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A Route to Turbulence in Delay-Differential System
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Abstract In this paper a singular perturbation approach is developed to study the
dynamical behaviour of the delay-differential system at the points of transition from quasi-
periodic to more chaotic states, The results reveal that some attractor crisis windows appear
at merging points of the chaotic bands, The widths and the critical values of the windows
vary with the different linear modes of the system regularly, leading to some harmonic
bifurcation as w,>3w,—>5w,>++(2&,n + 1)w, and some hysteresis behaviour. The author argues
that this unique harmonic bifurcation and hysteresis motion is an essential route to chaos in
the delay-differential system,
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Among the investigations on bifurcation and chaos phenomena the delay-differ-

ential system has occupied an important position®™®.  There are many important

backgrounds present in this kind of system including optical bistability® ¥, acousto-

electric hybrid system®, and neurobiologic science. Also, the system itself has richer
and more interesting properties than other kinds of nonlinear differential or differ-
ence equations. For example, the delay-differential system itself is an infinite-dimen-

r[l-_ZJ.

sional system, but often exhibits finite-dimensional attractor™*; the time-evolution

tehaviour of the system is controlled by toth the difference and differential processes
®. Up to now, great progress has

been made on the research of this kind of time delay system. However, the route to

and thus usually displays unexpected phenomena

chaos in the system remains an open question. The experimental results'® obtained
with optical-electric hybrid apparatus as well as the numerical simulation results™
on some concrete delay-differential equations showed that harmonic bifurcation pro-
cess is the important route to chaos in this kind of system. However, this viewpoint

1", This is because Berre ez al. did not observe the

was challenged by Berre er a
harmonic motion in their simulation, thus they raised query to the results reported
in Refs. [6] and [7]; in addition, it is not convincing enough to draw a general
conclusion from the results of special systems. Using a singular perturbation method
we study the dynamical behaviour of the delay-differential system at the points of
transition from quasi-periodic to chaotic state in this paper. The validity of this meth-
od for a time delay system has been demonstrated by our previous research re-
©19 which have predicted some new phenomena, such as discontinuous transition
and hysteresis at each bifurcation point, and these predictions have already been

proved by several related experiments"!'?. Therefore, on such evidence we deal with

sults

the delay-differential system by means of the method which is similar, but more
generalized, to that previously used.
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The general equation for this kind of delay-differential system is"*!4,
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X

+ Zr;";d552+X(;)= wFIX(t— )], (1)
i=1

where F[X(z)] is a nonlinear function of X(¢), u is the control parameter, #4is the

external delay time, and 7; the internal characteristic response time. Considering

the special case proposed by Vellee ez al."™3* ie. 7, =7/N, Eq. (1) becomes

N N
DT (r/NY"CX™(e) = uF[X(1 — 1)1, (2)
m=0 m .
in which Xm(p) = 47X,
at™
When N — 00, based on the following fact
Lim Z (r/N)”‘CX"”’(r) — exp (r Z) X(o), (3)
Now -0

where exp (r -‘%) is the retarded operator, Eq. (2) then degenerates to
?

X(8) = uFIX(21 — (33 + ). o (4)

Especially, in the case of long delay time limit, i.e.. when 74> 17, Eq. (4) is a
proper approximation of Eq. (2). In fact, no matter whether it is in the long delay
time limit or not, the contribution of the higher order differential terms in Eq. (2)
is always to force the system to close in Eq. (4), since time delay always means
a series of higher order differential terms including the infinite-order one. There-
fore, in the case of the single response time, i.e. 7; = /N, the most typical delay-
differential system which can reflect most sufficiently the disparity between the
difference equation and the delay-differential system itself is the first-order one,
i.e.

a’X(t)

s + X(1) = ;zF[X(z—:d)] ’ (5)

It should be pointed out here that the results given by Vellee ez al."¥ who have
studied the Nth-order delay-differential equation with z; = /N hardly involves
any intrinsic new dynamical properties. The conclusions drawn by them are some-
B2 In order to study the features of the Nth-
order delay-differential system, we must deal with Eq. (1) starting from the very
beginning.

what similar to those reported before

Under the transformation
t—> 1 — P(T“T;,‘ ";TN;“))’

where w is a parameter yet to be determined, and function P(7,,7; ", Ty; @) is
given as
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P(7,,T;y-",Ty30)

- .21(—-{)”1 {(Zn i 2)! (2n i 1)!} ioz"z(érfrl)’ “

in which we define 01 = 1/2. Eq. (1) then becomes

n<N N

X(e) — {2, [(Zn‘l' Dy (zi)!] XW(‘)(E ’)}
+0 ((é w) ) = WFLXG = 1y = P(riytss i), %

Before the system enters into the completely chaotic state, the motion in the
chaotic bands tends to be regarded as a certain quasi-periodic motion: the motion
1s periodic between bands and is chaotic within a given band. This kind of motion
also corresponds to the periodic motion with a random fluctuation in its amplitude.
Based on this point of view, we might suppose that the circle frequency of the motion
of the kth-order mode is just the parameter o (it is denoted by w; thereinafter). In
the case of plane wave motion and long delay time limit, 1.e.

14 = max {Tlsfu te 9TN}!

Eq. (7) thus becomes an equation which has a form similar to that reported be-

foreto:

X(f) = .“’(lerza' .- ',TN;LO&)F[X(I - t:’I(TISTu Lt 9TN;“’Ig))] ’ (8)
where u” and 2, are the effective control parameter and delay time, respectively,
with

“!(719725 e )rN;wl) = .“/{1 + 5(71’72; Lo $TN;{'}.{)}9 (93)
Ié$1d+ P(TMTz""sTN;mJ()’ (9b)

in which the function S(7,,7,,-+,7Ty;3w;) can be expressed as

S(TysTyy ="ty Tys0y) = 2 (—1)~* {m - (—2,13;] oy (é Tf"). (10)

Therefore, within a general long delay time limit, Eq. (1) has become, in the
form and only in the form, a one-dimensional map. Eq. (10) is not exactly equal
to a one-dimensional map because both the control parameter and the delay time
are coupled with the dynamical states of the system, and may result in some intrin-
sic differences from one-dimensional map. So, the Nth-order delay-differential
system can be regarded as, in a sense, a one-dimensional map with self-feedback
and self-control, and the information on the typical one-dimensional map can be
used in the analyses on the higher order effects of the differential terms. First of
all, we must review some dynamical features of the one-dimensional map briefly.
For a standard one-dimensional map

X&) = aF[X(t —1y)], (11)

the different quasi-periods of occurrence are
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T(M) = 2M+ltd, M == 0,1,2’ "ttty

where M is the number of the bifurcation time of the chaotic bands. For the quasi-
period state denoted by T®), there are two critical values for the control param-
eter: one is the critical value o through which the state switches to T¥*V by
bifurcation, and the other is denoted by a®? at which it converts into T™™ py
remerging. This is almost the same as the bifurcation processes of the exactly period-
ic state®™@ except for the reverse order of the critical values. For the bifurcation
or merging processes of the chaotic bands (See Fig. 1(a)) the value a®’ is larger
than o{. Considering the continuity of the state at each bifurcation point, the

critical values of the control parameter must satisfy

aM = M) M) — (M) (12)
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Fig. 1. (a) The combination process in the chaotic band of a
one-dimensional map. (b) The attractor crisis windows appear-
ing in the combination process of a chaotic band for a given
mode in the differential-delay system.

However, there are some differences for the time delay system. The one-dimen-
sional-map form of Eq. (8) demands u’ to satisfy Eq. (12), that 1is,

M-,k (M,
p ML — 1k

(M_l,i) (H!*.)
+ —

or a4 — s ,
1+ 8(719729 - "TN;“’EEM_”) 1+ S('furz’ v sTN-}wEtM))

(13)

where the subscripts “—+” and “—” represent the bifurcation and merging processes,
respectively; M and % are the indexes of the chaotic band and the linear mode of
the system respectively. From Eq. (13), we can obtain

WD — D S WS (e )

— S(7), Ty + TN =0, (14)
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_ (2% + I)(%Ji _

(M)
where w} YT

0,1,2,-++, ksM = 0,1,2,---,and w, is determined by

we{zq + P(Tla'fzs“';TN;wu)}'“”- (15)

The Eq. (14) shows that in a process in which the M band combines with

the M — 1 band, a f{orbidden zone exists for a range of values of x. When g satis-
fies

p MR < < MR

the system has already passed through the critical combination point for the M
band: the system must pass through the combination and enters the M — 1 band
state. As far as the M — 1 band is concerned, it does not satisfy the basic condi-
tion of entering the M — 1 band: pu > pM %Y. Hence, the state entering the M —
1 band is excluded from the system for the given mode. This contradictory result
hints that the quasi-periodic attractor of the system 1is completely unstable and
consequently some sudden changes may occur in the forbidden zone. This is the so-
called attractor crisis which is defined as the occurrence of the sudden qualitative
 changes of chaotic attractor™ ', ]t will be seen below that the attractor crisis in
the present system is different from that in one-dimensional map, although both of
them behave as a sudden change in qualities of the attractors. Here we just point
out the existence of the region where the attractor crisis may occur, and call the
difference determined by Eq. (13) the attractor crisis window for the kth-mode at
the M order bifurcation point (as shown in Fig. 1(b)).

Now we analyse the occurrence of the attractor crisis and its development.
First of all, we consider the arrange-
ment of the critical values of the cri- ‘t
sis windows. According to Eq. (9a), b —T /
the bifurcation critical parameters of 4
the delay-differential system, g8, 1t
are larger than that of the correspond- /
ing one-dimensional map, wu ™%, by
a factor of [1 + S(7,,7,5, -, Ty30$"]. Tr P
The dependence of the § function on oL [’
k means that the different modes will /
reach their own attractor crisis win- 3F )
dows 1n a certain sequence. Fig. 2 dem- ' /
onstrates the typical arrangement of T B PP
the sequence. It is very clear that the 0.
critical values of the crisis windows
increase one by one with the addition Fig. 2. The arrangement of the critical values
of the mode from lower order to high- of the crisis window of the different modes.
er order. This means that when the The parameters are N =2, M =0, #4/7, =20,
attractor with a lower order mode T =0.1.

(e. g. the fundamental mode) is com-
pletely unstable, the higher order mode is relatively stable, leading to a sudden
jump of the dynamical state from the lower mode to the higher one, a typical

k
wl )a"um

Loy
#tk’l#
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phenomenon of the attracior crisis. It is worth while to note that in the one-dimen-
sional map as studied by Grebogi ez al.''"' and Jeffries ez al."%, the crises arise
from intersection of an unstable orbit with the chaotic attractor, and behave as the
sudden jump from one chaotic (or quasi-periodic) state to another chaotic state or
even to an exactly periodic state, in which all states are developed from the same
mode. However, the crisis in the present system behaves as the transition between
the states developed from the different modes. This is the origin of the anomalous
mode-locked phenomena observed in the experiments™ ™ or in the numerical simu-
lation™. In order to distinguish them from the crises proposed by Grebogi et al.U”
we might as well call the crises here anomalous attractor crises.

The arrangement of the critical values as shown in Fig. 2 is not the peculiar-
ity under some specified parameters, but the general character, determined by Eq.
(10), of the system. In the general situation, the lower order modes must arrange
in a way similar to that in Fig. 2. The development of the motion in the forbidden
zone is not only determined by this arrangement, but also controlled by the widths
of the crisis window. From Eq. (13) we know that the widths decrease rapidly
with increasing M; the maximum appears at M = 0. This means that the anoma-
lous attractor crisis occurs most often at the transition point from quasi-periodic to
fully chaotic states, which is also one of the reasons why the anomalous mode-
locked phenomena are merely observed in this point as performed in the optical
experiments®™® and numerical simulation™. For the lower order modes, the widths

i

of the crisis windows increase with % as shown in Fig. 3.
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Fig. 3. The widths of the crisis window vs. order number of
mode. The parameters are 1, N =2, M =0, t4/7, =20, 1,/7, =
0.13 2, N=2, M =1, 24/, = 20, 7,/7, = 0.5; 3, N =2, M=2,
tg/T, = 40, 7,/T7, = 10,

-

Based on the analyses above, we can obtain the structure of the crisis window
as given in Fig. 4. The unique structure is crucial, as illustrated by the following
analyses, to the origin of the harmonic bifurcation process. Eq. (1) has many linear
modes with the circle frequencies of wy,3wy,5wy, ---, (2k,, + 1)w,. Generally, the
macroscopic behaviour of the system is determined by the excited modes; since the
fundamental mode is excited first, and the excited probability of the higher order
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Fig. 4. The transition and hysteresis between the different
linear modes in an attractor crisis window located between
the M band and the M — 1 band.

N \
modes decreases successively with increasing & by a factor #4/7 (f = Z r,v/N,), the state

. =
of the system which can be usually observed is the motion of the fundamental
mode including its bifurcation and chaos. The higher order modes can appear
only when the fundamental mode reaches its attractor crisis window. A series of
higher order modes appear one by one as soon as a lower mode enters its own
attractor crisis window. Not until the highest order mode is excited and reaches
its window does the harmonic bifurcation process cease. Once the highest mode is
unstable, the system switches back to the fundamental mode which has already
passed over its attractor crisis window and entered into a more chaotic but more
stable state. If letting the system move in the reverse process, a hysteresis and
transition may appear between the fundamental mode and the highest order mode.
In addition, some hysteresis and transition with smaller scale may also emerge be-
tween the higher order modes due to the “super-cooling” effect. This is quite simi-
lar to that observed by Hopf and Gibbs ez ¢/." and simulated numerically by
lkeda ez al.”

As regards the kp, generally the relation between &k, and other dynamical param-
eters of the system is not simple, but in the case of the first~order delay-differential

system, it can be expressed approximately as
ko = [(2qp/2nT)|6F [2]/62,-, | — 1/4], - (15)

in which x, is the value of x at steady-state; [ ] represents the integer function.
It can be seen that the maximum number of the modes which can be excited is
approximately proportional to the delay time (it is also true for the Nth-order
delay-differential system). So, for a given delayed time and specified crisis win-
dow, the number of harmonic mode is finite. In addition, k, is also related with

the gradient of function F [x] at x = x,.

As illustrated above, the occurrence of the harmonic bifurcation at the transi-
tion point from quasi-periodic to more chaotic states and hysteresis are the intrinsic
nature of the delay-differential system, which is resulting from the anomalous attrac-
tor crisis as well as the non-Markov property of the system. All these along with
the anomalies in the exactly periodic state as shown in Ref. [10] are the typical
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characteristics distinguishing the delay differential system from other nonlinear
systems. Besides, all results mentioned above are only based on the quasi-periodic
motion and this kind of motion exists at any stage of the chaotic scheme structure
except for the completely chaotic one. It can be predicted that the harmonic bifur-
cation process can also appear at any stage in the chaotic attractor as long as the
transition from a quasi-periodic motion to a more chaotic one is concerned. This
means that the harmonic bifurcation is self-similar in the chaotic attractor and is
undoubtedly an intrinsic characteristic of the delay-differential system, and that the
topological structure of the chaotic attractor is a new-type one.

In summary, using the singular perturbation approach developed here it turns
out that the attractor crisis will appear at the transition point from quasi-periodic
to more chaotic state in the delay-differential system, leading to harmonic bifurca-
tion as gy —> 3w, —> 5wy ++ —> (2k,, + 1)w, and a hysteresis. This harmonic bifurcation
is self-similar in the chaotic attractor. Based on the argument above we can draw
one important and significant conclusion, i.e. the harmonic bifurcation is an essential
route to a full chaos in the Nth-order differential-delay system.
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