
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

March 2015, Vol. 58 032105:1–032105:14

doi: 10.1007/s11432-014-5219-0

c© Science China Press and Springer-Verlag Berlin Heidelberg 2015 info.scichina.com link.springer.com

The DBlock family of block ciphers

WU WenLing1,2*, ZHANG Lei1 & YU XiaoLi1

1Trusted Computing and Information Assurance Laboratory, Institute of Software,

Chinese Academy of Sciences, Beijing 100190, China;
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China

Received March 11, 2014; accepted September 23, 2014; published online January 19, 2015

Abstract In this paper, we propose a new family of block ciphers named DBlock. It consists of three variants

which are specified as DBlock-128, DBlock-192, and DBlock-256, respectively. DBlock-n has the equal n-bit

block length and key length. The structure of DBlock successfully combines the advantages of Feistel and Type-2

generalized Feistel structures together. Also, its design of round function employs different linear transforms

operating on various word-sizes, which efficiently improve the diffusion effect. For key schedule of DBlock, it

basically employs the same module used in encryption, except the choice of different byte permutations, which

can improve its suitability for various implementation environments and also enhance its security against many

cryptanalytic techniques. Our preliminary evaluation shows that DBlock can achieve enough security margin

against known attacks, and it can also obtain excellent performances on various software and hardware platforms.

Keywords block cipher, structure, round function, key scheduling, security, performance

Citation Wu W L, Zhang L, Yu X L. The DBlock family of block ciphers. Sci China Inf Sci, 2015, 58:

032105(14), doi: 10.1007/s11432-014-5219-0

1 Introduction

Developments of new cryptanalysis and design techniques are the two most important aspects of the study

on block cipher. Recently, these techniques have achieved great improvement and many new cryptanalytic

ideas and techniques have been proposed against block cipher, which improved the attack results greatly.

In the last few years, a number of cryptanalytic results were proposed on the security analysis of advanced

encryption standard (AES) [1], such as a series of related-key type attacks on AES proposed in [2–5], and

the single-key attack on AES proposed in [6]. Also, research on the combination of several cryptanalysis

techniques together has also enriched the development of attack methods, including multiple differential

cryptanalysis, zero-correlation linear cryptanalysis, and multidimensional linear attack. On the other

hand, research on the design of block ciphers mainly focused on lightweight-type which aimed at being

suitable for extremely constrained environment. In recent years, a number of lightweight block ciphers,

such as PRESENT [7], HIGHT [8], KTANTAN [9], LBlock [10], LED [11], and Piccolo [12], have been

proposed. In their design, the primary concern is the hardware implementation cost, which is different

from the design goal of general block cipher, such as AES. In contrast to the propositions of various

*Corresponding author (email: wwl@tca.iscas.ac.cn)

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:2

lightweight ciphers, only a few general block ciphers were proposed after the projects of AES and NESSIE

competitions, including FOX [13], ARIA [14], and CLEFIA [15].

Therefore, according to the rapid development in cryptanalysis and design techniques of block cipher,

we believe that it is a good time to design a new general block cipher that is suitable for various environ-

ments and also has stronger security margin against newly developed attacks. Also, recently published

cryptanalysis results shed light on the design rationale of block cipher. For example, we believe that the

design of key scheduling should be paid more attention and it can be considered to be as important as

the encryption design. Simple key scheduling without enough nonlinear transforms may seriously damage

the overall security and many recent cryptanalysis results just obtained breakthroughs from this point.

Also, new encryption structure and basic module researches are interesting aspects of the design of block

cipher. Nowadays, modules of block cipher such as round functions of AES have also been used in the

design of hash functions frequently. Therefore, proposition of new block cipher will be a meaningful trial

and will benefit the design theory.

In this paper, we propose a new family of block ciphers called DBlock, with three variants denoted

as DBlock-128, DBlock-192, and DBlock-256, respectively. According to the analysis in [16], a general

meet-in-the-middle attack can always be mounted against any practical block ciphers, and they suggest

that when the number of rounds is fixed, it is better to take a key size equal to the block size. Therefore,

unlike many other general encryption standards, such as AES and Camellia, we choose equal block size

and key size for DBlock family. For example, DBlock-n has the same n-bit block size and key size.

Note that the cipher design with large block size has already been studied in Rijndael [1], 3D [17], and

Threefish [18], and it is getting increasingly reasonable with the popularization of 64-bit processor and

wide applications in the design of hash function.

The design of DBlock family mainly employs a Feitel-type structure with improved diffusion effect,

which also combines the advantages of Feistel and Type-2 generalized Feistel structures together. It has

similar encryption and decryption structures, and its basic nonlinear module can be small and easily im-

plemented in parallel, which makes DBlock to be implemented efficiently in both software and hardware,

and even in some resource constraint environments. Also, compared with typical Type-2 generalized

Feistel structure, DBlock can be implemented more efficiently on a 64-bit platform. On the other hand,

DBlock employs different linear transforms operating on various word-sizes, including byte permutation,

linear function on 32-bit, and structure XOR operation, which efficiently improve the diffusion effect.

Therefore, it can achieve full diffusion in less rounds and guarantee more differential and linear active

S-boxes. Also, it can reduce the possible number of rounds for impossible differential and integral distin-

guishers, and hence improve its security against various byte-oriented cryptanalytic techniques.

For key scheduling of DBlock, it basically employs the same modules used in the encryption procedure

to reduce hardware implementation cost so as to be suitable for resource constraint environment. The

main difference between key scheduling and encryption are the byte position permutation transforms

used. The choices of different byte position permutations in each kind of key scheduling are based on the

consideration of combining encryption and key scheduling together to evaluate its number of related-key

differential active S-boxes so as to guarantee the security of DBlock against related-key type attacks.

Also, the byte permutations make DBlock achieve enough diffusion in key scheduling so that there is no

simple relation between the master key and round subkeys.

The rest of this paper is organized as follows. Section 2 describes the specification of DBlock. Section 3

explains our design rationale in detail. Then, Sections 4 and 5 present our security analysis and perfor-

mance evaluation of DBlock, respectively. Finally, Section 6 concludes the paper.

2 Specification of DBlock

DBlock has three variants denoted as DBlock-128, DBlock-192, and DBlock-256, respectively. DBlock-

n has the n-bit block size and the n-bit key size. The specification of DBlock consists of three parts:

encryption procedure, decryption procedure, and key scheduling algorithm.

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:3

2.1 Notations

In the specification of DBlock, we use the following notations:

• P : n-bit plaintext;

• C: n-bit ciphertext;

• K: n-bit master key;

• Ki: n/2-bit round subkey;

• Fn: round function operates on n/2-bit;

• Pn, P
∗
n : byte permutations operate on n/2-bit;

• s: 8× 8 S-box;

• T : nonlinear transformation operates on 32-bit;

• S: S-box layer consists of four s in parallel;

• A: linear transformation operates on 32-bit;

• ⊕: bitwise exclusive-OR operation;

• ≪ 8: 8-bit left rotation operation;

• ||: concatenation of two binary strings.

2.2 Encryption procedure

The overall structure of DBlock in encryption is a kind of Feistel-type structure. Figure A1 in the

Appendix A illustrates the encryption procedure in detail, where Fn denotes the round function of

DBlock-n. The number of iterated rounds is 20 for all three variants. Let P = X1||X0 denote the n-bit

plaintext, and (K1,K2, . . . ,K20) denote the n/2-bit subkeys used in each round. Then, the encryption

procedure of DBlock can be expressed as follows:

1. For i = 2, 3, . . . , 20, 21, compute

Xi = Fn(Xi−1 ⊕Ki−1)⊕Xi−2.

2. Output C = X20||X21 as the n-bit ciphertext.

Specifically, the components used in the round function are defined as follows.

(1) Round function Fn.

Fn is defined as the combination of two functions Pn and Gn as follows:

Fn : {0, 1}n/2 −→ {0, 1}n/2,

Xi −→ U = Gn(Pn(Xi)).

(2) Byte permutation Pn.

Pn is a simple byte position permutation that operates on n/16 bytes. The specific Pn used in DBlock-n

are defined, respectively, as the following expressions:

P128 : {0, 1}64 −→ {0, 1}64,

Y = (y7, y6, y5, y4, y3, y2, y1, y0) −→ Z = (z7, z6, z5, z4, z3, z2, z1, z0),

z7 = y6, z6 = y5, z5 = y3, z4 = y1,

z3 = y4, z2 = y7, z1 = y0, z0 = y2.

P192 : {0, 1}96 −→ {0, 1}96,

Y = (y11, y10, ..., y3, y2, y1, y0) −→ Z = (z11, z10, ..., z3, z2, z1, z0),

z11 = y9, z10 = y6, z9 = y4, z8 = y3,

z7 = y5, z6 = y11, z5 = y0, z4 = y2,

z3 = y10, z2 = y7, z1 = y8, z0 = y1.

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:4

P256 : {0, 1}128 −→ {0, 1}128,

Y = (y15, y14, ..., y3, y2, y1, y0) −→ Z = (z15, z14, ..., z3, z2, z1, z0),

z15 = y10, z14 = y5, z13 = y0, z12 = y15,

z11 = y6, z10 = y11, z9 = y12, z8 = y1,

z7 = y13, z6 = y8, z5 = y7, z4 = y2,

z3 = y4, z2 = y9, z1 = y14, z0 = y3.

(3) Function Gn.

Gn is the main nonlinear transform in encryption and it consists of n/64 identical 32-bit nonlinear

function T in parallel.

G128 : {0, 1}64 −→ {0, 1}64,

Z = (z7, z6, z5, z4, z3, z2, z1, z0) −→ U = (u7, u6, u5, u4, u3, u2, u1, u0),

(u3, u2, u1, u0) = T (z3, z2, z1, z0),

(u7, u6, u5, u4) = T (z7, z6, z5, z4).

G192 : {0, 1}96 −→ {0, 1}96,

Z = (z11, z10, ..., z3, z2, z1, z0) −→ U = (u11, u10, ..., u3, u2, u1, u0),

(u3, u2, u1, u0) = T (z3, z2, z1, z0),

(u7, u6, u5, u4) = T (z7, z6, z5, z4),

(u11, u10, u9, u8) = T (z11, z10, z9, z8).

G256 : {0, 1}128 −→ {0, 1}128,

Z = (z15, z14, ..., z3, z2, z1, z0) −→ U = (u15, u14, ..., u3, u2, u1, u0),

(u3, u2, u1, u0) = T (z3, z2, z1, z0),

(u7, u6, u5, u4) = T (z7, z6, z5, z4),

(u11, u10, u9, u8) = T (z11, z10, z9, z8),

(u15, u14, u13, u12) = T (z15, z14, z13, z12).

(4) Nonlinear function T .

T is the basic nonlinear module used in every variant of DBlock. It operates on {0, 1}32 and computes

as follows, where S denotes a nonlinear layer consisting of four identical 8-bit S-boxes s in parallel and

A denotes a 32-bit linear function.

T : {0, 1}32 −→ {0, 1}32,

(u3, u2, u1, u0) −→ A(S(u3, u2, u1, u0)).

(5) S-box s.

The 8-bit S-box s is a nonlinear confusion function operating on {0, 1}8, and its contents are listed in

Table 1.

(6) Linear function A.

A is a simple 32-bit linear diffusion function and it consists of rotation and XOR operations only.

A : {0, 1}32 −→ {0, 1}32,

X −→ A(X) = X ⊕ (X ≪ 8)⊕ (X ≪ 10)⊕ (X ≪ 18)⊕ (X ≪ 26).

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:5

Table 1 Contents of the S-box used in DBlock

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x0 51 36 93 53 d9 4a fc 58 e4 2e 0d 14 da 9d 91 69

0x1 ef 72 03 c6 15 8d 5c 62 3f b9 45 70 13 a3 95 6f

0x2 84 db b8 89 8a 6e d4 7b 40 dc 9b 0c 50 8e ee 6a

0x3 88 3b 0f 6b 85 d3 54 a8 20 df b5 1b 32 7c 56 64

0x4 74 fa c7 2d 96 17 ae cd b4 f5 57 8c f1 bc d8 fe

0x5 27 06 e1 a9 1a 0e 5b 08 f4 9f 4b ed 73 b7 ac 76

0x6 23 ca 16 ba a7 00 8b 46 41 d5 7e f2 05 f6 63 67

0x7 61 8f 3d c8 1c 5a b0 79 38 81 aa 33 97 e6 2c 01

0x8 22 87 4f be 24 71 35 9c b1 ad c5 1d 80 3e 75 b3

0x9 28 68 2a a0 bf 2f b2 c4 ce 19 d7 cf af 02 a4 a5

0xA 7a 39 d2 04 ab f7 60 2b 4c ec 4d 10 90 12 fb 78

0xB 82 4e 37 47 d6 a2 d1 86 b6 c1 e9 dd a1 f8 55 de

0xC 98 7d e5 30 fd e2 cc 3a ea d0 0a 29 e8 e3 eb f0

0xD 9a 5d 3c 21 c0 48 6d 1e e7 1f c9 44 34 18 83 f9

0xE 59 5f 42 92 6c 11 a6 52 ff 9e 49 26 07 43 bd c3

0xF 99 f3 77 0b 5e cb 09 31 e0 c2 65 7f 25 94 bb 66

2.3 Decryption procedure

Decryption of DBlock is the inverse of the encryption procedure, and it consists of 20 rounds. Let

C = X20||X21 denote an n-bit ciphertext, and the decryption procedure can be expressed as follows:

1. For j = 19, 18, . . . , 1, 0, compute

Xj = Fn(Xj+1 ⊕Kj+1)⊕Xj+2;

2. Output P = X1||X0 as the n-bit plaintext.

2.4 Key scheduling

In the key scheduling of DBlock, we need 18 n/2-bit constants to generate the round subkeys from master

key. The constants are denoted as Cki = (ai,m . . . ai,0), where m = n/16− 1, and each constant can be

generated as follows:

ai,j = (16i+ j)× 7 mod 256, i = 1, . . . , 18, j = 0, . . . ,m.

Figure A2 in Appendix A illustrates the key scheduling and the encryption procedure in detail. For

the n-bit master key, it is first split into two halves and denoted as K2||K1. Output K1 and K2 are the

round subkeys used in the first two rounds, respectively. Then, compute the ith round subkey as follows:

Ki = Gn(P
∗
n(Ki−1 ⊕ Cki−2))⊕Ki−2, i = 3, 4, . . . , 20,

where function Gn is defined exactly the same as in encryption, and P ∗
n is a different byte position

permutation operating on n/16 bytes, which is defined as follows:

P ∗
128 : {0, 1}64 −→ {0, 1}64,

Y = (y7, y6, y5, y4, y3, y2, y1, y0) −→ Z = (z7, z6, z5, z4, z3, z2, z1, z0),

z7 = y1, z6 = y0, z5 = y7, z4 = y6,

z3 = y5, z2 = y4, z1 = y2, z0 = y3.

P ∗
192 : {0, 1}96 −→ {0, 1}96,

Y = (y11, y10, ..., y3, y2, y1, y0) −→ Z = (z11, z10, ..., z3, z2, z1, z0),

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:6

z11 = y2, z10 = y11, z9 = y4, z8 = y1,

z7 = y10, z6 = y9, z5 = y0, z4 = y7,

z3 = y5, z2 = y8, z1 = y3, z0 = y6.

P ∗
256 : {0, 1}128 −→ {0, 1}128,

Y = (y15, y14, ..., y3, y2, y1, y0) −→ Z = (z15, z14, ..., z3, z2, z1, z0),

z15 = y11, z14 = y7, z13 = y3, z12 = y15,

z11 = y6, z10 = y2, z9 = y14, z8 = y10,

z7 = y1, z6 = y5, z5 = y9, z4 = y13,

z3 = y8, z2 = y12, z1 = y0, z0 = y4.

3 Design rationale

3.1 Structure

The overall structure of DBlock can be expressed as Feistel-PF , where P denotes the byte position per-

mutation before round function F . Its design combines the advantages of Feistel and Type-2 generalized

Feistel structures together. Therefore, its decryption structure can be exactly the same as encryption and

its basic nonlinear module T is small and parallelable, which makes DBlock to be implemented efficiently

in both software and hardware, and even in some resource constraint environments.

Compared with the traditional Feistel structure, the diffusion effect of Type-2 generalized Feistel

structure is slower and hence more rounds are needed to achieve enough security margin. To avoid

this kind of disadvantage, we propose the Feistel-PF structure in DBlock. Its main feature is that we

add a novel word permutation P before the round function F and its word size equals to the size of

S-box. Also, addition of P will not increase any cost in hardware implementations. Obviously, different

choices of P may affect the security property of this kind of structure, and in our design of DBlock all

the permutations are chosen carefully through computer searches and security evaluation tests.

Compared with Type-2 generalized Feistel structure, this kind of structure used in DBlock can achieve

better diffusion effect. For example, Type-2 generalized Feistel structure can achieve full diffusion in

5 rounds, whereas DBlock structure only needs 4 rounds, where round function uses SP structure and

branch number of A is 5. Also, for Type-2 generalized Feistel structure there always exist 9-round

impossible differential and integral distinguishers, whereas for DBlock structure the numbers of rounds

of the best impossible differential and integral distinguishers are both equal to 8 rounds. Considering the

guaranteed number of differential and linear active S-boxes, DBlock structure also has more advantages

than the Type-2 generalized Feistel structure.

Compared with the improved Type-2 GFS [19] when k = 4, the DBlock structure has no significant

improvement. For k up to 6 or 8, the DBlock structure can achieve better diffusion effect and shorter

impossible differential and integral distinguisher. For improved 6(8)-partition Type-2 GFS, there always

exist 9(10)-round impossible differential and 10(11) integral distinguishers and needs 5(6) rounds to

achieve full diffusion, respectively.

3.2 Nonlinear function T

Nonlinear function T is the basic module of DBlock, and it is used repeatedly in both encryption and key

schedule. Therefore, its security and implementation performances may determine the final evaluation

result of DBlock. The choice of SA structure in function T represents our consideration on performance

and security trade-off. For example, the combination of four 8-bit S-boxes in parallel together with 32-bit

linear function can be implemented efficiently on both 32/64-bit software processors.

The 8-bit S-box s is designed based on inverse function onGF (28). Its main advantages include efficient

hardware implementation technique and excellent security properties. For example, s can be implemented

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:7

in about 247 GE, and it fulfills the following conditions: completed, not involution, no fix point, best

nonlinearity 2−4, best differential probability 2−6, and best algebraic order 7. Also, linear function A

achieves best branch number 5 and its hardware area cost is rather small. Also, the combination of s

and A can be efficiently implemented by table look-ups on 8-bit microprocessor platforms too.

3.3 Diffusion layer

The diffusion layer of DBlock consists of two parts, namely byte permutation Pn and linear function A.

Considering that Pn is a simple byte position permutation, its software and hardware implementations

both achieve optimum, which require no additional cost. Linear function A can be combined with S-

boxes in round function which are implemented easily as table look-ups in software environments, such

as 8-bit and 32-bit microprocessor platforms. Also, the combination of Pn and A can efficiently improve

the security of this kind of variant structure used in DBlock. For example, there already are at least

23 active S-boxes for 11-round DBlock-128, 32 active S-boxes for 12-round DBlock-192, and 45 active

S-boxes for 13-round DBlock-256.

3.4 Key scheduling

Our main design goals of key schedule include the following three parts. First, its speed is not slower than

encryption procedure. Second, its hardware implementation should require as less additional area cost

as possible so as to be suitable for resource constraint environment. Last, its security against related-key

type attacks is our most important concern, and we also pay attention to the relations between master

key and different subkeys.

To reduce the hardware area cost of DBlock, we use the method of generating subkeys when needed

in the design of key schedule. Also, we try to reuse the basic modules of encryption, such as nonlinear

function T so as to save the hardware cost of DBlock for resource constraint environment. For key

schedule of DBlock-n, the main difference between key scheduling and encryption procedure is the byte

permutation transforms Pn and P ∗
n . How to choose appropriate transforms P ∗

n is our main consideration,

and they should satisfy the following properties. First, these choices are based on the consideration of

combining encryption and key schedule together and to evaluate its number of related-key differential

active S-boxes so as to guarantee the security of DBlock against related-key type attacks. Second, byte

permutations P ∗
n should achieve enough diffusion in key scheduling so that there is no simple relation

between master key and round subkeys. Therefore, it will be very hard for the attacker to reduce the

attack complexity by using relations between different subkeys. Finally, each kind of key schedule uses

the same constant generation method, which can save additional area costs too.

4 Security evaluation

In this section, we provide results on security analysis for DBlock.

4.1 Differential/linear cryptanalysis

For differential cryptanalysis [20] and linear cryptanalysis [21], we adopt the regular method of searching

the least number of active S-boxes to evaluate the security of DBlock. We search the guaranteed number of

differential (linear) active S-boxes of DBlock by computer program, and the results are listed in Table 2.

There are at least 23(32, 45) active S-boxes for 11(12, 13)-round DBlock-128(192, 256), and the best

differential probability and linear bias of s are equal to 2−6 and 2−4, respectively. This means that there

is no useful 13-round differential characteristic and linear approximation for DBlock. As a result, we

believe that the full-round DBlock is secure against differential/linear cryptanalysis.

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:8

Table 2 Guaranteed number of differential(linear) active S-boxes of DBlock

Rounds 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DBlock-128 1 2 6 10 12 14 16 17 21 23 26 28 30 32 35 38 41 43 44

DBlock-192 1 2 6 10 14 18 22 24 26 29 32 36 40 42 46 48 51 54 58

DBlock-256 1 2 6 10 16 22 27 31 35 37 41 45 51 54 61 64 67 71 75

Table 3 8-Round integral distinguisher of DBlock

Rounds Integral characteristics for DBlock-128

0 C C C C AAAA AAAA AAAA

1 AC CA CACA C C C C AAAA

2 C C C C C C C C AC CA CACA

3 AC CA CACA C C C C C C C C

4 C C C C AAAA AC CA CACA

5 BAAB ABAB C C C C AAAA

6 AAAA ? ? ? ? BAAB ABAB

7 A(BB??)||A(BB??) AAAA ? ? ? ?

8 ? ? ? ? ? ? ? ? A(BB??)||A(BB??)

4.2 Impossible differential cryptanalysis

Impossible differential cryptanalysis [22] may be one of the most powerful attacks against reduced round

DBlock. Our evaluation shows that the best impossible differential distinguisher of DBlock-n can all

achieve 8 rounds, and they can be expressed as the following forms for DBlock-128, DBlock-192, and

DBlock-256, respectively:

(0 . . . 0
︸ ︷︷ ︸

8

, 0000000α)
8r

6→(0000000β, 0 . . . 0
︸ ︷︷ ︸

8

), (1)

(0 . . . 0
︸ ︷︷ ︸

12

, 00000000α000)
8r

6→(00000000β000, 0 . . . 0
︸ ︷︷ ︸

12

), (2)

(0 . . . 0
︸ ︷︷ ︸

16

, 000000000000000α)
8r

6→(000000000000000β, 0 . . . 0
︸ ︷︷ ︸

16

), (3)

where α and β represent non-zero differences in input difference and output difference, respectively.

We evaluate the security of DBlock against impossible differential attack using the 8-round distinguish-

ers above. By adding two additional rounds before and after the distinguisher, we can present impossible

differential attack on 12-round for DBlock.

4.3 Integral attack

Because DBlock is a word-oriented block cipher, we also consider integral attack [23]. We use the general

inside-out method to construct an integral distinguisher, and the best integral characteristic found is

an 8-round integral distinguisher consisting of a normal 5-round propagation in the encryption direction

combined with a 3-round propagation in the decryption direction for three versions of DBlock. Table 3

shows one of this kind of 8-round integral characteristics in detail, and by changing the position of C in

plaintext we can obtain similar integral distinguishers easily.

In integral attack, C denotes a constant byte, A denotes an active byte, B denotes a balance byte, and

A(BB??)||A(BB??) denotes a value whose output after transform A−1||A−1 is balanced at j(= 2, 3, 6, 7)th

byte, respectively. Based on this kind of 8-round integral distinguisher, we can mount an integral attack

on 11-round DBlock.

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:9

4.4 Related-key attack

Recently, the combination of related-key [24] and traditional cryptanalysis has become one of the most

powerful attacks, and its application to some block ciphers has improved the cryptanalytic results signifi-

cantly. Therefore, we have searched for the possible related-key differential characteristic of DBlock so as

to evaluate its security against related-key type attacks. Based on test results in related-key environment,

there are at least 22(32, 45) active S-boxes for 13-round DBlock-128(192, 256), respectively. Therefore,

full-round DBlock is secure against related-key type attacks.

4.5 Biclique cryptanalysis

Biclique cryptanalysis [6] is a new powerful technique proposed against full-round AES in Asiacrypt 2011,

and then it has also been applied to many other block ciphers successfully. Although most of these attacks

had only a constant factor improvement over exhaustive search, biclique technique is still believed to be

an important aspect for the security evaluation of new block cipher designs. Therefore, in this subsection

we analyze the security of DBlock family block ciphers against biclique cryptanalysis.

For DBlock-128, we have found a biclique attack on up to 9 rounds. We use the independent biclique

technique and construct an eight-dimensional biclique for 2 rounds of DBlock-128. Hence, we can split

the key space into 2112 groups of keys, and each group contains 216 keys which are indexed as elements of

a 28 × 28 matrix: K[i, j]. Then, for each group of keys we can construct a 2-round biclique, which covers

the 8th and 9th rounds. Based on this initial structure, we can mount a meet-in-the-middle attack for

the remaining rounds and choose the matching point as the rightmost 32 bits of X4. Overall, the attack

requires about 232 chosen ciphertexts, and the time complexity can be estimated by the number of sbox

computations, which is about 2126.93. Similar biclique attacks can also be applied to 9-round DBlock-192

and 10-round DBlock-256, and the time complexities are 2190.82 and 2254.97, respectively.

4.6 Other attacks

We also consider other attacks, including slide attack, higher order differential attack, truncated dif-

ferential attack, boomerang attack, rectangle attack, meet-in-the-middle attack, and algebraic attack.

Although the details of the evaluations for those attacks are omitted because of the page limitation,

consequently, we consider that those attacks do not threaten the full-round DBlock.

5 Performance evaluation

In the design of DBlock, we pay much consideration to its performance on both hardware and 8/32/64-bit

software platforms. In this section, we will introduce the optimized implementation of DBlock on various

platforms. Since the basic modules of the three variants are similar, we will only describe the case of

DBlock-128.

5.1 Hardware implementations

For the 0.13-µm CMOS application specific integrated circuit (ASIC) library, one gate equivalent (GE)

is equivalent to the area of a two-way NAND with the lowest drive strength.

5.1.1 Normal implementation

For normal hardware implementation of DBlock-128, we can use 128-bit width datapath and realize two

nonlinear functions T in parallel. Then, we can perform one round encryption in 1 clock cycle, and in key

schedule each round subkey can be generated in 1 clock cycle. Therefore, encryption of 128-bit plaintext

with 128-bit key occupies about 6552 GE and requires 20 clock cycles.

Specifically, in this kind of implementation, the area requirement is mainly occupied by flip-flops for

storing the key and data state. Storage of 128-bit key requires about 128× 4 = 512 GE, and storage of

128-bit data state also requires 512 GE. For the round function F in encryption, it consists of three parts.

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:10

KeyAddition is a 64-bit XOR operation which requires about 64× 1.5 = 96 GE. Byte permutation P can

be realized by simple wiring which costs no area. Each nonlinear function T consists of four 8×8 S-boxes

in parallel and a linear diffusion function A, which requires about 247 × 4 + 3 × 32 × 1.5 = 1132 GE.

At last, in the end of each round another 64-bit XOR operation of two halves is needed, which requires

about 64×1.5 = 96 GE. Also, except the above modules of encryption, another 5-bit counter is needed in

key schedule, which requires about 20 GE. Also, additional control logics are needed which require about

596 GE. Therefore, the normal hardware implementation of DBlock-128 will require about 6552 GE.

5.1.2 Optimized implementations

For area optimized implementation, we can give a more compact implementation of DBlock-128 by reusing

the registers and basic module T . Its key schedule can reuse the 64-bit register in encryption and module

T only needs to be realized once. Therefore, in this kind of area optimized implementation of DBlock-128,

it only needs about 2640 GE. Because the register is reused in both key schedule and encryption, the

generation of each round subkey will need 2 clock cycles and encryption procedure will need 40 clock

cycles. Therefore, encryption of 128-bit plaintext with 128-bit key will need 80 clock cycles in total.

To improve the throughput of DBlock-128, we can encrypt 2 rounds in 1 clock cycle with the cost of

70% increment of area requirement. Therefore, in this kind of speed optimized implementation it needs

about 12,000 GE. Then, in key schedule two round subkeys can be generated in 1 clock cycle and the

encryption procedure needs 10 clock cycles. Therefore, encryption of a 128-bit plaintext with 128-bit key

requires only 10 clock cycles in total.

5.2 Software implementations

5.2.1 8-bit platform

Considering that the main module used in both encryption and key scheduling is the nonlinear function T ,

we will mainly describe the optimized implementation of T on 8-bit platform in this section. Denote the

input of T as (x3, x2, x1, x0), and then the output (y3, y2, y1, y0) = A(S(x3, x2, x1, x0)) can be computed

as follows.

First, define two new 8× 8 S-boxes based on the origin S-box of DBlock:

s1(x) = s(x)⊕ s(x) ≪ 2,

s2(x) = s(x) ≪ 2.

Then, compute the intermediate values by eight table look-ups:

a1 = s1(x0), a2 = s2(x0), a3 = s1(x1), a4 = s2(x1),

a5 = s1(x2), a6 = s2(x2), a7 = s1(x3), a8 = s2(x3).

At last, the output of T is computed as follows:

a1 = a1 ⊕ a4, a3 = a3 ⊕ a6,

a5 = a5 ⊕ a8, a7 = a7 ⊕ a2,

y3 = a4 ⊕ a5 ⊕ a7,

y2 = a2 ⊕ a3 ⊕ a5,

y1 = a1 ⊕ a3 ⊕ a8,

y0 = a1 ⊕ a6 ⊕ a7.

Therefore, implementation of function T on 8-bit platform needs 8 table look-ups and 12 XOR opera-

tions. In each round encryption of DBlock-128, there are two functions of T , one round subkey addition

and one XOR operation on 8 bytes, and hence it will need about 16 table look-ups and 40 XOR operations

altogether on 8-bit platform.

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:11

Table 4 Software performances comparison of AES and DBlock

Algorithm
Key length

128 192 256

AES 16 c/B 19 c/B 22 c/B

DBlock 22.2 c/B 18.3 c/B 15.4 c/B

5.2.2 32-bit platform

For the implementation of DBlock-128 on a 32-bit platform, we can use the normal technique of realizing

function T by table look-ups. According to the definitions of S-box s and permutation A, we can construct

four 8× 32 tables as follows:

T3(x) = A(s(x), 0, 0, 0),

T2(x) = A(0, s(x), 0, 0),

T1(x) = A(0, 0, s(x), 0),

T0(x) = A(0, 0, 0, s(x)).

Therefore, for each round encryption of DBlock-128, it only needs 8 table look-ups and 10 XOR operations

altogether. To store these tables, it needs about 4KB memory. Also, considering that there are simple

relations between these tables, we can store only one 8× 32 table and use rotation operations to optimize

the implementation for memory constraint environment.

5.2.3 64-bit platform

Similarly, for the implementation of DBlock-128 on a 64-bit platform, we can use eight 8 × 64 tables to

realize the round function.

Therefore, for each round encryption of DBlock-128, it only needs 8 table look-ups and 9 XOR op-

erations altogether. To store these tables, it needs about 16KB memory. Also, based on the relations

between these tables, we can store only four 8 × 64 tables and use rotation operations to optimize the

implementation for memory constraint environment.

5.2.4 Performance comparison

Finally, we give a simple software implementation performance comparison of DBlock family with the

well-known encryption standard AES. The test benchmark used is an Intel(R) Core(TM) i5-3210M CPU

clocked at 2.50 GHz. For comparison, we use the optimized table-based implementation for both DBlock

and AES, with the same kind of 8 × 32 table look-ups. We evaluate their encryption speed in cycles per

byte and the results are listed in Table 4. Table B1 in Appendix B shows test vectors for DBlock.

6 Conclusion

In this paper, we propose a new family of block cipher named DBlock. Its structure combines the advan-

tages of Feistel and Type-2 generalized Feistel structures together. Therefore, its decryption structure

can be exactly the same as encryption and its basic nonlinear module T is small and parallelable, which

can be implemented efficiently in both software and hardware. DBlock also employs different linear

transforms operating on various word-sizes, which can improve its diffusion effect significantly. For key

scheduling of DBlock, it mainly reuses the basic modules of encryption, and choices of different byte

position permutations can enhance the security of DBlock with ignorable cost. We have evaluated the

security of DBlock against known cryptanalytic techniques carefully and our analysis results show that

DBlock can achieve enough immunity against known attacks. Of course, we also strongly encourage any

security analysis of DBlock and helpful comments.

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:12

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (Grant No. 2013CB338002)

and National Natural Science Foundation of China (Grant Nos. 61272476, 61232009 and 61202420).

References

1 Daemen J, Rijmen V. The design of Rijndael. In: Information Security and Cryptography. Berlin: Springer-Verlag,

2002

2 Biryukov A, Khovratovich D. Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui M, ed. Pro-

ceedings of the 15th International Conference on the Theory and Application of Cryptology and Information Security,

Tokyo, Japan, 2009. 5912: 1–18

3 Biryukov A, Khovratovich D, Nikolic I. Distinguisher and related-key attack on the full AES-256. In: Halevi S, ed.

Proceedings of the 29th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, CA,

USA, 2009. 5677: 231–249

4 Biryukov A, Nikolic I. Automatic search for related-key differential characteristics in byte-oriented block ciphers:

Application to AES, Camellia, Khazad and others. In: Gilbert H, ed. Proceedings of the 29th Annual International

Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, 2010. 6110: 322–344

5 Zhang W, Wu W, Zhang L, et al. Improved related-Key impossible differential attacks on reduced-round AES-192. In:

Biham E, Youssef A M, eds. Proceedings of the 13th International Workshop on Selected Areas in Cryptography-SAC,

Montreal, Canada, 2006. 4356: 15–27

6 Bogdanov A, Khovratovich D, Rechberger C. Biclique Cryptanalysis of the Full AES. In: Lee D H, Wang X, eds.

Proceedings of the 17th International Conference on the Theory and Application of Cryptology and Information

Security, Seoul, South Korea, 2011. 7073: 344–371

7 Bogdanov A, Knudsen L, Leander G, et al. PRESENT: An ultra-lightweight block cipher. In: Paillier P, Verbauwhede

I, eds. Proceedings of the 9th International Workshop on Cryptographic Hardware and Embedded Systems, Vienna,

Austria, 2007. 4727: 450–466

8 Hong D, Sung J, Hong S, et al. HIGHT: A new block cipher suitable for low-resource device. In: Goubin L, Matsui M,

eds. Proceedings of the 8th International Workshop on Cryptographic Hardware and Embedded Systems, Yokohama,

Japan, 2006. 4249: 46–59

9 Canniere C, Dunkelman O, Knezevic M. KATAN and KTANTAN-A family of small and efficient hardware-oriented

block ciphers. In: Clavier C, Gaj K, eds. Proceedings of the 11th International Workshop on Cryptographic Hardware

and Embedded Systems, Lausanne, Switzerland, 2009. 5747: 272–288

10 Wu W, Zhang L. LBlock: A lightweight block cipher. In: Lopez J, Tsudik G, eds. Proceedings of the 9th International

Conference on Applied Cryptography and Network Security, Nerja, Spain, 2011. 6715: 327-344

11 Guo J, Peyrin T, Poschmann A, et al. The led block cipher. In: Preneel B, Takagi T, eds. Proceedings of the 13th

International Workshop on Cryptographic Hardware and Embedded Systems, Nara, Japan, 2011. 6917: 326–341

12 Shibutani K, Isobe T, Hiwatari H, et al. Piccolo: An ultra-lightweight blockcipher. In: Preneel B, Takagi T, eds.

Proceedings of the 13th International Workshop on Cryptographic Hardware and Embedded Systems, Nara, Japan,

2011. 6917: 342–357

13 Junod P, Vaudenay S. FOX: A new family of block ciphers. In: Handschuh H, Hasan M A, eds. Proceedings of the

11th International Workshop on Selected Areas in Cryptography, Waterloo, Canada, 2004. 3357: 131–146

14 Kwon D, Kim J, Park S, et al. New block cipher: ARIA. In: Lim J I, Lee D H, eds. Proceedings of the 6th International

Conference on Information Security and Cryptology, Seoul, Korea, 2003. 2971: 432–445

15 Shirai T, Shibutani K, Akishita T, et al. The 128-bit blockcipher CLEFIA (Extended Abstract). In: Biryukov A, ed.

Proceedings of the 14th International Workshop on Fast Software Encryption, Luxembourg, Luxembourg, 2007. 4593:

181–195

16 Huang J, Lai X. What is the effective key length for a block cipher: An attack on every block cipher.

http://eprint.iacr.org/2012/677.pdf (2012)

17 Nakahara Jr J. 3D: A three-dimensional block cipher. In: Franklin M K, Hui L C K, Wong D S, eds. Proceedings of

the 7th International Conference on Cryptology and Network Security, Hong-Kong, China, 2008. 5339: 252–267

18 Ferguson N, Lucks S, Schneier B, et al. The skein hash function family. Submission to NIST, Round 3, 2010,

http://www.skein-hash.info

19 Suzaki T, Minematsu K. Improving the generalized Feistel. In: Hong S, Iwata T, eds. Proceedings of the 17th

International Workshop Fast Software Encryption, Seoul, Korea, 2010. 6147: 19–39

20 Biham E, Shamir A. Differential Cryptanalysis of the Data Encryption Standard. Berlin: Springer-Verlag, 1993

21 Matsui M. Linear cryptoanalysis method for DES cipher. In: Helleseth T, ed. Proceedings of the Workshop on the

Theory and Application of of Cryptographic Techniques, Lofthus, Norway, 1993. 765: 386–397

22 Biham E, Biryukov A, Shamir A. Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. J

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:13

Crypt, 2005, 18: 291–311

23 Knudsen L, Wagner D. Integral cryptanalysis. In: Daemen J, Rijmen V, eds. Proceedings of the 9th International

Workshop on Fast Software Encryption, Leuven, Belgium, 2002. 2365: 112–127

24 Biham E. New types of cryptanalytic attacks using related keys. J Crypt, 1994, 7: 229–246

Appendix A Figures

Figure A1 Encryption procedure and round function Fn.

Figure A2 Key scheduling and encryption of DBlock-n.

Wu W L, et al. Sci China Inf Sci March 2015 Vol. 58 032105:14

Appendix B Test vectors

Test vectors for DBlock are shown in hexadecimal notation as follows (Table B1).

Table B1 Test vectors for DBlock

Plaintext Key Ciphertext

DBlock-128
01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF BE D2 EB 8E E0 DA 0C 55

FE DC BA 98 76 54 32 10 FE DC BA 98 76 54 32 10 D5 78 0B 6D 94 06 BE CA

01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF C3 65 B5 67 B6 B8 FF CB

DBlock-192 FE DC BA 98 76 54 32 10 FE DC BA 98 76 54 32 10 E8 97 68 6B 42 C8 B1 0B

01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 45 62 2B 60 BE 9F E8 FE

01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 9F EB 4B 91 63 79 91 BD

DBlock-256
FE DC BA 98 76 54 32 10 FE DC BA 98 76 54 32 10 A1 82 98 09 FF F4 B5 DE

01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 6D 88 DE 79 56 96 77 88

FE DC BA 98 76 54 32 10 FE DC BA 98 76 54 32 10 E3 A6 98 1A DC D1 85 92

