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I. INTRODUCTION

For designing the thick equal-cross-section ultrasonic flexural vibration rod, the
Timoshenko Theory!"! works satisfactorily*, For the vari-cross-section ultrasonic flexural
vibration rod, however, there has not been an accurate and convenient design theory to date.
That is, no frequency equation is available. In the present study, we extend the
Timoshenko Theory to the vari-cross-section rod. For equal-thickness vari-cross-section ex-
ponent-mode rods, the frequency equation was derived. Experiments were carried out to
verify the equation. The theoretical calculation shows good agreement with the experi-
mental results.

I1. Basic ReLAaTiONs ON EQUAL-THICKNESs ExpoNENT-MoDE Rop

1. Outline of the Equal-Thickness Exponent-Mode Rod

Shown in Fig. | with solid line is an exponent-mode or exponentially-tapered-cross-section
rod, It has the height of A, length of L, width of b =be #, and cross-section-area of
S=byhe™”, where f is a constant greater than zero, z the coordinate in the length direc-
tion, and the origin of the coordinate is at the thick end of the rod.

The definitions of the signs used here are
1s follows: K2=w’p/E, Ki=w’pA K ' G),
K=K+ K%, K;,= 1w /( PE), w=2xf,
where f'is the resonance frequency, p the densi-

Fig. 1. Scheme of the vari-cross-section rod.in which  ty Of the material used, E the longitudinal elas-
the solid line stands for exponent-mode rod. while  tic constant, G the shearing elastic constant,
the dashed line for the wedge-mode rod. K’ the shear coefficient of the cross section

* Project supported by the National Natural Science Foundation of China.



No.2 CHINESE SCIENCE BULLETIN 111

, : L oo
(for a rectangular cross section, K=0.8333).5,= 7\,’ 2+ K2)— 2o S =/ 2@ K )+

g=V K>~ K2)+ 4K} ; 4» B, C;and D are constants related to the boundary conditions.
The material used in this study was 45 carbon steel and E=21.6x 10" N,/M?,
G=8.4x10" NM? and p=7.8x 10 kg/M°.
2. The Frequency Equation
The frequency equation is of the following form:
(A4;chS,L+ B;shS,L)cosS, L+ (CichS,L+ D;shS,L)sinS,L—1=0, (1)

where /=1 or 2, corresponding to the fixed-free and free-free boundary conditions,
respectively.

Table 1
Coefficients Under the Two Boundary Conditions

i Ai B;' Cj Dl'
| L(&+_&) 4| _spd P WF

2\ R R S2R R SiRR S1S2R Ry 45152

1 2, 2y R R
2 ! 0 +KH2 ()£ -
0 43132[(3 KD ~@-K) g, B{'

In Table 1, R, =4K; - 2(g*+ K*), R,=4K:+2(g-K*).

When S,L>6, Eq.(1) can be modified to
nm—0;
. (2)

L~ ——,

S

-1 A+ B

where n takes positive integers, §,,= tg

3. The Effect of p Value on the Resonance Frequency

Table 2 shows the effect of f value on the resonance frequency. The frequencies were
calculated for a both-end-free rod, 150 mm in length and 20 mm in height. From Table 2 it
can be seen that the smaller the f, the less its effect on the resonance frequency. When =0,
the rod becomes of equal cross section.

I11. EXPERIMENT AND ANALYSIS

The experimental result on the free-free rods is shown in Table 3. The parameters of
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Table 2
Frequencies Corresponding to Different f Values
Frequency (Hz)
B |

n=3 n=4 n=>5

0.0 20091 29750 39878
2.0 20093 29752 39880
10.0 _ 20148 29800 39921

Sample 1 are :L=0.15m, h=0.02 m, and $=4.62/m. For Sample 2, L=0.2m,2=0.015m,
and f=3.47/m. The displacement nodal line coordinate indicates such positions at which
the vibration displacement equals zero. z, is the measured coordinate while z, is calculated

from the above-mentioned equations.

Table 3
The Bending Vibration Displacement-Nodal-Line Coordinate of Sample Rods
Rod No. n zl (z1—22) /21
1 3 14.2 52.7 96.5 136.6 —4.87 —-1.02 —0.65 —-0.92
2 3 18.9 69.3 127.3 178.8 =-3.79 | +0.79 +0.33 +0.89

Listed in Table 4 are the resonance frequencies of exponent-mode samples and corre-
sponding wedge-mode samples. The so-called wedge-mode rod is shown in Fig. 1 with
dashed line.

Table 4
Comparison Between Measured and Calculated Resonance Frequencies
Rod Exponent-Mode Wedge Errors
n
No. SilHz) S2(H2) Si(H2) Ja(Hz) el(%) (%)
1 3 20105 20103 20033 . 20158 +0.3 +0.6
4 29760 29761 29660 29932 +0.6 +0.9
5302 5303 5485 5469 +3.0 -3.0
2 5 21877 21877 21567 22028 +0.7 +2.1
28744 28744 28600 28939 +0.7 +1.2

In Table 4, f, is the resonance frequency calculated from Eq.(1), £, from Eq.(2),
while f; and f, are the measured resonance frequencies for the exponent-mode rod and wedge
rod, respectively; e, is the error between £, and f,, while e, between £, and f;. It can be found
from Table 4 that, in our case, the frequency from Eq.(2)does not show much difference
from that from Eq.(1), although Eq.(2)is much simpler in calculating. It can also be seen
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that the measured resonance frequency of the wedge-mode rods is very close to that of the
exponent-mode ones. These two types of rods are the same in thickness, length, thick-end
cross-section-area, and thin-end cross-section-area, but differ in the varying mode of

cross-section.

IV. CoNncLusION

The frequency Eq.(1)coincides with the result of the experiment fairly well. The modi-
fied frequency Eq.(2)shows very little difference but is more convenient. To a certain ex-
tent, it will make designing and processing much easier if we use the exponential mode as a
designing model while actually making a wedge rod.
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