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0 Introduction

The construction of induced representations of Frobenius for finite groups has various generalizations for

infinite groups. It seems that for infinite groups of Lie type the original form of construction of Frobenius

was not used much. In this paper, we try to study abstract representations of algebraic groups by using the

original construction of Frobenius directly. We are mainly interested in reductive groups with Frobenius

maps. A few classical results of Steinberg and Deligne & Lusztig on complex representations of finite

groups of Lie type are extended to reductive algebraic groups with Frobenius maps, see Propositions 2.3

and 2.4, Theorems 3.2 and 3.4, etc..

The paper is organized as follows. In Section 1 we give some trivial extensions for several results in rep-

resentation theory of finite groups and introduce the concept of quasi-finite groups (see Subsection 1.8).

A few general results on irreducibility of a representation for a quasi-finite group are established, if the

representation is a “limit” of the irreducible representations (Lemmas 1.5 and 1.6). A partial gener-

alization of Mackeys criterion on irreducibility of induced modules for quasi-finite groups is given (see

Subsection 1.9).

In Section 2 we consider algebraic groups with split BN -pairs. The main objects of this section are

induced representations of certain one-dimensional representations of a Borel subgroup of an algebraic

group with split BN -pairs. In particular, the Steinberg module of the algebraic group is constructed

(Proposition 2.3(b)). In Section 3 we consider reductive groups with Frobenius maps. The main results

are Theorems 3.2 and 3.4. The first one says that the Steinberg module of a reductive group over an

algebraically closed field of positive characteristic is irreducible when the base field of the Steinberg
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module is the field of complex numbers or the ground field of the reductive group, the second one says

that the induced representations of certain one-dimensional complex representations of a Borel subgroup

are irreducible.

Gelfand-Graev modules of reductive groups are defined in Section 4, which are similar to those for finite

groups of Lie type. In Section 5 a few questions are raised. In Section 6 we discuss type A1. Section 7 is

devoted to discussing representations of some infinite Coxeter groups and infinite dimensional groups of

Lie type.

This work was partially motivated by trying to find an algebraic counterpart for Lusztig’s theory of

character sheaves, the author is grateful to Professor G. Lusztig for his series of lectures on character

sheaves delivered at the Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing, in 2012.

1 General setting

1.1. In this section, we give some trivial extensions for several results in representation theory of finite

groups. There are many good references, say [10] and [4].

Let H be a subgroup of a group G and k a field. In this section all modules are assumed to be over k.

For an H-module M , we can consider the naive induced module of M : IndGHM = kG⊗kH M, where kG

and kH are the group algebras of G and H over the field k respectively.

As the case of finite groups, we can define the induced module in another way. Let M be the set of

all functions f : G → M satisfying f(gh) = h−1f(g) for any g ∈ G and h ∈ H . For f ∈ M and x ∈ G,

set xf(g) = f(x−1g). This defines a kG-module structure on M .

Let G/H be the set of left cosets of H in G. A function f : G → M is called to have finite support

on G/H if all f(gH) = 0 except for finitely many left cosets of H in G. Let M0 be the subset of M

consisting of all functions f in M with finite support on G/H . It is clear that M0 is a kG-submodule

of M . The following result is known for finite groups.

Lemma 1.2. The kG-module M0 is isomorphic to the induced module kG⊗kH M .

Proof. Let {gi}i∈I be a set of representatives of left cosets of H in G. Then the map f →
∑

i gi ⊗ f(gi)

defines an isomorphism of kG-module from M0 to kG⊗kH M .

The induced modules above are extremely important in representation theory of finite groups and Lie

algebras, but seem not studied much for infinite groups of Lie type. We have some trivial properties for

these induced modules, such as Frobenius’s reciprocity, etc..

Lemma 1.3. (a) Let M be an H-module and N be a G-module. Then we have

HomG(Ind
G
HM,N) ≃ HomH(M,ResHN) and IndG

H(M ⊗ ResHN) ≃ IndG
HM ⊗N,

where ResH denotes the restriction functor from G-modules to H-modules.

(b) Let H ⊂ K be subgroups of G and M an H-module. Then IndG
K(IndKHM) is isomorphic to IndG

HM .

The following result should be known.

Lemma 1.4. Assume that G is commutative and each element of G has finite order. If k is algebraically

closed, then any irreducible representation of G over k is one-dimensional.

Proof. Let M be an irreducible kG-module. By Schur lemma, EndGM is a division algebra over k.

Since G is commutative, for any x ∈ G, the map ϕx : M → M, a → xa is a G-homomorphism. Since x

has finite order, ϕx is algebraic over k. Now k is algebraically closed, so ϕx must be in k, i.e., x acts

on M by multiplication of a scalar in k. Thus M must be one-dimensional since M is irreducible. The

lemma is proved.

Remark. The author is grateful to Binyong Sun for pointing out that the lemma above cannot be

extended to arbitrary commutative groups, say, the field C is an irreducible representation of C∗, but it

is of infinite dimension over Q̄.
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Lemma 1.5. Let (I,�) be a directed set, {Ai, fij} be a direct system of algebras over k (resp. groups)

and {Mi, ϕij} be a direct system of vector spaces over k. Assume that Mi is Ai-module for each i and

for any i, j ∈ I with i � j, the homomorphism ϕij : Mi → Mj is compatible with the homomorphism

fij : Ai → Aj, i.e., ϕij(ux) = fij(u)ϕij(x) for any u ∈ Ai and x ∈ Mi. Then M = lim
→

Mi is naturally

a module of A = lim
→

Ai. Moreover, if Mi is irreducible Ai-module for each i ∈ I, then M is irreducible

A-module.

Proof. The proof is easy. For convenience, we give the details. Let
⊔

iMi be the disjoint union of all

Mi. By definition, M =
⊔

iMi/ ∼, here for x′ ∈ Mi and y′ ∈ Mj , x
′ ∼ y′ if and only if there exists some

r ∈ I such that ϕir(x
′) = ϕjr(y

′).

Let x ∈ M (resp. u ∈ A). Choose x′ ∈ Mi (resp. u
′ ∈ Aj) such that x′ (resp. u′) is in the equivalence

class x (resp. u). Choose r ∈ I such that i � r and j � r. Then set ux to be the class containing

fjr(u
′)ϕir(x

′). One can verify that this defines an A-module structure on M .

Assume that Mi is irreducible Ai-module for each i. To prove that M is irreducible A-module it

suffices to prove that M = Ax for any nonzero element x in M . Assume that x and y are two nonzero

elements in M . Let x′ ∈ Mi (resp. y′ ∈ Mj) be an element in the equivalence class x (resp. y). Choose

r ∈ I such that i � r and j � r. Then x′′ = ϕir(x
′) (resp. y′′ = ϕjr(y

′)) is in the class x (resp. y).

Since Mr is irreducible Ar-module, there exists u′ ∈ Ar such that x′′ = u′y′′. Let u be the equivalence

class containing u′. Then u is element of A and ux = y. The lemma is proved.

The following two simple lemmas will be used frequently.

Lemma 1.6. (a) Let A be an algebra over k and M be an A-module. Assume that A has a sequence of

subalgebras A1, A2, . . . , An, . . . and that M has a sequence of k-subspaces M1,M2, . . . ,Mn, . . . such that M

is the union of all Mi and for any positive integers i, j there exists a positive integer r such that Mi

and Mj are contained in Mr. If Mi is an irreducible Ai-submodule of M for any i, then M is an

irreducible A-module.

(b) Let G be a group and M be a G-module. Assume that G has a sequence of subgroups G1, G2, . . . ,

Gn, . . . and that M has a sequence of k-subspaces M1,M2, . . . ,Mn, . . . such that M is the union of all

Mi and for any positive integers i, j there exists an integer r such that Mi and Mj are contained in Mr.

If Mi is an irreducible Gi-submodule of M for any i, then M is an irreducible G-module.

Proof. (a) We only need to prove that M = Ax for any nonzero element x in M . Assume that x and y

are two nonzero elements in M . Then we can find some positive integer i such that both x and y are

contained in Mi. Since Mi is irreducible Ai-submodule of M , there exists u in Ai such that ux = y.

Therefore M = Ax.

(b) Applying (a) to A = kG and Ai = k[Gi], we see that (b) is a special case of (a).

The lemma is proved.

Lemma 1.7. Let H be a subgroup of G and M a kH-module. Assume that G has a sequence G1, G2,

. . . , Gn, . . . of subgroups such that G is the union of all Gi and for any positive integers i, j there exists

an integer r such that Gi and Gj are contained in Gr. Then the following results hold:

(a) As Gi-modules, kGi ⊗k(Gi∩H) M is isomorphic to the Gi-submodule Yi of kG⊗kH M generated by

all x⊗m, where x ∈ kGi and m ∈ M .

(b) kG⊗kH M is the union of all Yi.

(c) kG⊗kH M is irreducible if each Yi is irreducible Gi-module.

(d) Let Mi be an Hi = H ∩Gi-submodule of M . Then we have a natural homomorphism of Gi-module

ϕi : kGi ⊗kHi
Mi → kG ⊗kH M . If M is the union of all Mi and Mi is a subspace of Mj whenever Gi

is a subgroup of Gj , then kG⊗kH M is the union of all the images Imϕi.

Proof. (a), (b) and (d) are clear, (c) follows from (b) and Lemma 1.6(b).

1.8. Let A be an algebra over a field k. Assume that A has a sequence of subalgebras A1, A2, . . . , An, . . .

such that A is the union of all Ai and for any positive integers i, j there exists an integer r such that Ai

and Aj are contained in Ar. We can consider a category F of A-modules whose objects are those A-

modules M with a finite dimensional Ai-submodule Mi for each i such that M is the union of all Mi and
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for any positive integers i, j, Mi and Mj are contained in Mr whenever both Ai and Aj are contained

in Ar. Let (M,Mi) and (N,Ni) be two objects in F . The morphisms from (M,Mi) to (N,Ni) are just

those homomorphisms of A-module from M to N such that f(Mi) ⊂ Ni for all i. Clearly F is an abelian

category.

Let A be as above. We say that A is quasi-finite if all Ai are finite dimensional over k. Similarly we

say that a group G is quasi-finite if G has a sequence G1, G2, . . . , Gn, . . . of finite subgroups such that G

is the union of all Gi and for any positive integers i, j there exists an integer r such that Gi and Gj are

contained in Gr. The sequence G1, G2, G3, . . . is called a quasi-finite sequence of G. A subgroup of a

quasi-finite group is clearly quasi-finite. Clearly if a group G is quasi-finite then the group algebra kG is

a quasi-finite algebra over k.

Example. (1) Let Wn be a Weyl group of one type An (resp. Bn (n > 2), Dn (n > 4)). Then we

have a canonical imbedding Wn → Wn+1. Let W∞ =
⋃

n Wn. Then W∞ is a quasi-finite group and is

also a Coxeter group.

(2) Let Fq be a finite field of q elements and F̄q be its algebraic closure. The additive group of F̄q is

quasi-finite and is the union of all Fqa , a = 1, 2, . . . Also the multiplication group F̄∗
q is quasi-finite and is

the union of all F∗
qa , a = 1, 2, . . .

(3) Let G be an algebraic group defined over Fq. By (2) we see that the F̄q-points G(F̄q) of G is

quasi-finite and is the union of all G(qa), a > 1, where G(qa) is the Fqa -points of G.

(4) Let Gn be GLn(k) (resp. SLn(k), SO2n(k), SO2n+1(k), Sp2n(k)). Then Gn is naturally embedded

into Gn+1. Let G∞ be the union of all Gn. If k is finite then G∞ is quasi-finite.

More generally, direct union of quasi-finite groups is also quasi-finite, in particular, G∞ is quasi-finite

if k = F̄q. (The author is grateful to a referee for pointing out this fact.)

In the rest of this section we assume that all groups are quasi-finite unless other specifications are

given. For a quasi-finite group G, we fix a quasi-finite sequence G1, G2, G3, . . . For a subgroup H of G,

the quasi-finite sequence of H is chosen to be H ∩G1, H ∩G2, H ∩G3, . . . , called the quasi-finite sequence

of H induced from the given quasi-finite sequence of G.

Assume that N is a finitely generated G-module, say, generated by x1, . . . , xn. For each positive

integer i, let Ni be the Gi-submodule of M generated by x1, . . . , xn. Then Ni is a subspace of Nj if Gi

is a subgroup of Gj , and N is the union of all Ni.

We shall say that an irreducible module (or representation) N of G is quasi-finite (with respect to the

quasi-finite sequence G1, G2, G3, . . .) if it has a sequence of subspaces N1, N2, N3, . . . of N such that (1)

each Ni is an irreducible Gi-submodule of N , (2) if Gi is a subgroup of Gj , then Ni is a subspace of Nj,

and (3) N is the union of all Ni. The sequence N1, N2, N3, . . . will be called a quasi-finite sequence of

N . If the intersection
⋂

iNi of all Ni is nonzero, then a nonzero element in the intersection
⋂

iNi will be

called primitive since such an element generates an irreducible Gi-submodule of N for any i. It is often

that G1 is a subgroup of all Gi, in which case N1 is the intersection of all Ni and any nonzero element

in N1 is primitive.

Question 1. Is every irreducible G-module quasi-finite (with respect to a certain quasi-finite sequence

of G)?

When the irreducible module N is finite dimensional, the answer is affirmative, since the map kG =
⋃

i kGi → EndkN is surjective and EndkN is finite dimensional. A weak version of the above question is

the following.

Question 2. Assume that N is an irreducible G-module. Does there exist an irreducible Gi-submodule

Ni of N for each i such that N is the union of all Ni.

In the rest of this section k has characteristic 0.

1.9. For quasi-finite groups, a partial generalization of Mackey’s criterion on irreducibility is stated as

follows.

Let G be a quasi-finite group and H be a subgroup of G. Let M be a kH-module. Then IndGHM is

irreducible G-module if the following two conditions are satisfied:
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(1) M is quasi-finitely irreducible (with respect to the quasi-finite sequence of H induced from the

given quasi-finite sequence of G).

(2) Let M1,M2,M3, . . . be a quasi-finite sequence of M . For any positive integer i and s ∈ Gi−H∩Gi,

the two representations Mi,s and Mi of Hs,i = sHs−1 ∩ H ∩ Gi have no common composition factors,

where Mi is regarded as Hs,i-module by restriction and Mi,s is the Hs,i-module with Mi as base space

and the action of g ∈ Hs,i on Ms is the same action on M of s−1gs.

Proof. Assume the conditions (1) and (2) are satisfied. By Mackey’s criterion, we know that kGi⊗kHi
Mi

is irreducible Gi-module. By Lemma 1.7(d) and Lemma 1.6(b) we see that IndGHM is irreducible.

1.10. Let A be a normal subgroups of a group G. Then for any representation ρ : A → GL(V ) and

s ∈ G, we can define a new representation sρ : A → GL(V ) by setting sρ(g) = ρ(s−1gs) for any g ∈ A.

In this way we get an action of G on the set of representations of A.

Now assume that (1) A is commutative and each element of A has finite order, and (2) G = H ⋉A for

some subgroup H of G. By Lemma 1.4, any irreducible representation of A is one-dimensional. Note that

the set X = Hom(A, k∗) is a group. We have seen that H acts on X . Denote by X/H the set of H-orbits

in X . Let (χα)α∈X/H be a complete set of representatives of the H-orbits. For each α ∈ X/H , let Hα be

the subgroup of H consisting of h ∈ H with hχα = χα and let Gα = AHα. Define χα(gh) = χα(g) for

any g ∈ A and h ∈ Hα. In this way the representation χα is extended to a representation of Gα, denoted

again by χα.

Let ρ be an irreducible representation of Hα. Through the homomorphism Gα → Hα we get an

irreducible representation ρ̃ of Gα. The tensor product ρ̃ ⊗ χα then is an irreducible representation

of Gα. Let θα,ρ = IndGGα
(ρ̃⊗ χα).

Proposition 1.11. Assume that G is quasi-finite. Keep the notation above. If ρ is quasi-finite (with

respect to the quasi-finite sequence of Hα induced from the given quasi-finite sequence of G), then

(a) θα,ρ is irreducible.

(b) If θα,ρ is isomorphic to θα′,ρ′ , then α = α′, ρ and ρ′ are isomorphic.

Proof. The argument is similar to that for [10, Proposition 25(a), (b)]. Let G1, G2, G3, . . . be the quasi-

finite sequence of G. Then every Gi is finite, G is the union of all Gi and for any pair i, j there exists

an integer r such that both Gi and Gj are contained in Gr. Set Hα,i = Hα ∩ Gi. Let M be the

kHα-module affording the representation ρ of Hα and M1,M2,M3, . . . be a quasi-finite sequence of M

(with respect to the sequence Hα,1, Hα,2, Hα,3, . . .). Let V be the one-dimensional kGα-module affording

representation χα. Let A act on eachMi trivially. ThenMi becomes an irreducibleGα,i = AHα,i -module.

Regarding V as a Gα,i-module by restriction, then Mi ⊗ V is an irreducible Gα,i-module.

We claim that IndGiA
Gα,i

(Mi ⊗ V ) is irreducible GiA-module. For any t in GiA − Hα,iA, there exists

an s in Gi ∩ H − Gi ∩ Hα such that tχα = sχα. For s in Gi ∩ H − Gi ∩ Hα, we have sχα 6= χα. This

implies that there exists some as ∈ A such that χα(as) 6= χα(s
−1ass). Since G is the union of all Gj

and for any pair j, j′ there exists an integer r such that both Gj , Gj′ are contained in Gr, we can find

an r such that as is in Gr for any s in Gi ∩ H − Gi ∩ Hα, thanks to all Gj being finite. Thus as is in

Ar = A∩Gr for all s in Gi∩H−Gi∩Hα. For s in Gi∩H−Gi∩Hα, set Ks = Hα,iAr∩sHα,iArs
−1. Note

that the restriction to Hα,iAr of the Hα,iA-module Mi ⊗ V is irreducible. Through the two injections

Ks → Hα,iAr, x → x and x → s−1xs we get two Ks-module structures on the vector space Mi ⊗ V .

The restriction of the first Ks-module structure on Mi ⊗ V to Ar is the direct sum of some copies of

ResAr
χα, and the restriction of the second Ks-module structure on Mi ⊗ V to Ar is the direct sum

of some copies of ResAr

sχα. Since as is in Ar and χα(a) 6= χα(s
−1ass), the restrictions of the two

Ks-modules to Ar are not isomorphic, hence the two Ks-modules are not isomorphic. By Mackey’s

criterion on irreducibility, we see that IndGiAr

Hα,iAr
(Mi ⊗ V ) is irreducible GiAr-module. The natural map

IndGiAr

Hα,iAr
(Mi ⊗ V ) → IndGiA

Gα,i
(Mi ⊗ V ) is homomorphism of GiAr-module, hence IndGiA

Gα,i
(Mi ⊗ V ) is

irreducible GiA-module. Using Lemma 1.7(d) and Lemma 1.6(b) we see that θα,ρ is irreducible.

(2) The restriction of θα,ρ to A is completely reducible and involves only characters in the orbit Hχα

of χα, which shows that θα,ρ determines α. Let N be the subspace of IndGGα
(M ⊗ V ) consisting of all

x ∈ IndGGα
(M ⊗ V ) such that θα,ρ(a)x = χα(a)x for all a ∈ A. The subspace N is stable under Hα and
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one checks easily that the representation of Hα in N is isomorphic to ρ, hence θα,ρ determines ρ.

The proposition is proved.

Remark. (1) The above proposition and argument are valid even if A is not commutative. The author

is grateful to a referee for this observation.

(2) It is not clear whether any irreducible representation of G is isomorphic to a certain θα,ρ.

1.12. Let G be a quasi-finite group. Assume that there exists a sequence {1} = G0 ⊂ G1 ⊂ · · · ⊂

Gn = G such that all Gi’s are normal subgroups of G and Gi/Gi−1 are abelian. Examples of such groups

include Borel subgroups of a reductive group over F̄q.

Question. Is each irreducible representation of G isomorphic to the induced representation of a one-

dimensional representation of a subgroup of G?

2 Algebraic groups with split BN -pairs

2.1. In this section we assume that G is an algebraic group with a split BN -pair. By definition (see,

for example, [3, p. 50]), G has closed subgroups B and N with the following properties:

(i) The set B ∪N generates G, while T = B ∩N is a normal subgroup of N and all elements of T are

semisimple.

(ii) The group W = N/T is generated by a set S of elements si, i ∈ I, of order 2.

(iii) If ni ∈ N maps to si ∈ S under the natural homomorphism N → W , then niBni 6= B.

(iv) For each n ∈ N and each ni we have niBn ⊆ BninB ∪BnB.

(v) B has a closed normal unipotent subgroup U such that B = T ⋉ U .

(vi)
⋂

n∈N nBn−1 = T .

It is known that W is a Weyl group. Let R be the root system of W and αi, i ∈ I be simple roots.

For any w ∈ W , U has two subgroups Uw and U ′
w such that U = U ′

wUw and wU ′
xw

−1 ⊆ U . If w = si for

some i, we simply write Ui and U ′
i for Uw and U ′

w, respectively. For each w ∈ W we choose an element

nw ∈ N such that its natural image in W is w and let ni stand for nsi . The Bruhat decomposition says

that G is a disjoint union of the double cosets BnwB, w ∈ W . Note that Gi = B∪BniB is a subgroup G.

Any representation of T can be regarded naturally as a representation of B through the homomorphism

B → T . Let k be a field. In this section all representations are assumed over k. Let θ be a one-dimensional

representation of T , we use the same letter when it is regraded as a representation of B. Let kθ denote

the corresponding B-module. We are interested in the induced module M(θ) = kG⊗kB kθ.

Let P ⊇ B be a parabolic subgroup of G and L be a Levi subgroup of P containing T . Let UP

be the unipotent radical of P . Then P = L ⋉ UP . Moreover, BL = B ∩ L is a Borel subgroup and

(BL, N ∩ L) forms a BN -pair of L. By abusing notation, we also use kθ for its restriction to BL. Set

ML(θ) = kL ⊗BL
kθ. Let UP act on ML(θ) trivially. Then ML(θ) becomes a P -module. The following

result is easy to check.

Lemma 2.2. M(θ) is isomorphic to kG⊗kP ML(θ).

If θ is trivial we shall use M(tr) for M(θ) and ktr for kθ, respectively. Let 1tr be a nonzero element

in ktr. For x in kG we simply denote the element x⊗ 1tr in M(tr) by x1tr. For any element t ∈ T and

n ∈ N we have nt1tr = n1tr, so for w = nT ∈ W , the notation w1tr = n1tr is well defined.

For any subset J of S, we shall denote by WJ the subgroup of W generated by J and let wJ be the

longest element of WJ . Set ηJ =
∑

w∈WJ
(−1)l(w)w1tr, where l(w) is the length of w. The following

result is a natural extension of [13, Theorem 1, p. 348] and part (a) seems new even for finite groups.

Proposition 2.3. Keep the notation above. Let J be a subset of S. Then

(a) The space kUWηJ is a submodule of M(tr) and is denoted by M(tr)J .

(b) In particular, kUηS = kU
∑

w∈W (−1)l(w)w1tr is a submodule of M(tr). This submodule will be

called a Steinberg module of G and is denoted by St.

Proof. The argument for [13, Theorem 1] works well here. Clearly kUWηJ is stable under the action of

B. Since G is generated by B and N , it remains to check that kUWηJ is stable under the action of N .
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But N is generated by all ni and T , so we only need to check that nikUWηJ ⊆ kUWηJ . We need to

show that niuhηJ ∈ kUWηJ for any u ∈ U and h ∈ W . Let u = u′
iui, where ui ∈ Ui and u′

i ∈ U ′
i .

Then niuhηJ = niu
′
in

−1
i niuihηJ . Since niu

′
in

−1
i ∈ U , it suffices to check that niuihηJ ∈ kUWηJ . When

ui = 1, this is clear. Now assume that ui 6= 1. Since sηJ = −ηJ for any s ∈ J , it is no harm to assume

that l(hwJ) = l(h) + l(wJ ).

If hwJ 6 sihwJ , then hw 6 sihw for all w ∈ WJ . In this case, we have niuihηJ = nihηJ ∈ kUWηJ .

If sih 6 h, then niuihηJ = niuini(sih)ηJ . Note that n2
i ∈ T . Since Gi = B ∪ BniB is a subgroup G,

if ui 6= 1, we have niuini = niuin
−1
i n2

i = xnity for some x, y ∈ Ui and t ∈ T . Thus niuihηJ =

xniy(sih)ηJ = xni(sih)ηJ = xhηJ since (sih)wJ 6 hwJ .

Now assume that h 6 sih but sihwJ 6 hwJ . Then we must have sih = hsj for some sj ∈ J . If w ∈ WJ

and w−1(αj) is a positive root, then we have hw 6 sihw, hence

(i) niuihw1tr = nihw1tr = sihw1tr = hsjw1tr,

(ii) hw1tr = xhw1tr,

(iii) niuihsjw1tr = niuin
−1
i hw1tr = xsihw1tr = xhsjw1tr.

Multiplying (i), (ii) and (iii) by (−1)l(w), (−1)l(w) and (−1)l(sjw), respectively, adding them, then sum-

ming on all w ∈ WJ satisfying l(sjw) = l(w)+1, we get (1−x+niui)hηJ = 0. Thus niuhηJ = niu
′
iuihηJ =

niu
′
in

−1
i niuihηJ = niu

′
in

−1
i (x− 1)ηJ ∈ kUWηJ . The proposition is proved.

An analogue of [5, Proposition 7.3] is the following result.

Proposition 2.4. Let θ be a one-dimensional representation of T . Then M(θ) ⊗ St is isomorphic to

IndGT kθ.

Proof. Let 1θ be a nonzero element in kθ and η =
∑

w∈W (−1)l(w)w1tr. Then it is easy to check that

the map g1θ → g(1θ ⊗ η) defines an isomorphism of G-module between IndGT kθ and M(θ) ⊗ St. The

proposition is proved.

Lemma 2.5. For each n ∈ N = NG(T ), kn1θ is T -stable. If each Ui is infinite, then any T -stable

one-dimensional subspace of M(θ) is contained in
∑

n∈N kn1θ, which is of dimension |W |.

Proof. It is clear.

2.6. Let J be a subset of S and let M(tr)′J be the sum of all M(tr)K (see Proposition 2.3(a) for

definition) with J ( K. Then M(tr)′J is a proper submodule of M(tr)J . Let EJ = M(tr)J/M(tr)′J .

Proposition 2.7. Assume that each Ui is infinite. If J and K are different subsets of S, then EJ and

EK are not isomorphic.

Proof. For any w ∈ W , let cw =
∑

y6w(−1)l(y)Py,w(1)y1tr, where Py,w are Kazhdan-Lusztig polynomi-

als. Note that cw = ηJ if w = wJ for some subset J of S.

We claim that M(tr)J is the sum of all kUcw, w ∈ W with l(wwJ ) = l(w) − l(wJ ). Since M(tr)J =

kUWηJ = kUWcwJ
, we only need to show that kWcwJ

is spanned by all cw, w ∈ W with l(wwJ ) =

l(w)− l(wJ ). But this follows from and [6, (2.3.a), (2.3.c) and Proposition 2.4].

Let c̄w be the image of cw in EJ . Let AJ be the subset of W consisting of all w ∈ W such that w 6 ws

for all s ∈ S−J and ws 6 w for all s ∈ J . Then c̄w is nonzero if and only if w ∈ AJ and EJ is the sum of

all kUc̄w. Since Ui is infinite for each i, any T -stable line in EJ is contained in
∑

w∈AJ
kc̄w = ET

J . If there

exists a G-isomorphism φ : EJ → EK , then we must have φ(ET
J ) = ET

K . Thus φ(c̄wJ
) =

∑
w∈AK

aw c̄w,

aw ∈ k. But c̄wJ
6= 0 is uniquely determined by the following two conditions: (1) nic̄wJ

= −c̄wJ
if

and only if si ∈ J , and (2) Uic̄wJ
= c̄wJ

if and only if si 6∈ J . Therefore, J 6= K implies that any

nonzero element in ET
K does not satisfy the conditions for c̄wJ

, hence φ does not exist. The proposition

is proved.

2.8. Let P be a parabolic subgroup of G with unipotent radical UP . Assume that L is a Levi subgroup

of P . Any kL-module E is naturally a kP -module through the homomorphism P → L. Then we can

define the induced module IndGPE = kG ⊗kP E. If P contains B and E is one-dimensional P -module,

then IndGPE = kG⊗kP E is a quotient module of some M(θ).

Let PJ (J ⊂ S) be a standard parabolic subgroup ofG. Let PJ act on k trivially. Define 1GPJ
= kG⊗PJ

k.
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Clearly 1GPJ
is a quotient module of M(tr). Assume that each Ui is infinite. By the discussion above we

see that HomG(1
G
PJ

, 1GPK
) is nonzero if and only if J is a subset of K.

3 Reductive groups with Frobenius maps

3.1. In this section we assume that G is a connected reductive group defined over a finite field Fq of q

elements, where q is a power of a prime p. Lang’s theorem implies that G has a Borel subgroup B defined

over Fq and B contains a maximal torus T defined over Fq. For any power qa of q, we denote by Gqa the

Fqa -points of G and shall identify G with its F̄q-points, where F̄q is an algebraic closure of Fq. Then we

have G =
⋃∞

a=1 Gqa . Similarly we define Bqa and Tqa .

Let N be the normalizer of T in G. Then B and N form a BN -pair of G. Let k be a field. For any one-

dimensional representation θ of T over k. As in Section 2 we can define the kG-moduleM(θ) = kG⊗kBkθ.

When θ is trivial representation of T over k, as in Section 2 we write M(tr) for M(θ) and let 1tr be a

nonzero element in kθ. We shall also write x1tr instead of x ⊗ 1tr for x ∈ kG. Let U be the unipotent

radical of B.

Recall that for w ∈ W = N/T , the element w1tr is defined to be nw1tr, where nw is a representative

in N of w (cf. the paragraph below Lemma 2.2).

Theorem 3.2. (a) Assume that k = C is the field of complex numbers. Then kU
∑

w∈W (−1)l(w)w1tr
is an irreducible G-module.

(b) Assume that k = F̄q. Then kU
∑

w∈W (−1)l(w)w1tr is an irreducible G-module.

Proof. (a) Let Uqa be the Fqa -points of U . Then U =
⋃∞

a=1 Uqa . Let η =
∑

w∈W (−1)l(w)w1tr. Then

C[Uqa ]η is isomorphic to the Steinberg module of Gqa , so it is an irreducible Gqa -module. We have

CUη =
⋃∞

a=1 C[Uqa ]η and C[Uqa ]η ⊂ C[Uqab ]η for any integer b > 1. By Lemma 1.6(b), CUη is an

irreducible G-module.

The argument for (b) is similar. The theorem is proved.

3.3. According to [13, Theorems 2 and 3], the Gqa -module k[Uqa ]
∑

w∈W (−1)l(w)w1tr is irreducible if

and only if chark does not divide
∑

w∈W qal(w). Therefore kU
∑

w∈W (−1)l(w)w1tr is irreducibleG-module

if chark does not divide
∑

w∈W qal(w) for all positive integers a. Unfortunately, it is by no means easy

to determine the prime factors of
∑

w∈W qal(w) even for type A1 (in this case W has only two elements).

So it seems we need to find other ways to see whether kU
∑

w∈W (−1)l(w)w1tr is irreducible G-module if

chark is different from 0 and from charF̄q = p.

Let θ be a group homomorphism from T to k∗. For any w ∈ W , define wθ : T → k, t → θ(w−1tw).

Theorem 3.4. Assume that k = C. Then M(θ) has at most |Wθ| composition factors, where Wθ =

{w ∈ W | wθ = θ}. In particular, if wθ 6= θ for any 1 6= w ∈ W (i.e., there exists t ∈ T such that

θ(w−1tw) 6= θ(t)), then M(θ) is an irreducible G-module.

Proof. We can find an integer a such that for any b > a we have Wθ = {w ∈ W | wθT
qb

= θT
qb
}, where

θT
qb

denotes the restriction of θ to Tqb . Assume that 0 = M0 ( M1 ( M2 ( · · · ( Mh = M(θ) is a

filtration of submodules of M(θ). Then there exist xi ∈ Mi − Mi−1 for i = 1, 2, . . . , h. Clearly there

exists c > a such that all xi are in CGqc(1⊗ 1θ), where 1θ is nonzero element in kθ. But it is known that

CGqc(1⊗ 1θ) has at most Wθ composition factors. The theorem is proved.

Proposition 3.5. Let θ : T → C∗ be a group homomorphism. Assume that Wθ is a parabolic subgroup

WJ of W . Then the element
∑

w∈WJ
(−1)l(w)w1θ generates an irreducible submodule of M(θ) and the

elements (s − e)1θ, s ∈ WJ being simple reflections, generate a maximal submodule of M(θ), where e is

the neutral element of W .

Proof. It is known that the kGqa -submodule of M(θ) generated by
∑

w∈WJ
(−1)l(w)w1θ is irreducible

for all positive integers a and the kGqa -submodule of kG1θ generated by all (s − e)1θ, s ∈ WJ being

simple reflections, is a maximal submodule of kGqa1θ. The proposition then follows Lemma 1.6(b).

3.6. Assume that k = C. It is an interesting question to determine the composition factors of M(θ).

Assume that P is a parabolic subgroup containing B. Let P act trivially on C. Then IndGPC = kG⊗kP C
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is a quotient module of M(tr), so it has finitely many composition factors. If P is a maximal parabolic

subgroup, then IndGPC has much less composition factors than M(tr).

Let G be a connected reductive group over Fq such that its derived group is of type An. Let P be a

maximal parabolic subgroup of G containing the F -stable Borel subgroup B and assume that the derived

subgroup of a Levi subgroup of P has type An−1. Using Lemma 1.6(b) and representation theory for

Gqa , it is easy to see that IndGPC has a unique irreducible quotient module which is trivial and a unique

irreducible submodule.

It is known that there is a bijection between the composition factors of Gqa -submodule CGqa1tr of

M(tr) and the composition factors of the regular module CW of W , which preserves multiplicities. But

this result cannot be extended to M(tr) since by the proof for Proposition 2.7 it is easy to see that M(tr)

has at least 2|S| composition factors which are pairwise non-isomorphic.

3.7. Assume that k = F̄q. Then for each dominant weight λ : T → k∗, we have Weyl module V (λ) and

its irreducible quotient L(λ). Clearly V (λ) is a quotient module of M(λ). Also it is clear that the tensor

product M(θ)⊗ V (λ) has a filtration of submodules such that the quotient modules of the filtration are

some M(θ+µ), where µ are weights of V (λ). It is not clear whether some M(θ) have infinite composition

factors. It might be interesting to study St⊗ L(λ).

It is easy to see that the trivial module of F̄qU is the unique irreducible F̄qU -module. A question comes

naturally: is every irreducible F̄qB-module one-dimensional?

If chark is different from 0 and from charF̄q = p, the structure of the modules M(θ) are more compli-

cated.

4 Gelfand-Graev modules

4.1. Keep the notation in Subsection 3.1. Thus G is a connected reductive group defined over Fq, B

a maximal Borel subgroup of G defined over Fq and T a maximal torus in B defined over Fq. Let U

be the unipotent radical of B. The group G and its subgroups are identified with their F̄q-points, so

G = G(F̄q), B = B(F̄q), T = T (F̄q), etc..

Let R be the root system of G and ∆ = {α1, . . . , αl} be the set of simple roots corresponding to B.

Denote by R+ the set of positive roots. For each positive root α ∈ R, let Uα be the corresponding root

subgroup in G. We choose an isomorphism εα : F̄q → Uα so that tεα(a)t
−1 = εα(α(t)a) for any a ∈ F̄q

and t ∈ T . It is known that the subgroup U ′ of B generated by all Uα, α ∈ R+−∆, is a normal subgroup

of B and the quotient group U/U ′ is isomorphic to the direct product Uα1
× Uα2

× · · · × Uαl
and B/U ′

is isomorphic to the semidirect product T ⋉ U/U ′.

Each irreducible representation of B/U ′ gives rise naturally an irreducible representation of B. In

general it is hard to get a classification of irreducible representations for groups B and U .

4.2. Clearly, there is a bijection between one-dimensional representations of U with U ′ in the kernel

and the sets (σj), where σj is a one-dimensional representation of Uαj
. A one-dimensional representation

of U with U ′ in its kernel is called non-degenerate if all σj are non trivial. The group T acts naturally

on the set of irreducible representations of U/U ′.

It is known that all non-degenerate one-dimensional complex representations of Uq form a Tq-orbit if

the center of G is connected. But the set Φ of non-degenerate one-dimensional complex representations

of U is uncountable. This implies that the T -orbits in Φ is uncountable. For a non-degenerate one-

dimensional complex representation σ of U , we may consider the induced representation IndGUσ and call it

a Gelfand-Graev representation ofG. It seems not easy to decompose these Gelfand-Graev representations

(cf. [5, Section 10]).

5 Some questions

There are some natural questions.

1. Develop a theory of kG-modules for infinite quasi-finite groups. A particular question is to classify

irreducible kG-modules for some interesting quasi-finite groups, say, reductive groups with Frobenius
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maps and their Borel subgroups, the infinite Coxeter group W∞ (see 1.8 Example (1)) and the group G∞

(see 1.8 Example (4)), etc..

According to [2, Theorem 10.3 and Corollary 10.4], we know that except the trivial representation,

all other irreducible representations of kG are infinite dimensional if G is a semisimple algebraic group

over F̄q and k is infinite with characteristic different from charF̄q.

2. Let G be a connected reductive group over Fq. Then G has a Frobenius map F : G → G. So for

any representation ρ of G we can define a new representation F ρ by setting F ρ(g) = ρ(F (g)). We say

that ρ is F -stable if ρ and F ρ are isomorphic.

Question. Are there any good relations between the set of isomorphism classes of irreducible com-

plex representations of G which are F -stable and the set of isomorphism classes of irreducible complex

representations of GF ?

Replacing G by GLn(Fqa) or SLn(Fqa), the above question is answered positively by the theory of

Shintani decent (see, for example, [1, 11, 12]). For character sheaves, there is a similar result (see [9]).

6 Type A1

In this section G will denote GL2(F̄q) or SL2(F̄q). Let T be the torus of G consisting of diagonal matrices

and B be the Borel subgroup consisting of upper triangle matrices. Let U be the unipotent radical of B.

In this section we consider complex representations of these groups.

6.1. We first consider representations of B over C. We have B = T ⋉ U . Let X = Hom(U,C∗). For

t ∈ T, χ ∈ X , define tχ : U → C∗, u → χ(t−1ut). Then we get an action of T on X . Note that U is

isomorphic to the additive group F̄q, so as abelian group, U is a direct sum of countable copies of Fp,

where p is the characteristic of F̄q. Therefore, the set X of homomorphism U → C∗ is uncountable. This

implies the set of T -orbits in X is uncountable.

Denote by X/T the set of T -orbits in X and let (χα)α∈X/T be a complete set of representatives of

the T -orbits. For each α ∈ X/T , let Tα be the subgroup of T consisting of t ∈ T with tχα = χα and

let Bα = TαU . Define χα(tu) = χα(t) for any t ∈ T and u ∈ U . In this way the representation χα

is extended to a representation of Bα, denoted again by χα. Note that Tα is the center of B if χα is

non-trivial, is the whole T if χα is trivial.

Let ρ be an irreducible complex representation of Tα, which is one-dimensional since Tα is commutative.

Through the homomorphism Bα → Tα we get an irreducible representation ρ̃ of Bα. The tensor product

ρ̃⊗χα then is an irreducible representation of Gα. Let θα,ρ be the corresponding induced representation

of B. According to Proposition 1.11 we have the following result.

Lemma 6.2. The complex representation θα,ρ of B is irreducible. Moreover, θα,ρ is isomorphic to θα′,ρ′

if and only if α = α′ and ρ = ρ′.

We can further induce θα,ρ to G. By the lemma above, if χα is trivial, then Bα = B and θα,ρ is just ρ̃.

Since the commutator group [B,B] of B is U , any homomorphism θ : B → C∗ has the form ρ̃. According

to Theorems 3.2 and 3.4, we have the following result.

Proposition 6.3. Let θ : B → C∗ be a group homomorphism. Then

(a) M(θ) = CG⊗CB Cθ is irreducible G-module if θ is not trivial.

(b) If θ is trivial, then M(θ) has a unique nonzero proper submodule and unique quotient module. The

nonzero proper submodule is the Steinberg module. The quotient module is the trivial module of G.

6.4. LetBq, Tq and Uq be the Fq-points ofB, T and U , respectively. Keep the notation in Subsection 6.1.

Assume that χα is nontrivial. If the restriction of χα to Uq is not trivial, we can consider the induced

representation θα,ρ,q of Bq from the restriction of ρ̃ ⊗ χα to Gα ∩ Bq, which is irreducible. It is known

that the action of Bq on θα,ρ,q can be extended to actions of Gq and in this way one can get all cuspidal

representations of Gq. But the author has not been able to see how to extend the B action on θα,ρ to an

action of G.
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7 Miscellany

In this section we give some discussion to representations of the groups listed in 1.8 Example (1) and

Example (4).

7.1. Let W = W∞ be the group defined in 1.8 Example (1). Since W is a Coxeter group, we can use

Kazhdan-Lusztig cells to construct representations of W and its Hecke algebras. Let s1, . . . , sn be the

simple reflections of Wn and let S be the set of all simple reflections.

(1) Assume that W is of type A. Let Cw, w ∈ W , be the Kazhdan-Lusztig basis of CW (cf. [6,

Theorem 1.1]). For each left cell σ of W , let Iσ be the subspace of CW spanned by all Cw , w ∈ σ.

Denote by I<σ the subspace of CW spanned by all Cw, w 6L u for some u ∈ σ but w 6∈ σ. Then CW is

the direct sum of all Iσ, and both Iσ + I<σ, I<σ are left ideals of CW . According to [6, Theorem 1.4] and

Lemma 1.6(b), Lσ = (Iσ+I<σ)/I<σ is an irreducible CW -module. When two left cells σ and τ are in the

same two-sided cell, the right star actions leads to an isomorphism between Lσ and Lτ . Moreover, Lσ

and Lτ are isomorphic CW -modules if and only if σ and τ are in the same two-sided cell of W . Similar

results hold for Hecke algebra of W over C(q
1

2 ) with parameter q (here q is an indeterminate).

According to the proof of [6, Theorem 1.4], any two-sided cell of W contains some wP , where P is a

finite subset of S and wP is the longest element of the subgroup of W generated by P . Let σP be the left

cell of W containing wP . For subsets of P and Q of S, wP and wQ are in the same two-sided cell of W

if and only if wP and wQ are in the same two-sided cell of Wn whenever both wP and wQ are contained

in Wn.

Unlike the groupWn, some irreducible CW -modules are not isomorphic to any Lσ, for example, the sign

representation of W is not isomorphic to any Lσ. It is also less easy to discuss irreducible F̄qW -modules.

(2) Assume that W is of type B. Let H be the Hecke algebra of W defined over A = C[q
1

2 , q−
1

2 ] (q

an indeterminate) with A -basis Tw, w ∈ W , and multiplication relations (Tsi − qi)(Tsi + 1) = 0 and

TwTu = Twu if l(wu) = l(w) + l(u), where q1 = q, qi = q2 for all i > 2. Let Cw, w ∈ W , be the

Kazhdan-Lusztig basis of H defined in [7, Proposition 2]. The corresponding cells are called generalized

cells (ϕ-cells in [7]). Regarding C as an A -module by specifying q to 1, then we have CW = H ⊗A C.

By abuse notation we use also notation Cw for its image in CW . For each generalized left cell σ of W ,

let Iσ be the subspace of CW spanned by all Cw, w ∈ σ. Denote by I<σ the subspace of CW spanned

by all Cw, w 6L u for some u ∈ σ but w 6∈ σ. Then CW is the direct sum of all Iσ, and both Iσ + I<σ,

I<σ are left ideals of CW . According to [7, Theorem 11] and Lemma 1.6(b), Lσ = (Iσ + I<σ)/I<σ is an

irreducible CW -module. However, it seems not clear whether Lσ and Lτ are isomorphic CW -modules

when the generalized left cells σ and τ are in the same generalized two-sided cell of W . Similar results

hold for the Hecke algebra H̄ = H⊗A C(q
1

2 ). According to [7, Section 10], if one chooses q1 = q3, qi = q2

for all i > 2, the above results remain valid.

(3) Assume that W is of type D. Let Cw , w ∈ W , be the Kazhdan-Lusztig basis of CW (cf. [6,

Theorem 1.1]). For each left cell σ of W , as in (1) we can define the subspaces Iσ and I<σ of CW and

the CW -module Lσ. Unlike the case of types A or B, Lσ may not be irreducible. In [8, Chapter 12],

Lusztig has proved that the CWn-module afforded by a left cell of Wn is multiplicity free and the number

of irreducible components in the CWn-module is a power of 2. So it is likely that the CW -module Lσ is

semisimple (i.e., a direct sum of some irreducible submodules).

7.2. In the rest of this section Gn and G∞ are as in 1.8 Example (4). Let T be the subgroup of G

consisting of diagonal matrices in G and N be the normalizer of T in G. We can choose naturally a

subgroup B of G so that B and N form a BN -pair for G. For example, B can be chosen to be the

subgroup of G consisting of upper triangular matrices in G if G = GL∞ or SL∞. Let U be the kernel of

the natural homomorphism B → T . It is easy to see that W = N/T is just a group in 1.8 Example (1).

Let S = {s1, s2, s3, . . .} be the set of simple reflections of W . For each si we choose a representative

ni ∈ N of si. For each i, there exist subgroups Ui and U ′
i of U such that U = U ′

iUi and niU
′
in

−1
i ∈ U .

Note that if ui ∈ Ui, we have niuin
−1
i = xnity for some x, y ∈ Ui and t ∈ T .

Set Tn = T ∩Gn and Bn = B∩G. Let Nn = N ∩Gn and Wn = Nn/Tn. Note that Wn can be regarded

as a subgroup of W in a natural way.
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Assume that k = k̄, by Lemma 1.6(b) the natural representation V of G is irreducible. We may consider

to decompose the tensor product of m copies of V . Many classical results for Gn can be extended to G∞.

Let λ : T → k∗ be a character of T . Assume that the restriction λn of λ to Tn is a dominant weight

of Gn for each n. Then we have an irreducible rational Gn-module Vn with highest weight λn. Clearly, we

have a natural embedding Vn →֒ Vn+1 for each n. Moreover, the embedding is a Gn-homomorphism. Let

V (λ) be the union of all Vn. Then V (λ) is naturally a G-module. By Lemma 1.6(b) it is an irreducible

G-module.

It is known that a Gn-module Mn is called rational if for any x ∈ M , the G-submodule of G generated

by x is a finite dimensional rational G-module. We call a G-module M rational if the restriction of M to

Gn is rational. Clearly, V (λ) a rational G-module in this sense.

7.3. Keep the notation in Subsection 7.2. For any homomorphism θ : T → K, where K is a field, let Kθ

be the corresponding one-dimensional B-module. As in Section 2 we may consider the induced module

M(θ) = KG⊗KB Kθ. We can define Steinberg module for KG but which is not a submodule of M(tr).

Let St = KUξ be a free KU -module generated by the element ξ. Note that KG (resp. kU) is the

union of all KGn (resp. K(U ∩Gn)). By the proof for Proposition 2.3 we get the following result.

Proposition 7.4. The KU -module structure on St can be uniquely extended to a KG-module structure

as follows:

(1) tuξ = tut−1ξ for any t ∈ T and u ∈ U ,

(2) niuξ = −niun
−1
i ξ if u ∈ U ′

i ,

(3) niu
′
iuiξ = niu

′
in

−1
i (x − 1)ξ for u′

i ∈ U ′
i and 1 6= ui ∈ Ui, where x ∈ Ui is defined uniquely by the

formula niuin
−1
i = xnity, t ∈ T, y ∈ Ui.

Naturally, we call the G-module St a Steinberg module of G. Proposition 2.4 also has its counterpart

here, i.e., M(θ)⊗ St is isomorphic to IndG
TKθ.

Using [13, Theorem 2], Theorems 3.2 and 3.4 and Lemma 1.6(b), we get the following result.

Theorem 7.5. (a) Assume that (1) k = Fq or F̄q, (2) K = C or F̄q, then St is irreducible KG-module.

(b) Assume that K = C and θ : T → C∗ is a character of T . If Wθ = {w ∈ W | wθ = θ} has only one

element, then M(θ) is irreducible KG-module.
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