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1 Introduction

The classical Paley-Wiener theorem describes the Fourier transform (FT) of L2-functions on the real line

with compact support in a symmetric interval as entire functions of exponential type whose restriction

to the real line is L2-functions. Higher dimensional extensions of the Paley-Wiener theorem have been

studied. In [12], Kou and Qian generalized the classical Paley-Wiener theorem for Clifford-valued func-

tions in the Clifford algebra setting owing to the imbedding of Rn into the real Clifford algebra. On the

other hand, recently there has also been a great interest to real Paley-Wiener theorems discovered by

Bang [3], and Tuan and Zayed [20], in which the adjective “real” expresses that information about the

support of the FT comes from growth rates associated to f on Rn, rather than on Cn as in the classical

“complex Paley-Wiener theorem”. The set-up is as follows. For any f ∈ L2(Rn), the FT Ff of f has a

compact support if and only if f ∈ C∞(Rn), △kf ∈ L2(Rn) and

lim
k→∞

‖△kf‖
1
2k

L2(Rn) = sup{|ω| : ω ∈ Ff(ω) 6= 0} < ∞,

where ω = (ω1, ω2, . . . , ωn) and △ denotes the Laplace operator in Rn defined by

△ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+
∂2

∂x2
n

. (1.1)

This result is due to [17]. A wide number of papers have been devoted to the extension of the theory on

higher dimensions and many other integral transforms [1,2,6,7,14,15,18,19]. A comprehensive overview

of the literature on the real Paley-Wiener theory was included in [2].
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The Clifford Fourier transform is a generalization of the FT to higher dimensions in the framework

of the Clifford algebra, motivated by applications to higher dimensional signal processing. The Dirac

operator may be looked upon as the square root of the Laplace operator in R
n defined by (1.1) and this

factorization is one of the most fundamental features in the Clifford analysis. Many efforts have been

devoted to some important properties and applications of the CFT [4, 5, 8–11,13].

In this paper, inspired by the treatment of the Dirac operator in Clifford analysis, we will derive some

real Paley-Wiener theorems to characterize the Clifford-valued functions whose CFT has compact support

and also a Boas theorem to describe the CFT of these functions that vanish on a neighborhood of the

origin.

The paper is organized as follows: Section 2 is devoted to reviewing some definitions and basic prop-

erties of the real Clifford algebra and Clifford analysis. In Section 3, based on the definition of the CFT,

we recall some properties of the CFT, such as the Plancherel theorem, the vector derivative and so on.

The Riemann-Lebesgue theorem is shown for the CFT. In Section 4, we proceed with the study of real

Paley-Wiener theorems for the CFT associated with the Dirac operator and the partial derivative. In

Section 5, we establish a Boas theorem for the CFT.

2 Preliminaries

Let Rn be the 2n-dimensional universal real Clifford algebra overRn constructed from the basis {e1, e2, . . . ,

en} under the usual relations

ekel + elek = 2δkl, 1 6 k, l 6 n,

where δkl is the Kronecker delta function. An element f ∈ Rn can be represented as f =
∑

A fAeA, fA ∈

R, where eA = ej1j2···jk = ej1ej2 · · · ejk , A = {j1, j2, . . . , jk} with 1 6 j1 < j2 < · · · < jk 6 n, and

e0 = e∅ = 1 is the identity element of Rn. The elements of the algebra Rn for which |A| = k are called

k-vectors. We denote the space of all k-vectors by Rk
n := span

R
{eA : |A| = k}. It is clear that the spaces

R and Rn can be identified with R0
n and R1

n, respectively.

Of interest for this work is the (unit oriented) pseudoscalar element in = e1e2 · · · en. Observe that

i2n = −1 and i−1
n = −in for n = 2, 3 (mod 4). For the sake of simplicity, if not otherwise stated, n is

always assumed to be n = 2, 3 (mod 4) for the remaining of this paper.

We define the anti-automorphism reversion ˜ : Rn → Rn by its action on the basis elements ẽA =

(−1)
k(k−1)

2 eA, for |A| = k, and its reversion property f̃ g = g̃f̃ for every f, g ∈ Rn. In particular, we

remark that ĩn = −in.

The elliptic, rotation-invariant, vector differential operator of first order

∂x :=

n
∑

j=1

ej∂xj
(2.1)

called Dirac operator, may be looked upon as the square root of the Laplace operator in Rn defined by

(1.1) satisfying △ = ∂2
x
, where ∂xj

is a short notation for the partial operator ∂
∂xj

.

In what follows, we will require two types of scalar products. First, we introduce the (real valued)

scalar product of f, g ∈ Rn as the scalar part of their geometric product

f · g := [f g̃]0 =
∑

A

fAgA. (2.2)

As usual, when we set f = g we obtain the square of the modulus (or magnitude) of the multivector

f ∈ Rn,

|f |2 = [f f̃ ]0 =
∑

A

f2
A. (2.3)
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Second, we require an inner product in the function space under consideration. We denote by

Lp(Rn;Rn) the left module of all Clifford-valued functions f : Rn → Rn with finite norm

‖f‖p =















(
∫

Rn

|f(x)|pdnx

)
1
p

, 1 6 p < ∞,

ess sup
x∈Rn

|f(x)|, p = ∞,
(2.4)

where dnx = dx1dx2 · · · dxn represents the usual Lebesgue measure in R
n. In the particular case of p = 2,

we shall denote this norm by ‖f‖. Given two functions f, g ∈ L2(Rn,Rn), we define the Clifford-valued

inner product by

(f, g) :=

∫

Rn

f(x)g̃(x)dnx, (2.5)

from which we can induce the L2-norm in L2(Rn,Rn) by taking the scalar part and f = g.

3 Clifford Fourier transform

First of all, we recall the definition of the CFT as follows, originally introduced by Felsberg [9].

Definition 3.1. Let f ∈ L1(Rn,Rn). The CFT of f at the point ω ∈ Rn is defined as the Rn-valued

(Lebesgue) integral

Ff(ω) =

∫

Rn

f(x)e−inω·xdnx. (3.1)

The function Ff(ω) is called the CFT of f.

Concerned with the behavior of the CFT at infinity, we show that the Riemann-Lebesgue theorem

holds true for it, which plays a key role in proving the Boas theorem for the CFT.

Theorem 3.2. If f ∈ L1(Rn,Rn), then it holds

Ff(ω) → 0, as |ω| → ∞.

Proof. It is easy to verify that f ∈ L1(Rn,Rn) if and only if fA ∈ L1(Rn;R), where f =
∑

A fAeA, fA ∈

R. A direct calculation leads to Ff(ω) =
∑

A F{fA}(ω)eA, which tells us that the computation of the

CFT of f ∈ L1(Rn,Rn) can be reduced to that of the real-valued functions fA ∈ L1(Rn;R). Therefore,

we simply need to prove the result to each of the real component function fA ∈ L1(Rn;R).

We do it in three steps. First, assume that g(x) is piecewise constant on a compact domain D =

[a, b]n ⊂ Rn which means that D is subdivided into a finite number of subdomains Dα = Dj1j2···jn =
∏n

k=1[ajk−1, ajk ], jk = 1, 2, . . . , N, k = 1, 2, . . . , n (a0 = a, aN = b) and that g(x) has a certain constant

value cα for x ∈ Dα. This means that we can write g(x) =
∑

α cαχα(x), where χα(x) = 1 on Dα and

χα(x) = 0 outside of Dα. Then, we get

∫

D

g(x)e−inω·xdnx =
∑

α

cα

∫

Dα

e−inω·xdnx

=
inn

∏n
j=1 ωj

∑

α

cα

n
∏

k=1

(e−inajk
ωj − e−inajk−1ωj ),

which leads to
∣

∣

∣

∣

∫

D

g(x)e−inω·xdnx

∣

∣

∣

∣

6
C

∏n
j=1 |ωj|

→ 0, as |ω| → ∞ (3.2)

with the positive constant C = 2n
∑

α |cα| independent of ω. Second, let fA be an arbitrary function

satisfying fA ∈ L1(D;R). Then for all ε > 0 there exists a piecewise constant function g(x) such that

∫

D

|fA(x)− g(x)|dnx <
ε

2
.
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Thus, it follows that
∣

∣

∣

∣

∫

D

fA(x)e
−inω·xdnx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

D

(fA(x)− g(x))e−inω·xdnx+

∫

D

g(x)e−inω·xdnx

∣

∣

∣

∣

6

∫

D

|fA(x)− g(x)|dnx+

∣

∣

∣

∣

∫

D

g(x)e−inω·xdnx

∣

∣

∣

∣

<
ε

2
+

∣

∣

∣

∣

∫

D

g(x)e−inω·xdnx

∣

∣

∣

∣

,

where the last integral tends to zero as |ω| → ∞ by the preceding case, which leads to
∣

∣

∣

∣

∫

D

fA(x)e
−inω·xdnx

∣

∣

∣

∣

→ 0, as |ω| → ∞.

Finally, since fA ∈ L1(Rn;R), there exists a compact domain D ⊂ R
n such that

∫

Rn−D

|fA(x)|d
n
x <

ε

2
.

Thus, we have
∣

∣

∣

∣

∫

Rn

fA(x)e
−inω·xdnx

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

D

fA(x)e
−inω·xdnx

∣

∣

∣

∣

+

∫

Rn−D

|fA(x)|d
n
x

<

∣

∣

∣

∣

∫

D

fA(x)e
−inω·xdnx

∣

∣

∣

∣

+
ε

2
,

where the first term tends to zero as |ω| → ∞ by the preceding case. This completes the proof.

Based on Theorem 3.2, we can infer that if F (ω) ∈ L1(Rn;Rn) then

lim
|N |→∞

∫

Rn

F (ω)einN ·ωdnω → 0, (3.3)

where N =
∑n

k=1 Nkek. Similarly, following the same lines as the proof of Theorem 3.2, we can conclude

that if F (ω) ∈ L1(Rn;Rn) then for a fixed point x ∈ Rn we can get a series of integrals whose limits are

equal to zero when |N | tends to infinity, such as

lim
|N |→∞

∫

Rn

F (ω)einN1ω1einx2ω2 · · · einxnωndnω = 0

and

lim
|N |→∞

∫

Rn

F (ω)einN1ω1einN2ω2 · · · einxnωndnω = 0,

and so on. Associating this fact with (3.3), it follows that if F (ω) ∈ L1(Rn;Rn) then for a fixed point

x ∈ R
n,

lim
|N |→∞

∫

Rn

F (ω)

n
∏

k=1

(einNkωk − einxkωk)dnω

=

∫

Rn

F (ω)(−1)neinx1ω1einx2ω2 · · · einxnωndnω = (−1)n
∫

Rn

F (ω)einω·xdnω,

which will play a key role in the proof of the Boas theorem for CFT.

Moreover, we recall some properties of the CFT as follows. For more details, see [10].

Lemma 3.3 (CFT Plancherel). For two Clifford module functions f, g ∈ L1(Rn,Rn) ∩ L2(Rn,Rn),

one has

(f, g) =
1

(2π)n
(Ff,Fg),

where the Clifford-valued inner product (·, ·) is defined by (2.5).
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For g = f the Plancherel theorem above has a CFT Parseval theorem as a direct corollary.

Lemma 3.4 (CFT Parseval). If f ∈ L1(Rn,Rn) ∩ L2(Rn,Rn), then

‖f‖2 =
1

(2π)n
‖Ff‖2.

Lemma 3.4 asserts that the CFT is a bounded linear operator on L1(Rn,Rn) ∩ L2(Rn,Rn). Hence,

standard density arguments allow us to extend the CFT in a unique way to the whole of L2(Rn,Rn).

In what follows we always consider the properties of the CFT as an operator from L2(Rn,Rn) into

L2(Rn,Rn).

It is easy to check that the CFT of f ∈ L2(Rn,Rn) can be inverted by means of

f(x) =
1

(2π)n

∫

Rn

Ff(ω)einω·xdnω (3.4)

with dnω = dω1dω2 · · · dωn.

Lemma 3.5 (CFT partial derivative). The CFT of ∂xk
f(x) ∈ L2(Rn,Rn) is given by

F{∂xk
f(x)}(ω) = ωkFf(ω)in.

In general, for m ∈ Z+ we have

F{∂m
xk
f(x)}(ω) = ωm

k Ff(ω)imn .

Lemma 3.6 (CFT vector differential). Let a ∈ Rn be an arbitrary vector. Then the CFT of (a·∂x)
mf ∈

L2(Rn,Rn) is given by

F{(a · ∂x)
mf(x)}(ω) = (a · ω)mFf(ω)imn , m ∈ Z+,

where ∂x is the Dirac operator defined by (2.1).

Lemma 3.7 (CFT left vector derivative). The CFT of ∂m
x
f ∈ L2(Rn,Rn) (applied from the left-hand

side of f) is

F{∂m
x
f(x)}(ω) = ωmFf(ω)imn , m ∈ Z+.

Lemma 3.8 (CFT right vector derivative). The CFT of f∂m
x

∈ L2(Rn,Rn) (applied from the right-

hand side of f) is for n = 3 (mod 4),

F{f∂m
x
}(ω) = imn Ff(ω)ωm, m ∈ Z+,

and for n = 2 (mod 4),

F{f∂m
x
}(ω) = Ff((−1)mω)ωmimn , m ∈ Z+.

4 Paley-Wiener theorem

Let us recall some basic facts on the modulus in the case of Clifford number. As we all know, the modulus

of the Clifford numbers is not multiplicative, i.e., for any two elements a, b ∈ Rn we have |ab| 6 2
n
2 |a||b|.

However, inside a Clifford algebra there is the possibility, in some special cases, that the modulus is

multiplicative. These cases are described in the following lemma.

Lemma 4.1. Let b ∈ Rn be such that bb̃ = |b|2. Then

|ab| = |ba| = |a||b|, ∀ a ∈ Rn.

Proof. Consider |ab|2. By (2.3) we have

|ab|2 = [abãb]0 = [abb̃ã]0 = [a|b|2ã]0 = [aã]0|b|
2 = |a|2|b|2.

Similarly, we can prove that |ba|2 = |a|2|b|2.
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Since it holds imn ˜imn = 1 = |imn |2, for any Clifford-valued functions F (·) : Rn → Rn, Lemma 4.1 gives

|imn F (ω)| = |F (ω)imn | = |F (ω)||imn | = |F (ω)|. (4.1)

Furthermore, note that the squares of vectors ω ∈ Rn are positive definite scalars and so are all the even

powers of the vectors

ω2 = |ω|2 > 0, ωm = |ω|m
′

> 0 for m = 2m′,m′ ∈ Z+,

which leads to

ωω̃ = ω2 = |ω|2, ωmω̃m = |ω|2m for m = 2m′,m′ ∈ Z+.

Moreover, for all the odd powers of the vectors ω ∈ Rn, a simple calculation leads to

ωmω̃m = |ω|2m for m = 2m′ + 1,m′ ∈ Z+.

Thus, in general, for any m ∈ Z+ it holds

ωmω̃m = |ω|2m, |ωm| = |ω|m.

Associating with Lemma 4.1, we get the following corollary which will play a key role in proving the

Paley-Wiener theorems for the CFT.

Corollary 4.2. Let ω ∈ Rn. Then for any Clifford-valued functions F (·) : Rn → Rn it holds

|ωmF (ω)| = |F (ω)ωm| = |F (ω)||ωm| = |F (ω)||ω|m.

Let C∞(Rn,Rn) denote the module of Clifford-valued infinitely differentiable functions. Let B(0, σ) be

the open ball in Rn centered at 0 with radius σ, i.e., B(0, σ) = {ω ∈ Rn : |ω| < σ}. Denote suppFf(ω)

to be the support of Ff(ω) (or spectrum of f) describing the smallest closed set in Rn outside which

Ff(ω) vanishes almost everywhere.

Theorem 4.3. Let f ∈ L2(Rn,Rn). Then suppFf(ω) ⊂ B(0, σ) if and only if f ∈ C∞(Rn,Rn),

∂k
x
f ∈ L2(Rn,Rn) and

lim
k→∞

‖∂k
x
f‖

1
k = σ < ∞, (4.2)

where σ = sup{|ω| : ω ∈ suppFf(ω)} and the Dirac operator ∂x is defined by (2.1).

Proof. Necessity. We can assume that ‖f‖ > 0, otherwise σ = 0 and (4.2) is trivial. Suppose that

suppFf(ω) ⊂ B(0, σ). The compactness of the support of Ff(ω) and the square integrability of f imply

that ωkFf(ω) ∈ L2(Rn,Rn) and thus ∂k
x
f ∈ L2(Rn,Rn) for any k = 0, 1, 2, . . . Moreover, by Lemma 3.7

we have

F{∂k
x
f}(ω) = ωkFf(ω)ikn.

Applying (4.1), Lemma 3.4 and Corollary 4.2, we get

‖∂k
x
f‖2 =

1

(2π)n

∫

Rn

|ωkFf(ω)ikn|
2dnω =

1

(2π)n

∫

Rn

|ωk|2|Ff(ω)ikn|
2dnω

=
1

(2π)n

∫

Rn

|ω|2k|Ff(ω)|2dnω =
1

(2π)n

∫

suppFf

|ω|2k|Ff(ω)|2dnω.

Consequently,

‖∂k
x
f‖

1
k = ‖f‖

1
k

{

1

(2π)n
1

‖f‖2

∫

suppFf

|ω|2k|Ff(ω)|2dnω

}
1
2k

. (4.3)

Notice that |ω|2k, |Ff(ω)|2 are real-valued functions, so we can use the well-known result in classical

Lebesgue space Lp(Ω, dµ), which tells us that if µ is a Lebesgue measure on a set Ω with µ(Ω) = 1 then

it holds

lim
p→∞

‖ϕ‖Lp(Ω,dµ) = ‖ϕ‖L∞(Ω,dµ). (4.4)
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Let Ω = suppFf, ϕ = |ω|, p = 2k, and dµ = 1
(2π)n

1
‖f‖2 |Ff(ω)|2dnω. It is easy to check that

µ(suppFf) = 1. Hence, formula (4.4) leads to

lim
k→∞

{

1

(2π)n
1

‖f‖2

∫

suppFf

|ω|2k|Ff(ω)|2dnω

}
1
2k

= sup
ω∈suppFf

|ω| = σ.

Since limk→∞ ‖f‖
1
k = 1, by (4.3) we obtain

lim
k→∞

‖∂k
x
f‖

1
k = σ.

Sufficiency. Suppose that ∂k
x
f ∈ L2(Rn,Rn), k = 0, 1, 2, . . . and

lim
k→∞

‖∂k
x
f‖

1
k = d < ∞.

We want to prove that σ = sup{|ω| : Ff(ω) 6= 0} < ∞. We attack the proof by the reduction to

absurdity. Suppose that Ff(ω) 6= 0, a.e. ω ∈ Rn, thus for any M > 0 we have

∫

Rn

|ω|2k|Ff(ω)|2dnω >

∫

U

|ω|2k|Ff(ω)|2dnω > CM2k,

where U := {ω : |ω| > M} and C is some positive constant independent of k. The above inequality

implies

lim
k→∞

‖∂k
x
f‖

1
k = ∞,

which contradicts the assumption of the convergence of the sequence ‖∂k
x
f‖

1
k . Thus, Ff is compactly

supported. Finally, the same technique as the part of necessity yields that d = σ. We have finished the

proof.

We remark that the Dirac operator ∂x is involved in applying to the left-hand side of the functions

f ∈ L2(Rn,Rn) in Theorem 4.3. Due to the noncommutative property of the Clifford algebra, the Dirac

operator can also be used to describe the results from the right-hand side of the functions f ∈ L2(Rn,Rn).

According to Lemma 3.8, applying the similar technique as that of Theorem 4.3 leads to the following

result. For simplicity, we omit the proof here.

Theorem 4.4. Let f ∈ L2(Rn,Rn). Then suppFf(ω) ⊂ B(0, σ) if and only if f ∈ C∞(Rn,Rn),

f∂k
x
∈ L2(Rn,Rn) and

lim
k→∞

‖f∂k
x
‖

1
k = σ < ∞,

where σ = sup{|ω| : ω ∈ suppFf(ω)} and the Dirac operator ∂x is defined by (2.1).

Furthermore, associated with the Dirac operator, we will show another real Paley-Wiener-type theorem

for functions f ∈ L2(Rn,Rn) with the support given by the symmetric body. According to [16], let

K = {ω : ω2 6 1, ∀ ω ∈ Rn} be a convex, compact and symmetric set in Rn with nonempty interior

which is called a symmetric body (symmetric means −ω ∈ K if ω ∈ K). Then the set K∗ = {a ∈ Rn :

a · ω 6 1, ∀ ω ∈ K} is called the polar set of K, where a · ω =
∑n

k=1 akωk with a =
∑n

k=1 akek and

ω =
∑n

k=1 ωkek. We can see that K∗ is also a symmetric body and (K∗)∗ = K.

Theorem 4.5. Let f ∈ L2(Rn,Rn). Then the CFT Ff(ω) vanishes outside a symmetric body K if

and only if f ∈ C∞(Rn;Rn), ∂k
x
f ∈ L2(Rn,Rn) and

sup
a∈K∗

‖(a · ∂x)
kf‖ 6 M, k = 1, 2, . . . , (4.5)

where the Dirac operator ∂x is defined by (2.1) and M is a positive constant independent of k.
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Proof. Necessity. Suppose that the CFT Ff(ω) of f ∈ L2(Rn,Rn) vanishes outside the symmetric

body K. Then f ∈ C∞(Rn,Rn) and ∂k
x
f belongs to L2(Rn,Rn) together with all its partial derivatives.

By Lemma 3.6 it follows

F{(a · ∂x)
kf}(ω) = (a · ω)kFf(ω)ikn.

Applying Lemma 3.4, we obtain

‖(a · ∂x)
kf‖2 =

1

(2π)n
‖(a · ω)kFf(ω)ikn‖

2 =
1

(2π)n
‖(a · ω)kFf(ω)‖2.

Since K is a symmetric body in R
n, it holds |a · ω| 6 1 for all ω ∈ K and a ∈ K∗. Hence, we have

‖(a · ω)kFf(ω)‖2 =

∫

Rn

|a · ω|2k|Ff(ω)|2dnω =

∫

K

|a · ω|2k|Ff(ω)|2dnω

6

∫

K

|Ff(ω)|2dnω = ‖Ff(ω)‖2 = (2π)n‖f‖2

which means supa∈K∗ ‖(a · ∂x)
kf‖ 6 ‖f‖ = M . Conversely, suppose (4.5) is valid for all k. Since

f ∈ C∞(Rn;Rn) and ∂k
x
f ∈ L2(Rn,Rn), the CFT of (a · ∂x)

kf exists. Based on (4.1), Lemmas 3.4 and

3.6, it follows

sup
a∈K∗

‖(a · ω)kFf(ω)‖2 = (2π)n sup
a∈K∗

‖(a · ∂x)
kf‖2 6 M, k = 1, 2, . . .

Sufficiency. Suppose that ω0 does not belong to the symmetric body K, then there exists a0 ∈ K∗

such that a0 ·ω0 > 1. Thus, there is a neighborhood Uω0 of ω0 with the property a0 ·ω > a0·ω0+1
2 > 1 for

ω ∈ Uω0 . We have

M > sup
a∈K∗

‖(a · ω)kFf(ω)‖2 > ‖(a0 · ω)
kFf(ω)‖2

>

∫

Uω0

(a0 · ω)
2k|Ff(ω)|2dnω >

∣

∣

∣

∣

a0 · ω0 + 1

2

∣

∣

∣

∣

k ∫

Uω0

|Ff(ω)|2dnω.

Note that |a0·ω0+1
2 |k approaches ∞ as k → ∞. Therefore, the inequalities above hold only if

∫

Uω0
|Ff(ω)|2dnω = 0, which means that ω0 does not belong to the support of Ff(ω), which leads

to suppFf ⊂ K.

Actually, apart from the Dirac operator ∂x, we can further establish the real Paley-Wiener theorem

for the CFT of f ∈ L2(Rn,Rn) by partial derivatives. Given a multi-index α = (α1, α2, . . . , αn) ∈ Zn
+,

we write as usual |α| =
∑n

j=1 αj , D
α = ∂α1

∂x
α1
1

∂α2

∂x
α2
2

· · · ∂αn

∂xαn
n

for partial derivatives.

Theorem 4.6. Let f ∈ L2(Rn,Rn). Then the CFT Ff(ω) is compactly supported in [−σ, σ]n if and

only if all partial derivatives Dαf(x) ∈ L2(Rn;Rn),
∏n

j=1 ω
αj

j Ff ∈ L2(Rn,Rn) for all α ∈ Zn
+ and

lim
|α|→∞

‖Dαf‖1/|α| = σ,

where σ = sup{|ωj|, 1 6 j 6 n : Ff(ω) 6= 0, ω =
∑n

j=1 ωjej ∈ Rn}.

Proof. Necessity. Suppose that suppFf(ω) = [−σ, σ]n. The compactness of the support of Ff and

f ∈ L2(Rn,Rn) imply that
∏n

j=1 ω
αj

j Ff belongs to L1(Rn,Rn) ∩ L2(Rn,Rn), thus partial derivatives

Dαf(x) exist and belong to L2(Rn,Rn) for all α ∈ Zn
+. Moreover, by Lemma 3.5 we have

F{Dαf}(ω) =

n
∏

j=1

ω
αj

j Ff(ω)i|α|n .

Applying Lemma 3.4, it follows

‖Dαf‖2 =
1

(2π)n

∫

Rn

∣

∣

∣

∣

n
∏

j=1

ω
αj

j Ff(ω)i|α|n

∣

∣

∣

∣

2

d2ω,
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i.e., by (4.1) we have

‖Dαf‖2 =
1

(2π)n

∫

[−σ,σ]n

n
∏

j=1

|ωj |
2αj |Ff(ω)|2dnω. (4.6)

Thus, we obtain

‖Dαf‖2 6
1

(2π)n
σ2|α|‖Ff‖2 = σ2|α|‖f‖2,

which leads to

‖Dαf‖1/|α| 6 C1/|α|σ

with the constant C = ‖f‖ independent of |α|. Then, we have

lim sup
|α|→∞

‖Dαf‖1/|α| 6 σ.

On the other hand, using (4.6) again, for ǫ ∈ (0, σ/2), there hold

‖Dαf‖2 >
1

(2π)n

∫

[σ−2ǫ,σ−ǫ]n

n
∏

j=1

|ωj |
2αj |Ff(ω)|2dnω

> (σ − 2ǫ)2|α|
1

(2π)n

∫

[σ−2ǫ,σ−ǫ]n
|Ff(ω)|2dnω,

which lead to

lim inf
|α|→∞

‖Dαf‖1/|α| > σ − 2ǫ.

The arbitrariness of ǫ implies

lim inf
|α|→∞

‖Dαf‖1/|α| > σ.

Therefore, we can conclude that lim|α|→∞ ‖Dαf‖1/|α| = σ.

Sufficiency. Suppose that all partial derivatives Dαf(x) ∈ L2(Rn,Rn),
∏n

j=1 ω
αj

j Ff ∈ L2(Rn,Rn) for

all α ∈ Zn
+ and

lim
|α|→∞

‖Dαf‖1/|α| = d < ∞. (4.7)

We need to prove that σ := sup{|ωj|, 1 6 j 6 n : Ff(ω) 6= 0} < ∞. We will prove it by reduction to

absurdity. Suppose Ff(ω) 6= 0, a.e. ω ∈ Rn, thus associating with (4.6) we obtain that for arbitrary

M > 0 there hold

‖Dαf‖2 =
1

(2π)n

∫

Rn

n
∏

j=1

|ωj|
2αj |Ff(ω)|2dnω

>
1

(2π)n

∫

E

n
∏

j=1

|ωj |
2αj |Ff(ω)|2dnω > CM2|α|,

where E = {ω ∈ Rn : |ωj | > M, 1 6 j 6 n} and C is some positive constant independent of |α|. The

above inequalities imply

lim
|α|→∞

‖Dαf‖1/|α| = ∞,

which contradicts the assumption (4.7). Thus, we have

σ := sup{|ωj|, 1 6 j 6 n : Ff(ω) 6= 0} < ∞,

which means Ff(ω) is compactly supported in [−σ, σ]n. Finally, the same technique as the part of the

proof for the necessity yields that d = σ. The proof is complete.
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5 Boas theorem

Real Paley-Wiener theorems describe the compactness of the support of Ff on Rn. The following

theorem, called Boas theorem, provides another description of high frequency signals in the CFT domain

by an integral operator on Rn. To this end, for f ∈ L2(Rn,Rn), define an integral operator I by

If(x) :=

∫ ∞

x1

∫ ∞

x2

· · ·

∫ ∞

xn

f(y)dny

with x =
∑n

k=1 xkek,y =
∑n

k=1 ykek, and dny = dy1dy2 · · · dyn.

Theorem 5.1. Let f ∈ L2(Rn,Rn). Then the CFT Ff(ω) vanishes in a neighborhood of the origin if

and only if Imf is well defined and belongs to L2(Rn,Rn) for all m ∈ Z+, and

lim
m→∞

‖Imf‖
1
m = d < ∞.

Moreover, d = γ−n with γ = inf{|ωj |, 1 6 j 6 n : ω ∈ suppFf(ω)}.

Proof. Necessity. Suppose that the CFT Ff(ω) vanishes on (−γ, γ)n with γ > 0. Set

INf(x) :=

∫ N1

x1

∫ N2

x2

· · ·

∫ Nn

xn

f(y)dny,

with N =
∑n

k=1 Nkek. Obviously, if |N | → ∞, the limit of the operator INf is If . Based on the

Clifford-valued inner product (·, ·) defined by (2.5), Lemma 3.3 leads to

INf(x) = (f, χN ) =
1

(2π)n
(Ff,FχN ),

where χN (y) = 1 on [x1, N1] × [x2, N2] × · · · × [xn, Nn] and χN(y) = 0 outside it. A simple calculation

leads to the CFT of the indicator function χN (y) of the domain [x1, N1]× [x2, N2]× · · · × [xn, Nn],

FχN (ω) =

∫

Rn

χN (y)e−inω·ydny =
inn

∏n
k=1 ωk

n
∏

k=1

(e−inNkωk − e−inxkωk).

Thus, we have

INf(x) =
1

(2π)n

∫

Rn

Ff(ω)ĩnn
∏n

k=1 ωk

n
∏

k=1

(einNkωk − einxkωk)dnω.

Note that
Ff(ω)ĩnn∏

n
k=1 ωk

∈ L1(Rn,Rn)∩L2(Rn,Rn) and vanishes on (−γ, γ)n since the CFT Ff(ω) vanishes

on (−γ, γ)n. Therefore, letting |N | → ∞ and using (3.4), we have

If(x) =
1

(2π)n

∫

Rn

Ff(ω)ĩnn
∏n

k=1 ωk
einω·xdnω.

Recognizing the inverse CFT given by (3.4), it follows F{If(x)} =
Ff(ω)ĩnn∏

n
k=1 ωk

. Since
Ff(ω)ĩnn∏

n
k=1 ωk

∈ L2(Rn,Rn)

and it vanishes on (−γ, γ)n, If(x) is also a finite-energy high frequency signal. By induction one can

show that Imf(x) is a finite-energy high frequency signal for any m ∈ Z+. Hence, I
mf(x) ∈ L2(Rn,Rn)

for any m ∈ Z+, and moreover, it holds

Imf(x) =
1

(2π)n

∫

Rn

Ff(ω)(ĩnn)
m

∏n
k=1 ω

m
k

einω·xdnω.

Applying Lemma 3.4 yields

‖Imf‖2 =
1

(2π)n

∥

∥

∥

∥

Ff(ω)(ĩnn)
m

∏n
k=1 ω

m
k

∥

∥

∥

∥

2

,
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which leads to

‖Imf‖2 =
1

(2π)n

∫

Rn

|Ff(ω)|2
∏n

k=1 ω
2m
k

dnω.

Since Ff(ω) vanishes on (−γ, γ)n we have

∫

Rn

|Ff(ω)|2
∏n

k=1 ω
2m
k

dnω =

∫

E

|Ff(ω)|2
∏n

k=1 ω
2m
k

dnω 6
1

γ2mn

∫

E

|Ff(ω)|2dnω

= γ−2mn

∫

Rn

|Ff(ω)|2dnω = γ−2mn(2π)n‖f‖2,

where E = {ω ∈ Rn : γ < |ωk| < ∞, 1 6 k 6 n}. Consequently,

lim sup
m→∞

‖Imf‖
1
m 6 γ−n. (5.1)

On the other hand, because γ is the infimum of |ωk|, 1 6 k 6 n, where ω belongs to the support of Ff(ω),

for any positive ǫ we have
∫

G

|Ff(ω)|2dnω > 0,

where G = {ω ∈ Rn : γ < |ωk| < γ + ǫ, 1 6 k 6 n}. Hence, it follows

∫

Rn

|Ff(ω)|2
∏n

k=1 ω
2m
k

dnω >

∫

G

|Ff(ω)|2
∏n

k=1 ω
2m
k

dnω >
1

(γ + ǫ)2mn

∫

G

|Ff(ω)|2dnω,

and therefore, lim infn→∞ ‖Inf‖
1
2n > (γ + ǫ)−1. Because ǫ > 0 is arbitrary, we can infer that

lim inf
m→∞

‖Imf‖
1
m > γ−n. (5.2)

Combining (5.1) and (5.2) leads to

lim
m→∞

‖Imf‖
1
m = γ−n.

Sufficiency. Suppose that Imf is well defined, belongs to L2(Rn,Rn) for all m ∈ Z+ and

lim
m→∞

‖Imf‖
1
m = d < ∞.

Note that a simple calculation leads to

∂mn

∂xm
1 ∂xm

2 · · ·∂xm
n

Imf(x) = (−1)mnf(x).

According to Lemma 3.5, applying the CFT to the both sides of the formula above, we have

n
∏

k=1

ωm
k F{Imf}(ω)imn

n = (−1)mnFf(ω).

Hence

F{Imf}(ω) =
(−1)mnFf(ω)i−mn

n
∏n

k=1 ω
m
k

.

Using (4.1) and Lemma 3.4 yields

‖Imf‖2 =
1

(2π)n

∫

Rn

|Ff(ω)|2
∏n

k=1 ω
2m
k

dnω.

Now, suppose that Ff does not vanish in any neighborhood of 0, and for arbitrary positive number ǫ,

setting U = {ω ∈ Rn : |ωk| < ǫ, 1 6 k 6 n}, we have

∫

U

|Ff(ω)|2dnω > 0.
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Therefore

‖Imf‖2 >
1

(2π)n

∫

U

|Ff(ω)|2
∏n

k=1 ω
2m
k

dnω >
1

ǫ2mn

1

(2π)n

∫

U

|Ff(ω)|2dnω,

which leads to

lim
m→∞

‖Imf‖
1
m >

1

ǫn
.

Letting ǫ → 0+, we get limm→∞ ‖Imf‖
1
m = ∞, which contradicts the assumption of the convergence of

the sequence limm→∞ ‖Imf‖
1
m . Therefore, we conclude that there exists a positive number γ such that

Ff vanishes in (−γ, γ)n. Finally, the same technique as in the proof of the necessity part concludes that

d equals γ−n. The proof of this theorem is completed.
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