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Abstract In this paper, a distributed velocity sensor fault diagnosis scheme is presented for a formation of a
second-order multi-agent system with unknown constant communication time delays. An existing distributed
proportion-derivation (DPD) formation control law is adopted and a delay-independent condition is proposed
to guarantee the asymptotical formation stability of the formation system based on the Nyquist stability
criterion. Then a distributed fault diagnosis scheme is developed. In each agent, a distributed fault detection
residual generator (DFDRG) and a bank of distributed fault isolation residual generators (DFIRGs) are
designed based on the closed-loop model of the whole system. Each DFIRG is built up on the basis of a
reduced-order unknown input observer (UIO) which is robust to the fault of one neighboring agent. According
to the robust relationship between DFIRGs and faults, distributed fault isolation can be achieved. Conditions
are presented to guarantee that each agent is able to diagnose faults of itself and its neighbors despite the
disturbance of time delays. Finally, outdoor experimental results illustrate the effectiveness of the proposed
schemes.
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1 Introduction

In recent years, distributed formation control has attracted a great deal of attention in many fields
such as rescue, surveillance, and space exploration. Compared with single dynamic systems, the merits
of formation systems include reducing cost, increasing robustness, enhancing efficiency, and providing
redundancy [1]. A lot of research has been published on distributed formation control [2-10]. A detailed
survey of distributed formation control for multi-agent systems has been conducted in [1].

In practice, communication time delays are ubiquitous in formation systems because information trans-
mission between agents is always influenced by environment disturbances, communication congestions,
and limited transmission bandwidth [11,12]. Moreover, communication time delays will inevitably de-
teriorate the stability of formation systems. Hence, it is important to study the formation stability
of multi-agent systems with time delays. Current approaches on consensus or stability of distributed
formations with time delays can be mainly categorized into time domain methods and frequency do-
main methods. In time domain methods, Lyapunov functions are always used to analyze consensus or
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formation stability of multi-agent systems [13-15]. Nonetheless, results derived based on time domain
methods are conservative owning to the conservation of Lyapunov functions. Different from time domain
methods, frequency domain methods are able to reduce the conservation of results. In frequency domain
methods, consensus or formation stability conditions are obtained by analyzing the poles of the closed-
loop transfer function of a multi-agent system through techniques such as Nyquist stability criterion and
7-decomposition. Although some research has been carried out on consensus or formation stability of
first-order multi-agent systems with time delays by using frequency domain methods [16-19], that of
second-order multi-agent systems with time delays has not yet been closely investigated. In the paper,
the formation problem for a network of second-order multi-agent system with constant communication
time delays is considered. Under a distributed proportion-derivation (DPD) control law presented in [20],
a delay-independent condition on the asymptotical formation stability is proposed based on the Nyquist
stability criterion.

In the application of formation systems, the successful execution of tasks requires that the formation
can be maintained and each agent operates in a fault-free manner [21]. However, there are only a handful
of studies reported to date that consider fault diagnosis for formation systems. In [22], current fault
diagnosis schemes for formation systems were surveyed and were divided into two types, namely, central-
ized schemes [23] and distributed schemes [24-27]. In a centralized scheme, the fault diagnosis algorithm
operates in a single agent. The agent is able to diagnose faults in the whole system by using information
transmitted from all the other agents. It can be seen that the centralized fault diagnosis scheme suffers
from a single point of failure and less scalability [21]. In a distributed fault diagnosis scheme, the fault
diagnosis algorithm is implemented in all agents. Each agent is able to diagnose faults in itself and
its neighbors by using the information of itself and its neighbors. Compared with centralized schemes,
distributed fault diagnosis ones have shown promising advantages in terms of robustness, scalability, and
reliability [21].

However, up to now, there have been very few studies carried out on distributed fault diagnosis schemes
for formation systems. Existing distributed fault diagnosis schemes can be divided into two categories,
i.e., local-model based schemes and global-model based schemes. The design of a local-model based
scheme in each agent requires both the model of the agent and models of neighbors of the agent, while
that of a global-model based scheme requires the model of the whole system. Admittedly, a local-model
based scheme has less computation loads than a global-model based one, but the communication load of
a local-model based scheme is higher than that of a global-model based scheme. More concretely, in each
agent, a global-model based fault diagnosis scheme only needs output information of neighbors. However,
a local-model based scheme in each agent also requires the input besides the output of neighbors [26,27].
Furthermore, when there are communication time delays between agents, diagnosis results of local-model
based schemes will be impacted by both the delayed input and the delayed output of neighbors. Hence,
in case of time delays, it is more suitable to adopt a global-model based fault diagnosis scheme where
diagnosis results are not disturbed by the delayed input of neighbors.

In [21], a distributed fault detection scheme was proposed for a formation of mobile robots based on a
Kalman filter which was developed on the basis of the model of the whole system. In [28], an observer-
based distributed fault diagnosis strategy for a team of first-order robots was designed. The distributed
observer was developed based on the model of the whole system. A distributed fault diagnosis scheme
for a second-order multi-agent system with actuator faults was presented in [29]. In each agent, a bank
of distributed full-order unknown input observers (UIOs) were designed based on the closed-loop model
of the entire system to achieve distributed fault isolation. Similar results can also be found in [30] where
communication faults between agents were also considered. In [31], a distributed global-model based
fault diagnosis scheme was developed for a discrete-time second-order multi-agent system with actuator
faults and Gaussian white noises. A bank of distributed optimal robust observers were designed in each
agent to achieve distributed fault isolation. In [32], a reduced-order UIO based distributed fault isolation
scheme was developed for a general linear multi-agent system with actuator faults and disturbances based
on the closed-loop model of the whole system. Compared with full-order UIO-based schemes in [29-31],
the reduced-order UIO-based schemes in [32] has less computation loads.
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Most of the aforementioned studies on distributed fault diagnosis for formation systems are carried out
without considering communication time delays between agents. So far, there have been seldom attempts
to design distributed fault diagnosis schemes for formation systems with time delays. Communication
time delays increase the difficulties of designing fault diagnosis schemes and disturb fault diagnosis results
because time delays introduce nonlinear dynamics into the model of a formation system. Moreover,
most of the current distributed fault diagnosis schemes are illustrated only by simulations and lack
practical experimental verification. To the knowledge of the authors, so far, very few outdoor experimental
results on the distributed fault diagnosis for formation systems have been published. Motivated by these
considerations, in the paper, a distributed sensor fault diagnosis scheme is proposed for a formation of
a second-order multi-agent system subject to unknown constant communication time delays. In each
agent, a distributed fault diagnosis scheme consisting of a distributed fault detection unit and a bank of
distributed fault isolation units is developed. In the distributed fault detection unit, a distributed fault
detection residual generator (DFDRG) is developed based on the model of the whole system. In each
distributed fault isolation unit, a distributed fault isolation residual generator (DFIRG) is built up based
on a reduced-order UIO and the closed-loop model of the system. Each DFIRG is robust to the fault of
one neighboring agent. Moreover, each agent updates the states of its DFDRG and DFIRGs by using the
output of itself and the relative output between itself and its neighbors. It is obtained that despite time
delays, the proposed scheme is able to guarantee the accurate fault diagnosis results when sensor faults
are constants or have a period equal to the time delay.

The novel contributions of the paper are summarized as follows. (1) A delay-independent condition
on the formation stability of a second-order multi-agent system with constant time delays is proposed.
(2) New DFIRGs are proposed based on the reduced-order UIOs for formation systems with constant
time delays. (3) Conditions on the existence of the DFDRGs and DFIRGs are provided. (4) An outdoor
experiment is carried out to illustrate the effectiveness of the DPD control law and the distributed fault
diagnosis scheme based on a formation platform consisting of three quadrotors.

The rest of the paper is organized as follows. In Section 2, some preliminaries are presented and the
problem statement is given. The distributed fault diagnosis scheme is proposed in Section 3. Experimental
results are presented in Section 4. Finally, in Section 5, the conclusion is given.

Notation. In the paper, R represents the set of real numbers. R™ denotes the set of vectors with n
dimensions. Oy is a zero matrix with N x N dimensions. 0,,x, is a zero matrix with m x n dimensions.
Iy is the identity matrix with N dimensions. 1y represents an N dimension vector with all elements
being 1. ||r| denotes the Euclid norm of the vector . W is the transposition of the matrix W. W
stands for the Moore-Penrose pseudoinverse of the matrix W. null(W) is the basis matrix of the null
space of the matrix W. p{W} stands for the set of eigenvalues of the matrix W. diag{\1, A2,..., An}
represents the diagonal matrix where elements in the diagonal place are A1, As,..., Any. The symbol ®
represents the Kronecker product. A stands for the logic and operation. A|JB is the union of sets A
and B. A\B denotes the relative complement of set B in set A.

2 Problem statement and preliminaries

2.1 Some preliminaries

Let G = {V,&} denote the communication topology of the multi-agent system, where V = {1,..., N}
represents the set of agents and £ C V x V represents the set of edges between agents. (i,7) € £ denotes
an edge from agent i to agent j7 which means that agent j can obtain information from agent i, and agent
i is called a neighbor of agent j. Define N; C V as the set of neighbors of agent i. |N;| is the cardinality
of the set ;. N; = N; J{i} represents the set including the ith agent and the neighbors of the ith agent.
Let matrix A, = [a;;] be the adjacent matrix of G, where a;; = 0, a;j; > 0 if and only if (7,j) € £ and
aj; =01if (4,5) ¢ € for i,j = 1,2,..., N. Let the diagonal matrix D, = [d;;] be the degree matrix of G,
where d;; = Z;YZO aij, and d;; = 0if i # j, fori,5 =1,2,..., N. The Laplacian matrix L, of G is defined
as Ly = D, — A,. Some properties of the Kronecker product are (A ® B)(C ® D) = (AC) ® (BD),
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(A+B)@C=AC+B®C,and A®(B+C)=A®B+A®C.
2.2 Problem statement

Consider a multi-agent system consisting of NV second-order integrators and the model of the ith agent is

&i(t) = Gi(t),
Gilt) = ui(t),

1
¥ () = &), .
ys () = G(t) + fult),

where & € R and (; € R represent the displacement and velocity of the ith agent, respectively. u; € R
is the input of the ith agent. yf € R and yf € R denote the sensor measurement of displacement and
velocity of the ith agent, respectively. f; € R is the velocity sensor fault of the ¢th agent. The dimension
of the second-order integrator considered in the paper is one, and results of agents with higher dimensions
can be simply extended from results here.

The formula of f;(t) is
0, t <Tj,
filt) = (2)
xit—=Ti), t=7T;

where T; € R is the time instant when fault occurs in the ith agent. y;(¢) € R is the amplitude of the
fault in the ith agent at time instant t.

Let r(t) € R be the given trajectory of the multi-agent system. Define d = [dy,da,...,dx]|" as the
formation vector of the multi-agent system, where d; € R is the relative distance between the ith agent
and the virtual leader. Some assumptions are required in the paper.

Assumption 1. The communication topology of the system is undirected and connected.

Remark 1. Under Assumption 1, according to [3], the Laplacian matrix L, is symmetrical and the
eigenvalues of L, satisfy 0 = A1 < Ao < -+ < Ay, where \; € p{L,}, i€ {1,2,...,N}.

Assumption 2. The first-order and second-order derivatives of the given trajectory exist.

Define the tracking error of the ith agent as e;(t) = r(t) +d; — & (t). The definition of the asymptotical
formation stability is described as follows.

Definition 1 (Asymptotical formation stability [33]). Given a multi-agent system with communication
topology G and agents described as (1), the formation is said to be asymptotically stable if for any initial
conditions, lim;_, €;(t) = 0 holds, i = 1,2,..., N.

According to Assumption 2 and [20], the following DPD controller can be designed for the ith agent

when there is no fault.

wi(t) = ka[r(t) + di — y5 ()] + ksl (1) — ys (D] + k2 Y ai [yf-(t —7)—d; —yf(t—7) + d;
JEN;

ki e [y — 1) — e — )] + i),
JEN;

(3)

where i = 1,2,...,N. k; >0, ks > 0, k3 > 0, and k4 > 0 are parameters to be designed. 7 > 0 is the
constant communication time delay. It is assumed that yf(t —7)=0and yf(t —7) =0 hold when ¢ < 7,
i=1,2,...,N.

Note that in [20], the asymptotical formation stability conditions are presented without considering
time delays. The following theorem presents a delay-independent condition on the asymptotical stability
of the formation system with time delays.

Lemma 1. Given a multi-agent system with the communication topology G and agents described as
(1), under the DPD control law (3), when there is no sensor fault, the asymptotical formation stability
can be achieved for any finite time delay 7 if k1 > ko Ay and k§ — 2k — kf)\?v > 0 hold.
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Figure 1 (Color online) The framework of the distributed fault diagnosis scheme for the formation system with time
delays.

Proof. Please refer to Appendix A.

The objective of the paper is to design a distributed fault diagnosis scheme for a multi-agent system
with constant time delays such that each agent in the system is able to diagnosis sensor faults of itself
and its neighbors. Assume that there is only one velocity sensor fault in the multi-agent system at
one moment. In order to reduce communication loads and decrease the influence of the time delays, a
global-model based distributed fault diagnosis scheme is designed. The framework of the distributed fault
diagnosis scheme for the multi-agent system is described in Figure 1.

In each agent, the distributed fault diagnosis scheme consists of a distributed fault detection unit and a
bank of the distributed fault isolate units. The distributed fault detection unit includes a DFDRG which
is developed based on a Luenberger observer and the closed-loop model of the entire system. According
to the results of the distributed fault detection unit, each agent is able to detect faults of itself and its
neighbors. In each distributed fault isolation unit, a DFIRG is a reduced-order UIO which is designed
according to the closed-loop model of the entire system. The residual of each DFIRG is robust to the
fault of one neighboring agent and sensitive to faults of other neighboring agents. For instance, the
residual in the distributed fault isolation unit of the ith agent for the jth agent is robust to the fault of
the jth agent and is sensitive to faults of other agents. According to the relationship of sensitivity (or
robustness) between residuals and faults, each agent is able to isolate faults of its neighbors by combining
the residuals of DFIRGs in the agent.

Note that in each agent, all information used to update states of the DFDRG and DFIRGs is the
output of the agent and relative output between the agent and the neighbors of the agent, which is same
as the information used in the DPD control law. It is obvious that this global-model based scheme has
very few communication loads, which is suitable for the case when time delays exist.

3 Distributed fault diagnosis

In this section, a global-model based distributed fault diagnosis scheme for a multi-agent system with
sensor faults and time delays is proposed. Firstly, the closed-loop model of the whole system is obtained.
Then based on the model, the distributed fault detection and isolation schemes are designed.
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According to (1) and (3), the closed-loop model of the ith agent is
&ilt) =Gi(t),
Gt) = = ka&i(t) = kaGi(t) + ko D aij[&(t — ) = &(t = 7)] + vilt) — ks fi(D)
JEN; (4)
ke Y aglGt—7) = Gt =) +ka > ailfi(t—7) = filt = 7)),
JEN JEN;
where &;(t —7) =0, (;(t —7) =0, and f;(t —7) = 0 hold when ¢t < 7,9 =1,2,...,N. v;(t) € R is the
input of the closed-loop model of the ith agent and the formula of v;(t) is

JEN;

Let x = [51,62, e >£N7 Clv CQ, ey CN]T, v = [’Ul, V2,. .. ,’UN]T7 _f = [fh fg, ceey fN]T, and yi(t) = [yf(t),
Vi (=) =y (=) (= T) =y (= T), s (0,95, (E =) =y (E =)oy (E=T) =y (E =)™
Note that y;(t) only includes the sensor measurement of the ith agent and the relative output between
the ith agent and the neighbors of the ith agent.

Then the closed-loop dynamic model of the multi-agent system is

x(t) = Ajz(t) + Asx(t — 7) + Bo(t) + E1 f(t) + Ex f(t — 7),
yz(t) = Ci’lﬂ}(t) + Ciygm(t — T) + I‘z,lf(t) + I‘iﬁgf(t — T),

where
On Iy On On On Oy On
Al - ) A2 = ) B = ) El = ) E2 = )
—k1In —ksIn —koLgy —ksLy Iy —ksIn —ksLyg
I O1x2n 1
T T
i — 1 _ -
o O(N:[+1)x N
i; :
0 iT T Onil+1)xN Oy
Ni|x2N TN 4 T T
Ci1= l,Tl , Cio = A , Tin = iy y Tio=1| %, — %
LN O1x2n 0 :
0 4T _ 4T INi[x N :
|Ni|><2N i1+N i+ N CT o T
: L YN v
T T
_’Li‘/\fi‘-‘rN - ’Li—‘,-N_

Moreover, ¢ and i), are the kth columns of the identity matrix Iony and Iy, respectively. i, is the index
of the mth neighbors of the ith agent, m =1,2,...,|N;|.

3.1 Distributed fault detection

In this subsection, a DEFDRG is designed based on the closed-loop model of the system. Then a distributed
fault detection logic is presented.

According to (6), the following DFDRG of the ith agent is developed based on the a Luenberger
observer.

{ @](t) = (A1 + A2)2](t) + Bo(t) + GP[yi(t) — (Cix + Cin)&; (1), )

ri(t) = yi(t) = (Cix + Ci2)2] (1),
where &0 € R?N is the states of the DFDRG in the ith agent. r{ € R2Wil+2 is the residual of the ith
agent. GY is the parameter to be designed.

Define the state estimation error of the DFDRG in the ith agent as e?(t) = x(t) — 2%(¢). The following
theorem presents the condition on the convergence of the state estimation error.
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Theorem 1. When there is no sensor faults, given a multi-agent system with communication topology G
and agents described as (6), there exists a matrix G? such that the state estimation error e?(t) approaches
to zero asymptotically if the following two conditions are satisfied.

(1) The pair (A1 + Az, C; 1 + C; 2) is detectable.

(2) The closed-loop system (6) is asymptotically stable.
Proof.  According to (6) and (7), it follows that

é)(t) =i (t) — 27 (t) = [(A1 + Az) — GY(Ci1 + Cin)le](t) + (A2 — GICis)[x(t — 1) — a(t)].

Since (A; + Az, C; 1 + C;2) is detectable, there exists a matrix GY such that (A; + As) — GY(Ci1
+C 2) is stable. When there is no sensor fault, under the assumption that the system is stable, it follows

that
d
1 : (8)
0N><1

. Lg) ( [r(t) —r(t—1)
F(t) — it —7)

Then it is obvious that lim;_, . e (t) = 0(2n;|+2)x1- This ends the proof.

) @1y +
t—o0 T(t)

lim x(t) = lr(t)

Furthermore, it can be obtained that

0 0

lim As[x(t —7) —x(t)] = (l—k’g ks

t—o0

® 1N> = 02nx1,
9)

Jim Cpfe(t —7) = 2(1)] = 0(2)n; | +2)x1-

Remark 2. Note that condition (2) in Theorem 1 is introduced to eliminate the disturbance of x(t —
7)—x(t). Without condition (2), €?(¢) may not converge to zeros even if there are no faults, which means
that fault detection cannot be achieved. Moreover, condition (2) can be achieved according to Lemma 1.
Define JP(t) = ||[7{(t)|| as the fault detection evaluation function of the ith agent. Let J, € R be
the fault detection threshold of the ith agent. The fault detection logic of the ith agent is designed as

Algorithm 1.

Algorithm 1 Fault detection logic of the ith agent
if J)(t) > J7;, then
There is a fault in the system.
else

There is no fault in the system.
end if

Remark 3. Note that it is very complex to set the value of Jgth in practice. When there are no model
uncertainties, disturbances, and noises, Jgth can be set to be zero. Otherwise, the value of the threshold
should be determined according to the fault detection rate, disturbances, uncertainties, and noises of
the system. The interested readers may refer to [34,35] for more approaches to design fault detection
thresholds.

3.2 Distributed fault isolation

In this subsection, a distributed fault isolation scheme is proposed for the formation system. As described
in Figure 1, in each agent, a bank of DFIRGs are designed based on reduced-order UIOs and the closed-
loop model of the multi-agent system. The residual in each DFIRG of an agent is robust to one faulty
neighbor and is sensitive to the other faulty neighbors. According to the relationship of sensitivity (or
robustness) between residuals and faults, fault isolation logic is developed.

According to (6), given an agent 4, provided that a sensor fault occurs in the kth agent, where k € N,
the closed-loop dynamic model of the whole system is

{ 2 (t) = Ajzf(t) + Azl (t — 7) + Bo(t) + Ef fi(t) + E5 fi(t — 7),

L (10)
yz(t) = Ciylﬂ}(t) -+ Ci’gm(t — T) -+ I‘,L- fk(t — T),
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where ¥ € R?Y is the state of of the whole system when there is a fault in the kth agent. fx(t—17) € R
is the delayed fault of the kth agents. EF is the kth column of E; and represents the direction of fx(t) in
the dynamic equation. E¥ is the kth column of E5 and stands for the direction of fi.(t—7) in the dynamic
system. I‘f is the kth column of I'; » and denotes the direction of fx(¢ — 7) in the output equation.
Remark 4. It can be seen from (10) that the dynamic equation and output equation are all disturbed
by time delays, which increases the challenge of designing distributed fault diagnosis schemes. Moreover,
the sensor fault of the kth agent disturbs both the dynamic equation and the output equation in (10),
which makes the system more complicated.

In order to reduce computation loads of each agent, reduced-order UIOs are used to designed DFIRGs.
According to [36], before designing reduced-order UIOs for (10), the output information which is directly
disturbed by fi(t — 7) should be removed firstly.

Define a matrix Uik’O = {null[(T¥)T]}T. It is obvious that Uik’ol"éc =0. Let y¥(t) = Uf’oyi(t) be the
new output. The new dynamic equation and output equation for the ith agent are obtained as follows.

{ &P (t) =A 2" (t) + Agxh(t — 7) + Bo(t) + EY fi.(t) + E5 fu(t — 1), )

Yy (t) =Cpz(t) + Clyx(t — 1),

where y¥ € R2Vit1 g the new output which is not perturbed by the fault of the kth agent. Moreover, it
follows that Cf, = U/"°C;1 and CF, = U C 5.

Remark 5. Owning to f(t — 7), the relative output y,i (t—1)— yf (t — 7) should be deleted so that a
decoupled residual generator can be designed. However, in the case of actuator fault, there is no need to
delete any relative output information. The deletion of one output signal makes the design of diagnosis

scheme for sensor faults more difficult than that for actuator faults.
According to [36], the following reduced-order UIO based DFIRG can be designed.

2£(0) =FF&H0) + Mlo(t) + SLyi0) )
ri(t) =JF 2 (8) + Hiyilt),
where k € N;. zF € R2V-1 and rF(t) € R2Ni are the state and residual of DFIRG, respectively. FF,
Mik7 Sf, Jik7 and Hf are parameters to be designed.

Define the state estimation error of (12) as e¥(t) = NFx¥(t) — 2F(t), where NF = [null((EF)T)]T and
EF = E¥ + E%. The following definition can be obtained.
Definition 2. The residual of the DFDRG (12) is said to be decoupled from a faulty agent k if e (¢)
approaches to zeros asymptotically regardless of the presence of fi(t) and fi(t — 7).

The following theorem presents conditions to guarantee that =¥ is decoupled from fx(¢) and fi(t — )

and provides the design method of the parameters in (12).

Theorem 2. Given a system (10), let EF = E¥ + E}. Define Uik’O = {null[(T))T]}T, CF, = Uik’OCi,l,
Ck, = UM°C; 5, and CF = CF| + Cf,. The residual rf(t) in (12) is decoupled from the faulty agent k,
1=1,2,...,N, k € NV}, if the following conditions are satisfied.

1) rank (CFEF)=rank (EF);

2) rank [*2V © Gt A2 ?]:QN +rank(EF), Vs € C, Re(s) > 0;

(
( 1
(3) The amplitude of the fault yj(¢) in the kth agent is a constant or the period of xx(t) is equal to 7;
(4) The closed-loop system (6) is asymptotically stable.
Moreover, parameters of the DFIRG (12) can be designed as follows.

N} = [mll(BF)N)]Y, (BN = (BN (ED]HE, (N = (NF)TI(NF) NS

A?,u = NF(A; + A3)(ND)T, Aﬁ12 = N/ (A1 + A2)E},
UM = (CFEF) = [((CFEF)T(CFEN)| " (CFENT, UP? = mull(CFENT)", (13)

FF=AF, - A* UM CHNF) - GFUP*cH(NF), M = N!B,
Sk = AF L, UMUM + gRUM UMY, JF = —UPPCH(NE), HE =UMU,
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where Gk is a matrix such that Fk
Proof. Let AzF(t) =xk(t —7) -

{ (1) =(A1 + Ag)x

A'Iill
i (1), A

HORS

k
%
k

Sci China Inf Sci

=Ciz(t) + CirAz;
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AF LU CHNF) - GFU?CH(INF)! is stable.
fe(t) = fi(t — 1) — fr(t). According to (11), it follows that
Bo(t) + Ef fu(t) + As Az (t) + EYAfi(t),

14
0. (14)

k

i (1)
Let T} = [(Nf)" (BH)D']Y, (TF)~ = [(Nf)T EF),

Eq. (14) can be transformed into the following equation.
A;c,u Aﬁ12] l%

m(t)] . l
A?,Ql Af,22 T

mfg(t)
+ T Ay A (1) + TV B3 A fi

)T)T. By using TF,

i,2

xr

Tp = Tra} = [(2F))" (2
N'B
(Ef)'B

] v(t) + [
(t),

+ CF Az ().

Ocn-—1)x1
1

] fr(t)
(15)

yi() = |CHNE) OB |

|

According to the formula of U-k’1 and Uf’Q,

Lo

By combing the dynamic of ifl and (17), it follows that

(1)

where

Ay Af,l?] =TF(A; + A)(TF)~ .

AﬁQl Af,22

it follows that

UP'ylf(t) =US' CHINEY&E (1) + &8, (t) + UP CFy Ak (1),

U2yl () =UCHINE) @ (1) + U2 Cly Aaf (1),

7

(17)

zk

1/1

Af UM CENE)&E (1) + AR Uyl (t) + NF Buo(t)
(N'kA2 *Ai‘ch‘lekQ)Am (t),
¥ (1) + U, Az (1),

= [Af,u
+ NFESAfi(t) +
=UCHND)!

(18)

U2yl ()

According to the second condition in Theorem 2 and [36], the pair [Af,11 — AﬁlQUf’le(Ni’“)T,
UZ-]€’2C'£c (NF)T] is detectable. Hence, there exists a matrix G¥ such that the matrix F is stable. Then,
parameters in (12) can be designed.

According to (12) and (18), it can be obtained that

ef(t) =Flef(t) + (N A — AL, UP'CL, — GIUTCly) Ay () + NP ESAfi(t), 19)
rf(t) = = Jlel(t) + U ClhAt (1),
Since the system (6) is asymptotically stable, it follows that
r(t)
lim z%(t) = ®1y + + Qxi(t), 20
Jm 27 () L-«(t) " onsa +0 20
where € is a matrix with appropriate dimensions.
If xx(t) is a constant or the period of x(t) is equal to 7, it follows that
) 0 0 r(t)—r(t—71)
lim Aq[zh(t — 1) — ¥ (t)] = ® L ®1xy | =0 ,
Jim Asfek(t - 7) - 2k(0) q_k _kj ) ks e | @1 ) = 0w
. 21
Tim Clyfal(t — ) — @ ()] = USOC, ol (t — 7) — @ ()] = O 1y 2!

t1l>ngo NngAfk(t) = 0(2N—1)><1'

According to (19) and (21) when a sensor fault only occurs in the kth agent, it follows that lim;_, -, €% (t)
= 0@ n—1)x1 and lim;_, o 7} k)= 02/ x1 hold. This ends the proof.
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Remark 6. According to (14), in order to design a residual generator which is robust to fi (), the
residual must be decoupled from fi(¢t) and A fx(t). However, owning to the deletion of y,i (t—7) fyf (t—7),
condition (2) in Theorem 2 is hardly satisfied if EF is replaced with [EF E%]. Therefore, condition (3)
in Theorem 2 is introduced to eliminate the influence of A fy(t). However, in case of an actuator fault,
condition (3) is unnecessary, which means that there exists a residual generator decoupled from the
actuator fault regardless of the amplitude of the fault.

Remark 7. Condition (4) in Theorem 2 is introduced to guarantee the equalities in (21). When
the closed-loop model of the multi-agent system is not stable, equalities in (21) are not satisfied and
lim; o 7¥(#) is not equal to zero. In this case, rF
that the distributed fault isolation cannot be achieved.

If a sensor fault occurs in the ith agent, the fault isolation can be achieved by using a simpler residual

generator as (22) which is designed based on the open-loop model, the input information, and the output

is not decoupled from the faulty agent k, which means

information of the ith agent.
{ﬂ04ﬂ+B%MH<mw®CﬁWm
ri(t) = yi(t) — Ci&;(t),

where i = 1,2,...,N. & = [§; (;]T € R? is the state estimation of the i agent. y! = [yf yf] € R? is the
output of the ith agent. r! € R? is the residual of the i agent. The vale of A!, B?, and C! are as follows.

, 1 | [
A= "M B2 = MY
00 1 01

It is obvious that the pair (A%, C}) is observable. G! is the parameter to be designed and satisfies that
Al — GIC! is stable.

It can be seen from (22) that if there is no fault occurring in the ith agent, |r(t)|| approaches to zero
asymptotically. Otherwise, ||7¢(t)| approaches to a non-zero constant asymptotically.

Define JF(t) = [|[rf(t)|| and Jf,, € R as the fault isolation evaluation function and the fault isolation
threshold of the ith agent for the kth agent, respectively, where i = 1,2,..., N and k € N;. After a fault
is detected, according to (12) and (22), the fault isolation logic in the ith agent is designed as Algorithm 2.

(22)

Algorithm 2 Fault isolation logic of the ith agent

if Ji(t) > J},, then
The ith agent is faulty.

else if 3k € N, Vp € Ny\{k}, [JF(t) < JF I A LP(8) = J7 ] then
The kth agent is faulty.

else if Vk € N;, Jf(t) > Jf,,, then
The faulty agent belongs to V\N;.

end if

Remark 8. In Algorithm 2, the relationship of sensitivity (or robustness) between residuals and faults is
used to isolate faults in neighbors. More concretely, for agent i, if there exists an residual r¥, k € A, such
that the evaluation function of r¥ is less than its corresponding threshold and the evaluation functions
of all the other residuals ¥, p € N; \ {k}, are all larger than or equal to their corresponding thresholds,
then it can be identified that a fault occurs in the kth agent.

Remark 9. The value of Ji’fth, k € Nj, can be determined according to the fault isolation rates,
uncertainties, disturbances, and noises of the system. The detailed design of the fault isolation thresholds
can also be found in [34, 35].

4 Experimental results

In this section, an experiment is conducted based on a formation platform consisting of three quadrotors,
which is described in Figure 2. In the experiment, the communication topology of three quadrotors
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Figure 2 (Color online) The picture of the formation Figure 3 The communication topology of quadrotors.
platform.
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Figure 4 (Color online) The control framework of a quadrotor along x axis.

is set as Figure 3. The Laplacian matrix of the communication topology of three quadrotors is L, =
[2,-1,—-1;-1,2,—1;—1,—1,2]. The eigenvalues of L, are A\; =0, A2 = A3 = 3.

According to [37], the dynamic model of a quadrotor can be regarded as linear and is decoupled along
x, y, and z axes when the quadrotor flyes in a hovering state and the rotation angles of the quadrotor
are small. Therefore, the control law and the fault diagnosis scheme for a quadrotor can be designed
along z, y, and z axes, respectively. In the experiment, we mainly consider distributed fault diagnosis
for quadrotors along = axis. The dynamic of a quadrotor along z is El(t) = 6,;(t)g and J,0; (t) = ug (1),
where i = 1,2,3. & € R is the position of the ith quadrotor along x axis. 6; € R is the pitch angle of the
1th quadrotor. wg; € R is the input of the ith quadrotor. J, € R is the rotation inertial of quadrotors
and g € R is the gravity accelerator.

In the experiment, the control law of each quadrotor consists of two controllers, namely, the internal-
loop proportion-integration-derivation controller and the external DPD controller. The control frame of
the ith quadrotor along z axis is as Figure 4. In Figure 4, {; € R is the velocity of the ith quadrotor
along x axis. O, is the given pitch angle of the ith quadrotor. According to [38], the dynamic model
from Oser,; to 0; can be regarded as the proportion one. Therefore, the dynamic from w; to & can be
considered as a second-order integrator, which can be described as & (t) = ¢;(t) and ;(t) = us(t).

In the experiment, three quadrotors are set to maintain a triangle and move along x axis in the x—O—y
plane with a constant height. The given trajectory along x axis of the system is r(t) = 43.5 — 0.5¢(m).
Then it follows that 7(t) = —0.5(m/s), #*(t) = 0(m/s?). The formation vector is d = [0, —5m, —5m]T.
The control parameters in the experiment are k& = 3, ko = 0.17, k3 = 3, and k4 = 0.37. It is obvious
that ky — kodg = 2.49 > 0 and k2 — 2k; — k203 = 7.4279 > 0 hold, which means that the formation can
be achieved with any finite time delays.

In the experiment, the time delay is implemented in a software way, which means that the neighboring
data used in the distributed control law and the distributed fault diagnosis scheme are delayed in the
micro-processors of quadrotors to simulate the time delay during the communication. The time delay is
set to be 7 = 1 s. The total experimental time is 60.9875 s. In the experiment, assume that a sensor fault
with amplitude —2 m/s occurs in the first quadrotor at 655.2025 s. Parameters of fault detection residual
generators and fault isolation residual generators can be found in Appendix B. The fault detection
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Figure 5 (Color online) The formation results of all quadrotors. (a) The trajectories of three quadrotors; (b) the tracking
errors of three quadrotors.
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Figure 6 (Color online) The fault diagnosis results of all quadrotors. (al) The distributed fault detection results in
quadrotor 1; (a2) the self-fault detection results in quadrotor 1; (a3) the distributed fault isolation results in quadrotor
1; (bl) the distributed fault detection results in quadrotor 2; (b2) the self-fault detection results in quadrotor 2; (b3) the
distributed fault isolation results in quadrotor 2; (c1) the distributed fault detection results in quadrotor 3; (c2) the self-fault
detection results in quadrotor 3; (c3) the distributed fault isolation results in quadrotor 3.

threshold of the ith agent is Jgth = 0.5, ¢ = 1,2,3. Fault isolation thresholds are Jith = Jﬁth = Jith =
isfh = 0.5, J217th = J227th = Jgth = ésfh = 0.5, and J31,th = Jith = Jg,th = ésfh = 0.5. The formation
results of three quadrotors are shown in Figure 5. From Figure 5, the formation stability can be achieved
when there is no fault and the formation is damaged after the fault occurs.
The fault detection and fault isolation results are demonstrated in Figures 6. It can be shown from

the upper three subgraphs of Figures 6 that the fault can be detected by the all quadrotors according to
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Algorithm 1. Moreover, according to the other subgraphs and Algorithm 2, the fault can also be isolated
by three quadrotors. The video of the experimental process can be found at the webpages®.

5 Conclusion

In the paper, problems of formation control and distributed fault diagnosis for a second-order multi-agent
system with unknown constant time delays have been considered. Under an existing DPD control law,
the condition on the delay-independent asymptotical formation stability has been presented. Distributed
fault detection and isolation schemes have been designed and conditions on the existence of the schemes
have been provided. Experimental results have demonstrated the validation of the proposed schemes.
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Appendix A Proof of Lemma 1

Proof.  The dynamic of the tracking error of the ith agent can be described as

el(t) = —klei(t) — ko Z aij[ei(t — 7') — e]-(t — 7’)} — k3éi(t) — ka Z ai]-[éi(t — 7') — éj(t — 7’)},

JEN; JEN;
where 1 =1,2,..., N. It is also assumed that (¢t —7) =0 and 7(¢t — 7) = 0 when ¢t < 7.
Let e(t) = [e1(t),...,en(t),é1(t),...,én(t)]T. Tt follows that &(t) = Aje(t) + Aze(t — 7) holds, where
0 I 0 0 0 0 0
A = Mol = ®In, Az = = ® Lygy.
—k1In —kslyn —k1 —ks —koLgy —k4Ly —ko —ky
Because Ly is an Hermitian matrix, there exists an orthogonal matrix U such that UTL,U = diag{\1,...,A\n}. Let
Ty =ILUT and Ty = [i1,iN11,92,iN42,---,9n,42n] T, where 4y, is the kth column of the matrix Ioy. It follows that
A [ p— 0 1 A —1p—1 : 0 0
A = T2T1A1T1 T2 =Iy® , Ao = T2T1A2T1 T2 = dlag{)q, S ,)\N} ® .
*k'l 7]/”-3 7]’»‘2 7]64
Let & = ThThe. It can be derived that é(t) = A;é&(t) + A2é(t — 7). Furthermore, it follows that
0 1 0
2 (t) = i) + A i(t—71), Al
1:(t) |:k1 k3:| 7:(t) i ks k4:| 7 ( ) (A1)

where i = 1,2,..., N. n; € R? consists of the (2i — 1)th and (2i)th elements of é.
The characteristic equation of the system (A1) is s2 + k3s + k1 + (kas + k2)X\;e ™7 = 0. If all roots of the above equation
lie in the left half complex plane, the system (A1) is stable. Define a function G;(s) as follows.

kas + ko)X;e 7S .
G@):%, i=1,2,...,N. (A2)

Let s = jw, where j2 = —1 and w € R. It follows that

(k2 +j’w/€4)>\ie_jw7
k1 — w? + jksw

Gijw) = N (A9
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Since k1 > 0 and k2 > 0, it follows that all roots of the equation s2 + k3s + k1 = 0 lie in the left half complex plane.
According to the Nyquist stability criterion and the literature 23), the number of the roots of s2 + kss + k1 + (kas +
k2)X\ie” 7% = 0 with positive real part is equal to the number of the times for which the Nyquist curve of G;(jw) encloses
the point (—1,0) as the w increases from 0 to co. Therefore, the condition on the asymptotical formation stability can be
gained by analyzing the characteristic of the Nyquist curve of G;(jw).

According to (A3), the amplitude of G;(jw) is
Xiy/k2 + (wha)?
VR —w?)? + (wk3)?’

When ¢ = 1, it follows that A\; = 0 and |G;(jw)| = 0. It is obvious that the Nyquist curve of G (jw) dose not enclose the
point (—1,0) and the system (A1) is stable when ¢ = 1. When ¢ € {2,3,..., N}, since k1 > k2, it follows that k1 > ka);
holds. Since k% —2k1 — kz)\?\, > 0, it is obvious that k% —2k1 — ki)\f > 0 holds, where i = 2,3,..., N. Then, the following
equation can be obtained.

|G (jw)| = =1,2,...,N. (A4)

w4 (k2 = 2k1 — KD w? + k2 —k2X2 >0, i=2,3,...,N. (A5)

According to (A4) and (A5), it can be obtained that |G;(jw)| < 1 holds, where ¢ = 2,3,..., N. Hence, the Nyquist curve
of G;(jw) dose not enclose the point (—1,0), ¢ = 1,2,..., N. The system (A1) is stable when ¢ = 2,3,..., N. Overall, the
formation system is stable and the asymptotical formation stability is achieved. This ends the proof.

Appendix B Parameters in the experiment

3 0 0 1 0 0 2 2 0 1 1 00 2 2 0 1 1 0
6 6 0 1 1 0 4 0 0 1 0 0 4 0 4 1 0 1
0 9 0] 9 1 0 1 0 6 0 6 1 0 1 0 6 0 o] 1 0 0
Gy = , Gy = ,Gg = ,
-3 0.17 0.17 9 0.37 0.37 —3 —3.34 0.17 5 4.26 0.37 —3 —3.34 0.17 5 4.26 0.37
—3 —3.34 0.17 12 11.26 0.37 -3 0.17 0.17 7 0.37 0.37 —3 0.17 —3.34 7 0.37 6.26
—3 0.17 —3.34 15 0.37 14.26 —3 0.17 —3.34 9 0.37 8.26 -3 0.17 0.17 9 0.37 0.37
o 0 1000 —10.0047 —0.0000 4.4964 0.5801 5.6948 0 0 [¢]
0.0000  —10.0000 0 —0.0000 0.0000 0 0 [¢]
2 0O -1 0000 2
HY = 100000 ,F{ = | —1.6615 —0.0000 —2.3022 0.3298 2.2370 , My = 0.9904 0.0970 —0.0096] ,
0 0 0001 —0.3855 —0.0000 0.4673 —5.9239 0.7048 0.0970 0.0192 0.0970
—1.4658 —0.0000 1.6772 0.4651 —1.7692 —0.0096 0.0970 0.9904
[10.4287 10.0047 0.0000 —10.1081 0 —5.6533
0 —1.0000 —0.0980 0.9904 —0.0980
10.0000 —0.0000 10.0000 1.0000 0 1.0000
2 2 1.0000 0] 0.0980 —0.9904 0.0980
S7 = | —1.9049 1.5042 0.2169 —3.3315 0 —1.8314| ,J] = s
0 0 —0.0980 0.9904 —0.0980
5.7273 0.3544 —0.3043 0.3506 0 —0.4386
0 4] 1.0000 —0.0000 —1.0000
L—2.2373 1.3084 —3.2931 —3.3315 0 —1.9486
[—16.0002 —0.0260 0.0000 —0.0000 0.0000 [ 9] 0 0
—0.3347 —31.9998 5.0541 5.0541 1.0000 9] 9] 0
Ff = | —0.5072 —23.2880 —4.0763 3.9144 0.8184 ,Mf = 0.9904 —0.0096 0.0970] ,
—0.5072 —23.2880 3.9144 —3.9096 —0.0242 —0.0096 0.9904 0.0970
L —0.1004 —4.6078 0.8184 —0.0242 —4.0141 L 0.0970 0.0970 0.0192
o 0 1000 16.0262 16.0002 0.0260 1.0000 1.0000 O
32.3345 0.3347 31.9998 —10.1081 —5.0541 0
3 0O -1 0000 3
Hy = 0 0 0010 , 87 = |19.7353 0.7241 23.1306 —3.3315 —3.5571 0],
20.5861 —2.7859 23.1306 —3.3315 0.2402 0
-1 0 0000
8.1215 —0.2040 4.5767 0.3506 0.1014 O
0 —1.0000 —0.0980 —0.0980 0.9904
g3 1.0000 0 0.0980  0.0980 —0.9904
1= 0 0 1.0000 —1.0000 —0.0000]
0 0 —0.0980 —0.0980 0.9904
—3.0000  0.0000 0.0000  —0.0000 —0.0000 3.0000 —0.0000 —0.0000 1.0000 0O —0.0000 o 0 1000
—0.0000 —15.0000 —0.0000 0.0000  0.0000 15.0000 0.0000 15.0000 1.0000 0 1.0000 o 10000
F21 = 0.0000 —0.0000 —21.6599 7.2461 7.2461 ,S% = 122.2311 22.8398 —0.3043 —10.6504 0 —5.3252 ,H% = 10 0000|’
0.0000 —0.0000 —8.4386 —2.6700 3.3300 5.1884 8.2645 0.2169 —2.2431 0 —2.0666 0 0 0001
0.0000 —0.0000 —8.4386 3.3300 —2.6700 5.1884 8.2645 —3.2931 —2.2431 0 —0.1766
[0 0 [¢] 1 —12.0000 0.0110 —0.0000 —0.0000 0.0000
1.0000 —1.0000 0 0 0
0 0 [¢] 0.1622  —24.0000 5.0541 5.0541 1.0000
1 1 —1.0000 0 0.9904 —0.0980 —0.0980 3
My = 10.0192  0.0970 0.0970 | ,Jg = 1.0000 o o o o , Fy = 0.1868 —13.0993 —3.0576 2.9419 0.5849 |,
0.0970 0.9904 —0.0096 ’ 0.1868 —13.0993 2.9419 —2.9435 0.0085
0 0 —0.0000 1.0000 —1.0000
L0.0970 —0.0096 0.9904 | 0.0370 —2.5918 0.5849 0.0085 —2.9989
[ 0 0 0 o 0 1000 11.9890 —0.0000 —0.0110 1.0000 0.0000 0O
0 0 0 23.8378 0.0000 24.0000 —10.1081 —5.0541 O
3 3 0O -1 0000 3
My = 0.9904 —0.0096 0.0970| , Hy = o 0o 0010 , S5 = |9.0884 —3.8837 12.9420 —3.3315 —0.7700 O],
—0.0096 0.9904 0.0970 10 0000 9.6705 0.2084 12.9420 —3.3315 —2.6024 0
L 0.0970 0.0970 0.0192] 4.9432 2.7238 2.5607 0.3506 0.3822 0

2) Ansoff H, Krumhansl J. A general stability criterion for linear oscillating systems with constant time lag. Quart Appl

Math, 1948, 6: 337-341.

3) Ansoff H. Stability of linear oscillating systems with constant time lag. J Appl Mech-Trans ASME, 1949, 16: 158-164.
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—3.0044 —0.0000 —0.0000 —0.0808 0.0808
1.0000 —1.0000 0 0 0
—0.0000 —15.0000 —0.0000 0.0000 0.0000
—1.0000 0 —0.0980 —0.0980 0.9904 1 1
, F3 = | —0.0000 —0.0000 —21.6599 7.2461 7.2461 | , H3 =
0 0 —1.0000 1.0000 0.0000
—0.0808 —0.0000 —8.4386 —2.6679 3.3278
1.0000 0 0 0 0
0.0808 —0.0000 —8.4386 3.3278 —2.6679
0 0 0 3.0044 0.0000 3.0044 1.0000 01.0808
—1.0000 1.0000
0 0 0 15.0000 0.0000 0.0000 1.0000 0 — 0.0000 o 1.0000
0.0192 0.0970 0.0970 ,S% = [22.2311 22.8398 —0.3043 —10.6504 0 — 5.3252 ,J% = o i 6000
0.0970 0.9904 —0.0096 5.2692 8.2645 —3.2122 —2.2431 0 — 0.1788 o '0
0.0970 —0.0096 0.9904 5.1075 8.2645 0.1361 —2.2431 0 — 2.0644
[—21.0000 —0.0000 5.0541 1.0000 5.0541 [ 0 0 0 o 0o 1000
—0.0000 —15.0000 0.0000 —0.0000 —0.0000 0 0 0 10000
—10.4794 —0.0000 —2.8595 —0.1612 2.8913 ,M§ = | 0.9904 0.0970 —0.0096 ,H% =
0 0O 0010
—2.0735 —0.0000 —0.1612 —3.0961 0.7738 0.0970 0.0192 0.0970 1 0 0000
L—10.4794 —0.0000 2.8913 0.7738 —3.0444 L—0.0096 0.0970 0.9904 N
[21.0000 —0.0000 21.0000 —10.1081 —5.0541 O -
—1.0000 1.0000 0 0 0
15.0000 0.0000 0.0000 1.0000 —0.00007 O
2 0 —1.0000 —0.0980 0.9904 —0.0980
7.4086 —3.1304 10.3220 —3.3315 —0.8943 0| ,J3 =
0 0 —1.0000 0.0000 1.0000
4.5599  2.8219 2.0423 0.3506 1.1379 0
0 1.0000 0 0 0
L 6.4646 —0.5644 10.3220 —3.3315 —2.6276 O -

1000
0000
000 0|
0001
0 0
—0.0980 —0.0980
0 0
—1.0000 1.0000
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