally free

sheaf of first order holomorphic differential operators on L. If z1, . . . , zn are local holomorphic coordinates

on an open set U and s ∈ Γ(U,L) is a nowhere vanishing section, then every ξ ∈ Γ(U,D(L)) is written

formally as

ξ = s

(∑
i

αi
∂

∂zi
+ β

)
s−1,

and this means that for every h ∈ OX(U) we have

ξ(sh) = s

(∑
i

αi
∂h

∂zi
+ βh

)
.

There exists an exact sequence of sheaves of Lie algebras on X,

0−→OX
i−→D(L)

σ−→TX−→0, (2.1)

where i is the inclusion and σ is the principal symbol. In local coordinates,

i(β) = s(β)s−1, σ

(
s

(∑
i

αi
∂

∂zi
+ β

)
s−1

)
=

∑
i

αi
∂

∂zi
.

The sequence (2.1) is obtained by applying the functor Hom(−, L) to Atiyah’s extension of L [1, p. 194].

If X is compact Kähler, then according to [1, Propositions 3 and 12], the extension class of (2.1)

is equal to 2πic1(L) ∈ H1(X,Ω1
X) ∼= Ext1(TX ,OX). In particular, for every p > 0, the morphism

Hp(TX)−→Hp+1(OX) induced by the exact sequence (2.1) is a multiple of the contraction with the first

Chern class of L. Considering the Dolbeault resolution of the Atiyah extension of L, we get an exact

sequence

0−→A0,∗
X −→A0,∗

X (D(L))
σ−→A0,∗

X (TX)−→0 (2.2)

and A0,∗
X (D(L)) carries a natural structure of DGLA such that σ is a morphism of differential graded Lie

algebras.

Denoting by Art the category of local artinian C-algebras and by Set the category of sets, for every

differential graded Lie algebra V , we have the functors

MCV : Art → Set, DefV =
MCV

Gauge action
: Art → Set.

The functor MCL is called the Maurer-Cartan functor and is defined as

MCV (A) =

{
x ∈ V 1 ⊗mA

∣∣∣∣ dx+
1

2
[x, x] = 0

}
,

where mA is the maximal ideal of A.

Two elements x, y ∈ V ⊗mA are said to be gauge equivalent if there exists an a ∈ V 0 ⊗mA such that

y = ea ∗ x := x+
∞∑

n=0

[a,−]n

(n+ 1)!
([a, x]− da).
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We have ea ∗ (eb ∗x) = ea•b ∗x, where • is the Baker-Campbell-Hausdorff product [19,41] in the nilpotent

Lie algebra V 0 ⊗mA. The set

exp(V 0 ⊗mA) = {ea | a ∈ V 0 ⊗mA}

of formal exponentials of elements of the nilpotent Lie algebra V 0 ⊗mA has a group structure with unit

e0, with inverse (ea)−1 = e−a and with product eaeb = ea•b; thus ∗ is an action of the exponential group

exp(V 0 ⊗mA) on the graded vector space V ⊗mA, called the gauge action. It is not difficult to see that

the set of solutions to the Maurer-Cartan equation is stable under the gauge action, and then it makes

sense to consider the functor DefV : Art → Set defined as above.

It is known (see e.g. [13,27,30]) that the tangent space of DefV is isomorphic to H1(V ) and that H2(V )

is an obstruction space. If H1(V ) is finite-dimensional, then DefV satisfies Schlessinger’s conditions in

order to have a hull [37]. Then, by the standard smoothness criterion of [8], a morphism V → W of

DGLA induces a smooth morphism of functors DefV → DefW if H1(V ) → H1(W ) is surjective and

H2(V ) → H2(W ) is injective.

Theorem 2.4. [38] Let V → W be a morphism of differential graded Lie algebras. Assume that

(1) H0(V ) → H0(W ) is surjective ;

(2) H1(V ) → H1(W ) is bijective ;

(3) H2(V ) → H2(W ) is injective.

Then DefV → DefW is an isomorphism.

Proof. See e.g., Theorem 5.71 of [30].

The importance of the above construction is motivated by the fact, or metatheorem, that in char-

acteristic 0, every functor of Artin rings arising from a deformation problem is isomorphic to DefV for

some DGLA V defined up to quasi-isomorphism. For instance, if X is a complex manifold, then the

functor DefX of infinitesimal deformations of X is isomorphic to DefA0,∗
X (TX) (see e.g. [13]); notice that

in this case, the Maurer-Cartan equation is essentially the Newlander-Niremberg integrability condition,

as described in [4].

Let L be a line bundle on a complex manifold X; according to [40], a deformation of the pair (X,L) is

the data of a deformation X of X and an invertible sheaf L on X such that L|X = L. It is well known [6]

that the DGLA A0,∗
X (D(L)) governs the deformation of the pair (X,L). Moreover, via the isomorphisms

DefA0,∗
X (TX)

∼= DefX and DefA0,∗
X (D(L))

∼= Def(X,L),

the forgetful natural transformation

Def(X,L) → DefX

is induced by the morphism σ of (2.2).

Remark 2.5. Every differential graded Lie algebra V carries a sequence of operations

H1(V ) → {subsets of H2(V )}, θ 7→ [θk], k > 2

called Massey powers that are invariant under quasi-isomorphism and satisfying the following properties:

(1) [θ2] = 1
2 [θ, θ] is the primary obstruction of θ,

(2) [θk+1] is not empty if and only if 0 ∈ [θk].

For the classical definition of Massey powers we refer to [34,39]. Here, we clarify their role in deformation

theory by deriving them from the functor DefV .

For every integer n > 0 define An = C[t]
(tn+1) ; we have seen that there exists a canonical isomorphism

DefV (A1) = H1(V ). Denote by

πn : DefV (An) → DefV (A1)

the map induced by the natural projection An → A1. Next, we define for every n an obstruction map

on : DefV (An) → H2(V )
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in the following way: for every element x̃ ∈ DefV (An) we choose a representative of it as a solution

x ∈ V 1 ⊗mAn
= V 1t+ V 1t2 + · · ·+ V 1tn

of the Maurer-Cartan equation. Then, we choose a lifting of x to an element y ∈ V 1 ⊗ mAn+1 and we

consider

dy +
1

2
[y, y] ∈ V 2 ⊗mAn+1 .

Clearly, dy + 1
2 [y, y] = htn+1 for some h ∈ V 2, moreover (see e.g. [27, 31]), dh = 0 and its cohomology

class [h] ∈ H2(V ) depends only on x̃. This gives a map

on : DefV (An) → H2(V ), x̃ 7→ [h],

and for every θ ∈ H1(V ), n > 0, we have

[θn+1] = on(π
−1
n (θ)).

3 Deformations of Cq/Γ× Pn

If Z, Y are complex manifolds and E → Z, F → Y are vector bundles, we denote

E � F = p∗E ⊗ q∗F,

where p : Z × Y → Z and q : Z × Y → Y are the projections. By the Künneth formula [15] we have

Hi(Z × Y,E � F ) =
⊕
j

Hj(Z,E)⊗Hi−j(Y, F ).

Notice that

TZ×Y = p∗TZ ⊕ q∗TY = (TZ �OY )⊕ (OZ � TY ).

Let Cq/Γ be a complex torus of dimension q. In [25, p. 436] Kodaira and Spencer proved that the

manifold X = (Cq/Γ) × Pn has obstructed deformations for every q > 2 and every n > 1. This was the

first example of obstructed manifold; the same example is also discussed, with a different approach, in [7].

Here, we refine this result with the following theorem.

Theorem 3.1. For every q > 2 and every n > 1, the manifold X = (Cq/Γ) × Pn does not have a

universal deformation. The base space of its Kuranishi family is singular, it is analytically isomorphic to

the germ at 0 of Cq2 × C(q, sl(n+ 1)) and it is reducible for every n > 3 and q > 3 + 8/(n− 2).

Proof. Denote by Bi ⊂ A0,i
Cq/Γ the subspace of invariant forms of type (0, i) on the torus. If z1, . . . , zq

are linear coordinates on Cq, then B1 is the vector space generated by dz1, . . . , dzq, B
i =

∧i
B1 and the

inclusion Bi ⊂ A0,i
Cq/Γ induces an isomorphism Bi = Hi(OCq/Γ) [14, p. 301]. The natural inclusion

B =
⊕
i>0

Bi =

∗∧
B1 ı−→ A0,∗

Cq/Γ

is a quasi-isomorphism of differential graded algebras and therefore, since the tangent vector bundle of a

complex torus is trivial, the inclusion

B ⊗H0(TCq/Γ)
ı⊗Id−−−→ A0,∗

Cq/Γ(TCq/Γ)

is a quasi-isomorphism of DGLA. According to the Künneth formula, the inclusions

Q1 := B ⊗H0(TCq/Γ)
ı⊗p∗

−−−→ A0,∗
X (p∗TCq/Γ),

Q2 := B ⊗H0(TPn)
ı⊗q∗−−−→ A0,∗

X (q∗TPn)
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yield a quasi-isomorphism of differential graded Lie algebras

Q := Q1 ⊕Q2 = (B ⊗H0(TCq/Γ))⊕ (B ⊗H0(TPn))
ı⊗p∗+ı⊗q∗−−−−−−−→ A0,∗

X (TX).

Therefore, the functor

DefQ = DefQ1
×DefQ2

is isomorphic to the functor of infinitesimal deformations of X. Notice that since Q1 is abelian, the gauge

action is trivial and

DefQ1(A) = H1(Q1)⊗mA = {Spec(A) → (H1(Q1), 0)},

so that DefQ1
is prorepresented by Cq2 . The subspace

Q+
2 =

⊕
i>0

Qi
2 =

⊕
i>0

Bi ⊗H0(TPn)

is a differential graded Lie subalgebra of Q2 and the inclusion Q+
2 → Q2 induces an isomorphism of

Maurer-Cartan functors: MCQ+
2
= MCQ2 . Since the gauge action associated with Q+

2 is trivial, we have

MCQ+
2
= DefQ+

2
. Fixing a basis b1, . . . , bq of B1, we have

1

2

[∑
bi ⊗ ηi,

∑
bi ⊗ ηi

]
=

∑
i<j

bi ∧ bj [ηi, ηj ], ηi ∈ H0(TPn),

and therefore, DefQ+
2
= MCQ+

2
is prorepresented by the germ at 0 of the commuting variety

C(q,H0(TPn)) = C(q, sl(n+ 1)).

Finally, since H0(TPn) is not abelian, the gauge action on MCQ2 is non-trivial and so DefQ+
2
→ DefQ2 is

a hull but not an isomorphism. The assertion about reducibility follows immediately from the following

Lemma 3.2.

Lemma 3.2. If n > 4 and the commuting variety C(q, sl(n,C)) is irreducible, then

q < 3 +
8n− 12

(n− 2)2
for n even,

q < 3 +
8

n− 3
for n odd.

Proof. This proof is based on the ideas of [18]. Assume C(q, sl(n)) is irreducible and consider the

projection to the first factor

π : C(q, sl(n,C)) → C(1, sl(n,C)) = sl(n,C).

Let D ∈ sl(n,C) be a diagonal matrix with distinct eigenvalues, then every matrix commuting with D

must be diagonal. Therefore, the fiber π−1(D) is irreducible of dimension (n−1)(q−1) and the dimension

of C(q, sl(n,C)) is less than or equal to

n2 − 1 + (n− 1)(q − 1).

On the other hand, let r be the integral part of n/2 and let N ⊂ sl(n,C) be the closed subset of

matrices A such that A2 = 0. It is easy to see that N is irreducible of dimension 2r(n− r) and therefore,

for the generic A ∈ N , we have

2r(n− r) + dimπ−1(A) < n2 − 1 + (n− 1)(q − 1).

After a possible change of basis, every A ∈ N belongs to the space

H = {(hij) ∈ sl(n,C) | hij ̸= 0 only if i > r, j 6 r}.
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Then H is an abelian subalgebra of sl(n,C) and therefore,

{A} ×H⊕q−1 ⊂ π−1(A).

In particular,

r(n− r)(q − 1) = dimH⊕q−1 < n2 − 1 + (n− 1)(q − 1)− 2r(n− r).

A straightforward computation gives the inequalities of the lemma. 2

Remark 3.3. Lemma 3.2 also gives a partial answer to the question of [11, p. 342]. In the same

paper, Gerstenhaber proved that C(q, sl(n,C)) is irreducible for n 6 3 and not irreducible for q > n > 4.

4 Deformations of pairs (Cq/Γ× Pn, L)

We recall that the Appell-Humbert data on a complex torus Cq/Γ are a pair (α,H), where H is a

hermitian form on Cn such that its imaginary part E is integral on Γ×Γ and α is a semicharacter for H:

α : Γ → U(1), α(γ1 + γ2) = α(γ1)α(γ2)(−1)E(γ1,γ2).

Denote by L(α,H) the line bundle on Cq/Γ with the factor of automorphy [22, p. 4]

Aγ(z) = α(γ)eπ(H(z,γ)+H(γ,γ)/2), γ ∈ Γ, z ∈ Cq.

According to Appell-Humbert’s theorem, every line bundle on Cq/Γ is isomorphic to L(α,H) for a

unique Appell-Humbert data (α,H); moreover, the first Chern class of L(α,H) is equal to the invariant

form of type (1, 1) corresponding to E [22, Lemma 3.5]. In particular, two line bundles L(α1,H1),

L(α2,H2) have the same Chern class if and only if H1 = H2.

The same proof of the Appell-Humbert theorem given in [22], with minor and straightforward modifi-

cations, shows that every line bundle on Cq/Γ× Pn is isomorphic to

L(α,H, d) := L(α,H)�O(d)

for some Appell-Humbert data (α,H) and some integer d.

Denote for simplicity X = Cq/Γ× Pn and consider the exact sequence

0−→OX−→D(L(α,H, d))
σ−→TX−→0 .

As observed in Section 2, the induced morphism in cohomology

H1(TX)
δ−→H2(OX)

is equal to a scalar multiple of the contraction with the first Chern class of the line bundle L(α,H, d).

Lemma 4.1. In the above notation, if det(H) ̸= 0, then δ is surjective and its kernel contains H1(OCq/Γ)

⊗H0(TPn). In particular, the map

H2(D(L(α,H, d)))−→H2(TX)

is injective.

Proof. Since

H1(TX) = H1(TCq/Γ)⊗H0(OPn)⊕H1(OCq/Γ)⊗H0(TPn), H2(OX) = H2(OCq/Γ),

and

c1(L(α,H, d)) = p∗c1(L(α,H)) + q∗c1(O(d)),

it is sufficient to prove that the map

H1(TCq/Γ)
yc1(L(α,H))−−−−−−−−−→ H2(OCq/Γ)
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is surjective.

The elements of H2(OCq/Γ) are represented by invariant (0, 2)-forms: if z1, . . . , zq are linear coordinates

on Cq, then a basis of H2(OCq/Γ) is given by the forms dzi∧dzj , for i < j. Similarly, a basis of H1(TCq/Γ)

is given by the invariant tensors

dzi ⊗
∂

∂zj
, for i, j = 1, . . . , q.

The first Chern class of L(α,H) is given by the invariant form
∑

hrsdzr ∧ dzs, where (hrs) is a scalar

multiple of H, and therefore,(
dzi ⊗

∂

∂zj

)
yc1(L(α,H)) = dzi ⊗

∂

∂zj
y
∑
r,s

hrsdzr ∧ dzs =
∑
s

hjsdzi ∧ dzs.

Therefore, since the matrix (hrs) is invertible, the contraction map is surjective.

Theorem 4.2. Let L be an ample line bundle on X = Cq/Γ× Pn. Then the base space of the semiuni-

versal deformation of the pair (X,L) has the same singularity type as C(q, sl(n+ 1,C)).

Proof. We have L = L(α,H, d) for some integer d > 0 and a positive definite hermitian form H.

Denoting by P the fiber product of

A0,∗
X (D(L))

σ−→A0,∗
X (TX)

and the injective quasi-isomorphism

Q = B ⊗ (H0(TCq/Γ)⊕H0(TPn)) → A0,∗
X (TX)

introduced in the proof of Theorem 3.1, we have a commutative diagram

0 −→ A0,∗
X −→ P −→ Q −→ 0

∥
yϕ

y
0 −→ A0,∗

X −→ A0,∗
X (D(L))

σ−→ A0,∗
X (TX) −→ 0,

where the rows are exact and the columns are quasi-isomorphisms. In particular, according to

Theorem 2.4, the functor DefP is isomorphic to the functor of deformations of the pair (X,L).

We have a direct sum decomposition

Q = (B0 ⊗H0(TCq/Γ))⊕ (B1 ⊗H0(TCq/Γ))⊕R,

where

R =
⊕
i>1

Bi ⊗H0(TCq/Γ)⊕B ⊗H0(TPn).

Since R1 = B1⊗H0(TPn), the functor DefR is prorepresented by the germ at 0 of the commuting variety

C(q, sl(n+ 1,C)); therefore, in order to prove the theorem, it is sufficient to prove that the composition

P → Q → R is surjective on H1 and injective on H2. Equivalently, it is sufficient to prove that

H2(D(L(α,H, d)))−→H2(TX)

is injective and the image of

H1(D(L(α,H, d)))−→H1(TX)

contains B1 ⊗H0(TPn), and this follows from Lemma 4.1.
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5 Deformations of smooth ample divisors of Cq/Γ× Pn

The aim of this section is to apply the previous results and Horikawa’s costability theorems in order to

compute the Kuranishi family of a smooth ample divisor of X = Cq/Γ× Pn. We first point out that the

canonical divisor of X is KX = L(0, 0,−n− 1) and

L(α1,H1, d1)⊗ L(α2, H2, d2) = L(α1α2,H1 +H2, d1 + d2).

Lemma 5.1. On the manifold X = Cq/Γ× Pn we have

(1) If α ̸= 1, then Hi(L(α, 0, d)) = 0 for every i, d ∈ Z.
(2) If H is positive definite and d > −n, then

Hi(L(α,H, d)) = 0

for every i > 0.

(3) If H is negative definite and d 6 −2, then

Hi(L(α,H, d)) = Hi(TX ⊗ L(α,H, d)) = 0

for every i 6 q + n− 2.

(4) If H is negative definite and d 6 −n− 2, then

Hq+n−1(TX ⊗ L(α,H, d)) = 0.

Proof. The determination of the cohomology of line bundles on Cq/Γ [22, Theorem 3.9] gives that

(i) If α ̸= 1, then Hi(L(α, 0)) = 0 for every i.

(ii) If H is negative definite, then Hi(L(α,H)) = 0 for every i < q.

By the Künneth formula we get (1). Assume now that H is negative definite; then by the Künneth

formula we get Hi(L(α,H, d)) = 0 for every α, every d < 0 and every i < q+n. By the Serre duality, we

get (2).

The bundle TX ⊗ L(α,H, d) is the direct sum of L(α,H) � TPn(d) and q copies of L(α,H, d). Since

Hi(TPn(d)) = 0 for every d 6 −2 and every i 6 n− 2, we get (3).

If d 6 −n− 2 then Hn−1(TPn(d)) = 0, and this implies (4).

Remark 5.2. For simplicity of exposition, in Lemma 5.1 we stated only the vanishing theorems we

need for our application: as pointed out by the referee, the same proof gives a slightly stronger result.

Theorem 5.3. Let L = L(α,H, d) be an ample line bundle on the variety X = Cq/Γ × Pn, and let S

be a smooth divisor which is the zero locus of a section of L. Assume q, d > 2, n > 1 and q + n+ d > 6.

Then every deformation of S is projective and the base space of the Kuranishi family of S has the same

singularity type as the commuting variety C(q, sl(n+ 1,C)).
Proof. Let us denote by Def(X,L) the functor of deformations of the pair (X,L), by Def(X,S) the functor

of deformations of the pair (X,S) and by DefS the functor of deformations of S.

According to Theorem 4.2, it is sufficient to prove that the natural morphisms

Def(X,S) → DefS , Def(X,S) → Def(X,L)

are smooth. By Lemma 5.1 we have H1(L) = 0 and this implies that Def(X,S) → Def(X,L) is smooth.

The ampleness of S also implies that every deformation of the pair (X,S) is projective.

On the other hand, by Lemma 5.1, H2(TX(−S)) = 0 and then by Horikawa’s costability theorem [17,

Thmeorem 8.3], the morphism Def(X,S) → DefS is smooth.

Example 5.4. Let A = C2/Γ be an abelian surface and S a smooth irreducible surface contained in

X = A × P1. Then S is of general type if and only if OX(S) = L(α,H, d) for some H positive definite

and d > 3. In fact, since H0(OX(S)) ̸= 0, we get by Künneth’s formula that d > 0, H is positive

semidefinite and α ≡ 1 on kerH ∩ Γ. Assume that S is of general type and denote by r the dimension
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of the kernel of H; if r = 2 then S is isomorphic to A, while if r = 1 then S is an elliptic fibration.

Therefore, H is positive definite and the degree d of the projection S → A must be greater than or equal

to 2. Thus, if S is of general type, we have OX(KX + S) = L(α,H, d − 2) and then, by Lemma 5.1

we have H1(X,m(KX + S)) = 0 for every m > 0. Therefore, H0(X,m(KX + S)) → H0(S,mKS) is

surjective for every m > 0 and if d = 2, then the image of the pluricanonical map of S is an abelian

surface. Conversely, if d > 2 and H is positive definite, then KS is ample.

Therefore, if S is of general type, according to Theorem 5.3, the base space of the universal deformation

of S has the same singularity type as C(2, sl(2,C)).
Remark 5.5. The same ideas can be used to understand the deformation type of sufficiently ample

and generic complete intersections in Cq/Γ× Pn1 × · · · × Pnk .
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