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0 Introduction

A compact complex manifold is called obstructed if the base space of its semiuniversal deformation is
a singular germ of complex space; equivalently, a manifold X is obstructed if and only if there exist
elements of H'(X,Tx) not belonging to the image of the Kodaira-Spencer map of a deformation of X
over a smooth base.

In their foundational work on deformation theory, Kodaira and Spencer [24,25] proved that, for a
compact complex manifold X, if the cup product H!(Tx) ® H(Tx)—H?*(Tx) is non-trivial, then X is
obstructed. Using this criterion, it is very easy to produce examples of obstructed manifolds of dimension
greater than of equal to 3: the simplest example is probably the product A x P", where n > 0 and A is
a complex torus of dimension greater than of equal to 2 [25, p. 436].

The search for obstructed surfaces is a more challenging problem; in fact the first, examples of ob-
structed surfaces were given in 1966 by Kas [20], while the first examples of obstructed surfaces with
ample canonical bundle were given in 1975 by Horikawa [16,17].

The examples of Kas and Horikawa are basically different and, in some sense, are the ancestors of two
classes of examples: almost all the known examples of obstructed surfaces belong to such classes. The
first is the class of surfaces containing smooth rational curves with self-intersection —2. The effect of
such curves on the deformations has been clarified by Burns and Wahl in [3], Kas in [21] and Pinkham

n [35]. Other examples of obstructed surfaces with —2 curves are described in [2, 5,26, 32]. Moreover,
Catanese [5] produced examples of surfaces with —2 curves with non reduced Kuranishi family; also an
immediate application of the results of Burns and Wahl shows also that the minimal resolutions of the
surfaces described in Example 3.24 of [28] are obstructed.
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The second class of examples are constructed by using Horikawa theorems and their refinements, in
order to compare the deformation spaces of geometric objects related by some standard procedure, such
as blow-up, general hyperplane section and branched covering. For example, starting from Mumford’s
famous example of an obstructed curve C' C P3, Horikawa [17] proved that a sufficiently ample hyperplane
section of the blow-up of P? along C is an obstructed surface with very ample canonical bundle. The
obstructed surfaces described in [9, 10] as abelian covering branched over “obstructed” building data
belong to the same class of examples. Finally, following the same ideas, Vakil proved in [42] that the
moduli space of regular surfaces satisfies “Murphy’s law”. More precisely, every singularity type defined
over 7 is obtained as the deformation space of a regular surface.

One of the main tools used in the second construction is Kodaira’s stability theorem [23]: if Z C X is
a smooth submanifold with H*(Nzx) =0 (e.g., if H*(Ox) = 0 and Z is a sufficiently ample hyperplane
section), then every deformation of X lifts to a deformation of the pair (X, Z).

The main theme of this paper is to use the theory of differential graded Lie algebras in order to compute
the deformation space of sufficiently ample hyperplane sections in some cases when Kodaira’s theorem
does not apply; as a by-product, we obtain the following examples of obstructed irregular surfaces.

Example A. Let A be an abelian surface and S a smooth surface of general type contained in A x P*.
Then the base space of the Kuranishi family of S is analytically isomorphic to the germ at 0 of C° x C,
where s = h!(S,Ts) — 6 and C is the affine cone over the Segre variety P2 x P* C P° (Example 5.4).

It is a great pleasure to dedicate this paper to Fabrizio Catanese on the occasion of his sixtieth birthday:
several years ago, I was beginning to work to my PhD thesis under the supervision of Fabrizio and, as
usual, he suggested a lot of good ideas and interesting problems about moduli of algebraic surfaces. One
of them was concerned with deformation theory and, in particular, with the last section of the famous
paper of Palamodov [34]. As I remember, Fabrizio told me something similar to “the Massey powers seem
very powerful but until now nobody has used them to compute the universal family of a concrete example
of an algebraic surface”.

At that time, I had not really understood the Massey powers and this idea was not pursued. On
the other hand, working with Massey powers is quite difficult; as well explained in [38] “Massey product
structures can be very helpful, though they are in general described in a form that is unsatisfactory”.
In the same papers Schlessinger and Stasheff gave the basis for more satisfying structures which are a
refinement of the Massey products (see the following Remark 2.5). The goal of this paper is to use these
refinements to compute the universal deformation for a particular class of obstructed irregular surfaces.

1 Singularity type of commuting varieties

We work over the field C of complex numbers; every complex manifold is assumed to be compact and
connected.

Following Vakil [42], we shall say that two analytic singularities (X,0) and (Y,0) have the same
singularity type if there exists a diagram

(4,0)

/ X (1.1)

(X,0) (¥,0),

where f and g are smooth morphisms of analytic singularities. Since smoothness is stable under base
change, having the same singularity type is an equivalence relation. The following lemma implies that
every analytic singularity is determined up to isomorphism by its singularity type and the dimension of
its Zariski tangent space.

Lemma 1.1.  Assume that (X,0) and (Y,0) have the same singularity type and dim(X,0) > dim(Y,0),
then there exists an isomorphism (X,0) = (Y x CF,0) for some k > 0.
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Proof.  Let (Z, O)i>(X7 0) be a smooth map of analytic singularities. If dim(Z,0) = dim(X,0), then f
is an isomorphism. If dim(Z, 0)—dim(X, 0) = k£ > 0, then there exists an isomorphism (Z, 0) = (X xCF,0)
and, if (W,0) C (Z,0) is a generic hyperplane section, then the restriction f: (W,0) — (X,0) is smooth.

Taking possibly generic hyperplane sections of the singularity (Z,0) in the diagram (1.1), we can
assume that f is an isomorphism. O

Let L be a finite-dimensional complex Lie algebra and ¢ a positive integer. The (possibly non reduced)
affine scheme
C(q,L) ={(a1,...,aq) € L% | [a;,a;] =0 for every i,;}

is called the g-th commuting variety of L.

Example 1.2.  Since two matrices in sl(2, C) commute if and only if they are linearly dependent, the
commuting variety C(q,s[(2,C)) is isomorphic to determinantal variety of matrices ¢ x 3 of rank < 1, or
equivalently, to the affine cone over the Segre variety P4~! x P2 C P3¢—1,

Remark.  The structure of the varieties C(q, L) has been studied by several people. The case L =
5l(n,C) was studied in Gerstenhaber [11]; he proved, in particular, that C(2,sl(n,C)) is irreducible for
every n (this fact was also proved independently by Motzkin and Taussky [33]). It is a well-known open
(and hard) problem to determine whether C(2,sl(n,C)) (defined by the ideal generated by brackets) is
a reduced scheme. Moreover, according to Richardson [36], the variety C'(2, L) is irreducible for every
reductive Lie algebra L.

Proposition 1.4. Let L be a finite dimensional complex Lie algebra with trivial center. Then, for
every q = 2, the analytic singularity (C(q, L),0) is minimal in its singularity type class.

Proof.  Since C(q, L) is defined in L®Y by quadratic equations, its Zariski tangent space at 0 is equal
to L. Let a = (aq,...,aq) € C(g, L) — {0} and assume for simplicity a; # 0. Then there exists b € L
such that [a1,b] # 0 and thus the vector (0,b,0,...,0) does not belong to the Zariski tangent space of
C(q, L) at the point a. Therefore,

dimTyC(q, L) > dimT,C(q, L), YVa#0,

and the singularity (C(q, L), 0) cannot be of the form (X x C,0). O

Corollary 1.5.  Assume that the analytic singularity (X,0) has the same singularity type as C(q,sl(n,
C)) for some q,n = 2. Then there exists an isomorphism

(X,0) = (C* x C(q,sl(n,C)),0), k=dimToX — q(n? —1).

Proof.  The center of sl(n,C) is trivial for n > 2. O

2 Differential graded Lie algebras and deformations

A differential graded vector space is a pair (V,d), where V = @ V' is a graded vector space and d is a
differential of degree +1.

Definition 2.1. A differential graded Lie algebra (DGLA for short) is the data of a differential graded
vector space (V,d) and a bilinear map [—, —]: V x V = V (called bracket) of degree 0 such that:

(1) (graded skewsymmetry) [a,b] = —(—1)des(@) dee®)[p g],

(2) (graded Jacobi identity) [a,[b, c]] = [[a, D], c] + (—1)dee(@)dee®)[p g, (]].

(3) (graded Leibniz rule) d[a,b] = [da,b] + (—1)°&(®)[q, db].
A morphism of DGLA is a morphism of complexes commuting with the brackets.

The reader may consult [12,27,29,30] for a more detailed exposition of differential graded Lie algebras
and their associated deformation functors.

In this paper, we are mainly interested in two examples of differential graded Lie algebras. Given a
holomorphic vector bundle E on a complex manifold X, we denote by AX?(E) the sheaf of differentiable
(p, q)-forms of X, with values in E and ALY (E) = T'(X, ALY (E)) the space of its global sections.
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Example 2.2. The graded vector space
AY (Tx) = P AY (Tx),

where T'x is the holomorphic tangent sheaf, has the natural structure of a DGLA, when endowed with
the opposite of the Dolbeault differential and with the antiholomorphic extension of the standard bracket
of A%(Tx).

Example 2.3.  For every line bundle L on a complex manifold X, we denote by D(L) the locally free
sheaf of first order holomorphic differential operators on L. If zy, ..., z, are local holomorphic coordinates
on an open set U and s € I'(U, L) is a nowhere vanishing section, then every ¢ € T'(U, D(L)) is written

formally as
9 .
§:5<% Oéiazi-ﬁ-ﬁ)s )

and this means that for every h € Ox(U) we have

Oh
h) = i— h).
&(sh) s(;a o7, + B >
There exists an exact sequence of sheaves of Lie algebras on X,
0—Ox —D(L)-ZTx —0, (2.1)

where 4 is the inclusion and o is the principal symbol. In local coordinates,
i(B) = s(B)s! ol s Za-i+ﬁ st :Za,i
’ p e - "0z

The sequence (2.1) is obtained by applying the functor Hom(—, L) to Atiyah’s extension of L [1, p. 194].
If X is compact Kéhler, then according to [1, Propositions 3 and 12], the extension class of (2.1)
is equal to 2micy (L) € HY(X,Q%) = Ext'(Tx,Ox). In particular, for every p > 0, the morphism
HP(Tx)— HPT1(Ox) induced by the exact sequence (2.1) is a multiple of the contraction with the first
Chern class of L. Considering the Dolbeault resolution of the Atiyah extension of L, we get an exact
sequence
0— ALY — AL (D(L)) -2 AL (Tx ) —0 (2.2)
and AY*(D(L)) carries a natural structure of DGLA such that o is a morphism of differential graded Lie
algebras.

Denoting by Art the category of local artinian C-algebras and by Set the category of sets, for every
differential graded Lie algebra V', we have the functors

MC
MCy : Art — Set, Defy = "V . Art — Set.
Gauge action

The functor MCy, is called the Maurer-Cartan functor and is defined as

MCy (A) = {:z: eVi@my

1
dz + i[x,x} = O},

where m 4 is the maximal ideal of A.
Two elements x,y € V ® m4 are said to be gauge equivalent if there exists an a € V° ® m4 such that

y=¢e"*xr:=x+ HZ:;) ([:LL’_’__]U! ([a, z] — da).
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We have e® * (€ x 1) = e*® x x, where o is the Baker-Campbell-Hausdorff product [19,41] in the nilpotent
Lie algebra V9@ my. The set

exp(VO@my) ={e? |ac V' @my,}

of formal exponentials of elements of the nilpotent Lie algebra V° ® my4 has a group structure with unit
eV, with inverse (e?)~! = e~ and with product e®e® = e?*?; thus # is an action of the exponential group
exp(V? @ m4) on the graded vector space V ® my, called the gauge action. It is not difficult to see that
the set of solutions to the Maurer-Cartan equation is stable under the gauge action, and then it makes
sense to consider the functor Defy : Art — Set defined as above.

It is known (see e.g. [13,27,30]) that the tangent space of Defy is isomorphic to H* (V') and that H?(V)
is an obstruction space. If H*(V) is finite-dimensional, then Defy satisfies Schlessinger’s conditions in
order to have a hull [37]. Then, by the standard smoothness criterion of [8], a morphism V — W of
DGLA induces a smooth morphism of functors Defy — Defy, if HY(V) — HY(W) is surjective and
H?%(V) — H%(W) is injective.

Theorem 2.4. [38] Let V — W be a morphism of differential graded Lie algebras. Assume that

(1) HO(V) — H°(W) is surjective;

(2) HY (V) — HY (W) is bijective;

(3) HX(V) — H*(W) is injective.

Then Defy — Defy is an isomorphism.
Proof.  See e.g., Theorem 5.71 of [30]. O

The importance of the above construction is motivated by the fact, or metatheorem, that in char-
acteristic 0, every functor of Artin rings arising from a deformation problem is isomorphic to Defy for
some DGLA V defined up to quasi-isomorphism. For instance, if X is a complex manifold, then the
functor Def x of infinitesimal deformations of X is isomorphic to Def A% (T) (see e.g. [13]); notice that
in this case, the Maurer-Cartan equation is essentially the Newlander-Niremberg integrability condition,
as described in [4].

Let L be a line bundle on a complex manifold X; according to [40], a deformation of the pair (X, L) is
the data of a deformation & of X and an invertible sheaf £ on A’ such that £;x = L. It is well known [6]
that the DGLA A%*(D(L)) governs the deformation of the pair (X, L). Moreover, via the isomorphisms

DefA%*(TX) =~ Defy and DefA%*(D(L)) = Def (x 1),

the forgetful natural transformation
Def(X’L) — Defx

is induced by the morphism o of (2.2).

Remark 2.5. Every differential graded Lie algebra V carries a sequence of operations
HY(V) — {subsets of H*(V)}, 0+ [0*], k=2

called Massey powers that are invariant under quasi-isomorphism and satisfying the following properties:

(1) [0%] = [0, 6] is the primary obstruction of 6,

(2) [#**1] is not empty if and only if 0 € [9¥].
For the classical definition of Massey powers we refer to [34,39]. Here, we clarify their role in deformation
theory by deriving them from the functor Defy, .

For every integer n > 0 define A, = %; we have seen that there exists a canonical isomorphism
Defy (A1) = HY(V). Denote by

Tt Der(An) — Der(Al)

the map induced by the natural projection A,, — A;. Next, we define for every n an obstruction map

on: Defy(A,) — H*(V)
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in the following way: for every element & € Defy (A,,) we choose a representative of it as a solution
zeViomy =ViH+ Vi +... V"

of the Maurer-Cartan equation. Then, we choose a lifting of x to an element y € V! ® my, , and we
consider

1
dy + §[y,y] eViemy,,,.

Clearly, dy + 3[y,y] = ht""! for some h € V2, moreover (see e.g. [27,31]), dh = 0 and its cohomology
class [h] € H?(V) depends only on #. This gives a map

on: Defy(A,) — H*(V), & [h],
and for every § € HY(V'), n > 0, we have

[07F1] = 0n (1 (9))-

3 Deformations of C?/T" x P™

If Z,Y are complex manifolds and F — Z, F — Y are vector bundles, we denote
EXF=p"EQ¢*F,
where p: Z xY — Z and q: Z x Y — Y are the projections. By the Kiinneth formula [15] we have

H(ZxY,ERF)=H (Z,E)2 H(Y,F).
J

Notice that
Tzxy =p Tz © ¢ Ty = (TzXOy) @ (07 X Ty).

Let C?/T be a complex torus of dimension ¢. In [25, p. 436] Kodaira and Spencer proved that the
manifold X = (C?/T") x P™ has obstructed deformations for every ¢ > 2 and every n > 1. This was the
first example of obstructed manifold; the same example is also discussed, with a different approach, in [7].
Here, we refine this result with the following theorem.

Theorem 3.1. For every ¢ > 2 and every n > 1, the manifold X = (C?/T") x P™ does not have a
unwersal deformation. The base space of its Kuranishi family is singular, it is analytically isomorphic to
the germ at 0 of C4° x C(g,sl(n+ 1)) and it is reducible for every n > 3 and ¢ > 3+ 8/(n — 2).

Proof. Denote by B* C A%qi/r the subspace of invariant forms of type (0,4) on the torus. If z1,..., 2,

are linear coordinates on C%, then B' is the vector space generated by dz7,...,dz;, B' = A’ Bt and the
inclusion B* C Agj’j/r induces an isomorphism B = H'(Oca/r) [14, p. 301]. The natural inclusion

B=PB = /*\Bl = AZ
i>0

is a quasi-isomorphism of differential graded algebras and therefore, since the tangent vector bundle of a
complex torus is trivial, the inclusion

1®1d *
B® HO(TCQ/F) L A?C’Q/F(ch/r)

is a quasi-isomorphism of DGLA. According to the Kiinneth formula, the inclusions
1Q * * *
Q1 =B @ H(Tear) — AY (0" Tear),

Qs := B® H(Tpn) 24 A% (¢*Tpn)
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yield a quasi-isomorphism of differential graded Lie algebras

Q= Q18 Q= (B® H'(Teyr)) (B ® HO(Tpn)) 2220, A (Ty).
Therefore, the functor
DefQ = Dele X DefQ2

is isomorphic to the functor of infinitesimal deformations of X. Notice that since () is abelian, the gauge
action is trivial and

Defq, (A) = H'(Q1) ®ma = {Spec(A) — (H'(Q1),0)},

so that Defq, is prorepresented by (Cq2. The subspace
Q =P=DB H T
i>0 i>0

is a differential graded Lie subalgebra of Qo and the inclusion QF — Q2 induces an isomorphism of
Maurer-Cartan functors: MCQ;r = MCyg,. Since the gauge action associated with Q7 is trivial, we have

MCQ; = DefQ;r. Fixing a basis b1, ...,b, of B!, we have
1
3 [sz@ni,zbi@m} =D biAbs[mimgl,  mg € H(Ten),
i<j

and therefore, Def oFf = MCQ; is prorepresented by the germ at 0 of the commuting variety
C(q, H*(Tpn)) = C(gq,sl(n + 1)).

Finally, since H%(Tpx) is not abelian, the gauge action on MCg, is non-trivial and so DefQ+ — Defq, is
a hull but not an isomorphism. The assertion about reducibility follows immediately from the following
Lemma 3.2. O

Lemma 3.2. Ifn >4 and the commuting variety C(q,sl(n,C)) is irreducible, then
8n — 12
(n —2)?
8
q<3+—— forn odd.
n—3

q<3+ for n even,

Proof.  This proof is based on the ideas of [18]. Assume C(g,sl(n)) is irreducible and consider the
projection to the first factor

m: C(q,sl(n,C)) — C(1,sl(n,C)) = sl(n,C).

Let D € sl(n,C) be a diagonal matrix with distinct eigenvalues, then every matrix commuting with D
must be diagonal. Therefore, the fiber 7=1(D) is irreducible of dimension (n—1)(g—1) and the dimension
of C(g,sl(n,C)) is less than or equal to

n? =1+ (n—1)(qg—1).

On the other hand, let r be the integral part of n/2 and let N C sl(n,C) be the closed subset of
matrices A such that A% = 0. It is easy to see that N is irreducible of dimension 2r(n —r) and therefore,
for the generic A € N, we have

2r(n —7r) +dimr t(A) <n? -1+ (n—1)(g—1).
After a possible change of basis, every A € N belongs to the space

H= {(hz]) Esl(n,C) ‘ hz‘j 7é 0 Only if i > r, J < ’/‘}.
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Then H is an abelian subalgebra of sl(n, C) and therefore,
{AYy x H® Y ¢ 71 A).

In particular,
rn—7r)(g—1)=dim H®" ' <n? — 14+ (n—1)(g—1) — 2r(n — 7).
A straightforward computation gives the inequalities of the lemma. O

Remark 3.3. Lemma 3.2 also gives a partial answer to the question of [11, p. 342]. In the same
paper, Gerstenhaber proved that C(q,sl(n, C)) is irreducible for n < 3 and not irreducible for ¢ > n > 4.

4 Deformations of pairs (C//T" x P" L)

We recall that the Appell-Humbert data on a complex torus C?/T are a pair (o, H), where H is a
hermitian form on C™ such that its imaginary part E is integral on I' x I' and « is a semicharacter for H:

a:T'—=U(1), alyr +72) = CX(’Y1)OZ(72)(71)E(71’72).
Denote by L(a, H) the line bundle on C?/T" with the factor of automorphy [22, p. 4]
A, (z) = 04(7)eﬂ(H(ZN)JrH("r,"r)/2)7 vel, zeCl.

According to Appell-Humbert’s theorem, every line bundle on C4/T is isomorphic to L(a, H) for a
unique Appell-Humbert data (o, H); moreover, the first Chern class of L(a, H) is equal to the invariant
form of type (1,1) corresponding to E [22, Lemma 3.5]. In particular, two line bundles L(aq, H1),
L(ag, Hy) have the same Chern class if and only if H; = Ho.

The same proof of the Appell-Humbert theorem given in [22], with minor and straightforward modifi-
cations, shows that every line bundle on C?/T" x P" is isomorphic to

L(a, H,d) := L(a, H) KX O(d)

for some Appell-Humbert data (o, H) and some integer d.
Denote for simplicity X = C?/T" x P" and consider the exact sequence

0—Ox—D(L(a, H,d))-ZTx —0.
As observed in Section 2, the induced morphism in cohomology
HY(Tx)-5H?(Ox)

is equal to a scalar multiple of the contraction with the first Chern class of the line bundle L(«, H,d).

Lemma 4.1. In the above notation, if det(H) # 0, then § is surjective and its kernel contains H'(Oca 1)
@H(Tpn). In particular, the map

H*(D(L(a, H, d)))—H*(Tx)
18 1njective.
Proof.  Since
H'(Tx) = HI(TCG/F) ® H°(Opn) @ Hl(OCq/F) ® H(Tpr), H?*(Ox)= Hz(OCQ/F)»
and
c1(L(a, H,d)) = p*e1(L(a, H)) + ¢*c1(O(d)),
it is sufficient to prove that the map

ser(L(a,H))

H'(Tea)r) H?*(Ocar)



Manetti M Sci China Math  August 2011 Vol. 54 No.8 1721

is surjective.

The elements of H?(Oga,r) are represented by invariant (0, 2)-forms: if zy, ..., z are linear coordinates
on C?; then a basis of HZ(O@/F) is given by the forms dz; Adz;, for i < j. Similarly, a basis of H* (Teayr)
is given by the invariant tensors

dz; ® fori,j=1,...,q.

9
82j7

The first Chern class of L(«, H) is given by the invariant form Y h,sdz. A dZs, where (h,s) is a scalar
multiple of H, and therefore,

0
(dz- ® ;Zj) ser(L(ey, H)) = dz; ® 77 Z hysdzy A dZ, = Z hisdZ; A dZ,.

Therefore, since the matrix (h,s) is invertible, the contraction map is surjective. O

Theorem 4.2. Let L be an ample line bundle on X = C?/T x P". Then the base space of the semiuni-
versal deformation of the pair (X, L) has the same singularity type as C(q,sl(n + 1,C)).

Proof. We have L = L(a, H,d) for some integer d > 0 and a positive definite hermitian form H.
Denoting by P the fiber product of

0,% o 0,*
A (D(L))—AX (Tx)
and the injective quasi-isomorphism
Q= B® (H(Teayr) © H(Tpn)) — A (Tx)
introduced in the proof of Theorem 3.1, we have a commutative diagram

0 — AY — — Q — 0

u ! l

0 — AY — AY (1) & AY(Tx) — 0,

where the rows are exact and the columns are quasi-isomorphisms. In particular, according to
Theorem 2.4, the functor Defp is isomorphic to the functor of deformations of the pair (X, L).

We have a direct sum decomposition
Q= (B° @ H(Teayr)) & (B' @ H(Teayr)) @ R,

where

R=EP B ® H(Tea)r) ® B @ H(Tn).

i>1

Since R' = B! ® H?(Tpn), the functor Def is prorepresented by the germ at 0 of the commuting variety
C(g,sl(n + 1,C)); therefore, in order to prove the theorem, it is sufficient to prove that the composition
P — QQ — R is surjective on H! and injective on H?. Equivalently, it is sufficient to prove that

H*(D(L(a, H,d)))—H*(Tx)

is injective and the image of

HYD(L(o, H,d)))—H"(Tx)

contains B! @ H°(Tpn), and this follows from Lemma 4.1. O
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5 Deformations of smooth ample divisors of C?/T" x P"

The aim of this section is to apply the previous results and Horikawa’s costability theorems in order to
compute the Kuranishi family of a smooth ample divisor of X = C?/T x P™. We first point out that the
canonical divisor of X is Kx = L(0,0, —n — 1) and

L(ay, Hy,dy) ® L(ag, Hy,do) = L(cviaa, Hy + Ha, di + do).

Lemma 5.1. On the manifold X = C%/T" x P™ we have
(1) If a # 1, then H(L(c,0,d)) = 0 for everyi,d € 7Z.
(2) If H is positive definite and d > —n, then

HY(L(o, H,d)) = 0

for every i > 0.
(3) If H is negative definite and d < —2, then

H'(L(a, H,d)) = H(Tx ® L(o, H,d)) = 0

for everyi < q+n—2.
(4) If H is negative definite and d < —n — 2, then

H" YTy ® L(a, H,d)) = 0.

Proof.  The determination of the cohomology of line bundles on C?/T" [22, Theorem 3.9] gives that

(i) If @ # 1, then H'(L(c,0)) = 0 for every i.

(i) If H is negative definite, then H*(L(c, H)) = 0 for every i < q.
By the Kiinneth formula we get (1). Assume now that H is negative definite; then by the Kiinneth
formula we get H'(L(a, H,d)) = 0 for every a, every d < 0 and every i < g +n. By the Serre duality, we
get (2).

The bundle Tx ® L(a, H,d) is the direct sum of L(«, H) X Tpn(d) and g copies of L(«, H,d). Since
H(Tpn(d)) = 0 for every d < —2 and every i < n — 2, we get (3).

If d < —n — 2 then H" !(Tpn(d)) = 0, and this implies (4). O
Remark 5.2.  For simplicity of exposition, in Lemma 5.1 we stated only the vanishing theorems we
need for our application: as pointed out by the referee, the same proof gives a slightly stronger result.

Theorem 5.3. Let L = L(«, H,d) be an ample line bundle on the variety X = C1/T" x P", and let S
be a smooth divisor which is the zero locus of a section of L. Assume q,d 22, n>1 andq+n+d > 6.
Then every deformation of S is projective and the base space of the Kuranishi family of S has the same
singularity type as the commuting variety C(q,sl(n + 1,C)).
Proof.  Let us denote by Def x 1) the functor of deformations of the pair (X, L), by Def x g the functor
of deformations of the pair (X, S) and by Defg the functor of deformations of S.

According to Theorem 4.2, it is sufficient to prove that the natural morphisms

Def(X7s) — Defs, Def(X75) — Def(X7L)

are smooth. By Lemma 5.1 we have H'(L) = 0 and this implies that Def (x,5) — Def(x, ) is smooth.
The ampleness of S also implies that every deformation of the pair (X, S) is projective.

On the other hand, by Lemma 5.1, H?(Tx(—S)) = 0 and then by Horikawa’s costability theorem [17,
Thmeorem 8.3], the morphism Def x gy — Defs is smooth. O
Example 5.4. Let A = C2?/I" be an abelian surface and S a smooth irreducible surface contained in
X = A x P, Then S is of general type if and only if Ox(S) = L(«, H,d) for some H positive definite
and d > 3. In fact, since H'(Ox(S)) # 0, we get by Kiinneth’s formula that d > 0, H is positive
semidefinite and o = 1 on ker H NT". Assume that S is of general type and denote by r the dimension
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of the kernel of H; if r = 2 then S is isomorphic to A, while if » = 1 then S is an elliptic fibration.
Therefore, H is positive definite and the degree d of the projection S — A must be greater than or equal
to 2. Thus, if S is of general type, we have Ox(Kx + S) = L(a, H,d — 2) and then, by Lemma 5.1
we have H'(X,m(Kx + S)) = 0 for every m > 0. Therefore, H(X,m(Kx + S)) — H°(S,mKs) is
surjective for every m > 0 and if d = 2, then the image of the pluricanonical map of S is an abelian
surface. Conversely, if d > 2 and H is positive definite, then Kg is ample.

Therefore, if S is of general type, according to Theorem 5.3, the base space of the universal deformation
of S has the same singularity type as C(2,s[(2,C)).

Remark 5.5. The same ideas can be used to understand the deformation type of sufficiently ample
and generic complete intersections in C?/T" x P™ x ... x P,
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