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Energy velocity and group velocity
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Abstract A new Lagrangian method for studying the relationship between the energy welocity and the
group welocity is described. It is proved that under the usual quasistatic electric field, the energy welocity is identical
to the group welocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.

Keywords: energy velocity, group velocity, Lagrangian, anisotropic.

The study on the relationship between the energy velocity and the group velocity of
waves has lasted over a century. With important physical significance, this relationship is
related to the problem of wave-particle duality in nature. Generally, it is believed that for
nondispersive waves, the energy velocity and the group velocity are identical®?.
Reyleigh®, one of the early researchers in this field, gave a proof of the equivalence be-
tween the energy velocity and the group velocity for one<dimensional water wave. Follow-
ing him, many authors* ® have shown the equivalence between the two velocities for more
general wave systems. However, because of the difficulties in understanding their methods
or of the limitation of those methods, up to now this relationship still remains somewhat
obscure for some linear homogeneous and conservative wave systems (particularly in
anisotropic media). Some papers, e.g. ref. [7] dealt with acoustic waves in piezoelectrics
without discussing this relationship. Resitic® tried to prove that for acoustic waves in
piezoelectrics, the energy velocity and the group velocity are not identical under the usual
approximation of quasistatic electric field. However, his proof is not rigorous enough.

In this paper, we shall describe a new method for studying the energy velocity and
the group velocity with acoustic waves in piezoelectrics taken as an example, and show
that the energy velocity and the group velocity are identical for this system under the
approximation of quasistatic electric field. This method has already been used to prove
the equivalence between the energy velocity and the group velocity for elastic waves in layered
anisotropic media®. Similar to Lighthill’s method, it makes use of a Lagrangian density.
Though the method applies to a general linear wave system, in order to make
the discussion clear in physical terms we shall consider acoustic waves in piezoelectrics.
The expression of energy velocity in terms of a Lagrangian density is given by the defini-
tion. Lighthill obtained the expression of group velocity using a variation method. We
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shall obtain the group velocity by implicit differentiation from a generalized dispersion
equation. The mathematical logic of the new method is simple and clear and we do nnt
need to consider the concrete expression of a wave field.

1 Lagrangian density of a system

The dynamic characteristics of a linear wave system may be determined by a
Lagrangian density of the system. In general, the Lagrangian density is a functional of ba-
sic quantities for a system, and of their first derivatives. For acoustic waves in
anisotropic piezoelectrics, under the usual approximation of quasistatic electric field, we
have the expression of a Lagrangian density

L= -:IE- uu,— —;— D,®,— -;— T,U; ;> (hH.
where the dot above the first term on the right-hand side denotes the partial derivative
with respect to time, the subscript comma of the second or third term represents the par-
tial derivative with respect to position, and any subscript takes values 1, 2, 3, and the
convention of a repeated alphabetic subscript in a term is used for summation. p is the
mass density of a medium, U, is a displacement component of a particle, D, is the compo-
nent of electric displacement, @ is quasistatic electric potential, and T, is the component
of the stress tensor. The first term on the right side of (1) corresponds to the kinetic
energy density, the second term is associated with the energy density of electric field, and
the third term gives the deformation energy density. If using the displacement U, and the
electric potential @ as the basic quantities of the system, from the constitutive equations
of piezoelectricity, we may have the Lagrangian density

L= % pUU.+ é— e),®, P, ~ —é—
where C7,,,, e, & are elastic, piezoelectric and dielectric constants, respectively.

CJE;HUI._IULI_BM 'Ul'.;(p’k? (2)
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By use of a 'Lagrangian density, the governing equations of the wave motion can be
obtained from Hamilton’s variation principle®™ ™. For Lagrangian density (2), applying the
theorem of variation calculation to Hamilton’s principle, we have
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It is not difficult to show that (3) and (4) are corresponding to the governing equa-
tions for acoustic waves under the quasistatic electric field. Eq. (3) is the equation of
motion, and (4) represents the zero divergence of the electric displacement vector.
This also shows that Lagrangian density (1) is appropriate.

We assume that the solution of the governing equations (3) and (4) is given by
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U=U;(),
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where 8=wt—kx, is a phase function. Furthermore, we assume that U,, @ and their deiv-

atives all are continuous periodic functions in 6 with a period P. In a general wave

system, components U; and @ are not necessary in phase (e.g. in the case of waves in a

waveguide). In order to demonstrate the generality of our method, we consider the solu-
tion in the form of (5).

2 Energy velocity

The energy velocity is the ratio of the energy flux (energy flow crossing a unit area
per unit time) F averaged over the timespace range, where the wave exists, to the energy
density (energy per unit volume) averaged over the same timespace range

_ <P
KB ©
where the symbol { ) denotes the timespace average. When considering a periodic wave,
we only need to take the average over a period. For a general system, if a wave field in
a certain direction is not periodic (e.g. surface waves in the direction normal to the sur-
face of solid) the average should be taken over the whole space where the wave exists.
The energy velocity is a constant which determines a dynamic characteristic of a wave
system. Obviously the energy velocity is a vector and it is in the direction of the
timespace mean energy flux. If the energy velocity does not use averaged quantities, it is
usuflly a function of time and space (e.g. waves in a waveguide). The energy velocity

Yo

which varies with time and space has little meaning here.

For piezoelectric acoustic waves, the expression of the energy flux may be obtained
from the Poynting vectors of electromagnetic waves and elastic waves under the
approximation of quasistatic electric field. The expression may be found in many text-
books (e.g. ref. [7]). In terms of Lagrangian density, a component of the energy flux can
be given by

7] R JL
Pz 0w (7 )2 ?
It is not difficult to show that (7) is consistent with that given by ref. [7]. In (7) the
first term on the right side is the product of negative stress component and the particle
velocity, and the second term is the product of the time derivative of electric displacement
and the electric potential.

By use of the energy balance equation, the total energy density of the system may be
obtained from the expression of the energy flux. The energy balance equation in a
differentiation form can be expressed as
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E= -F INE (8)
From (7), the divergence of the energy flux is given by

o (oL oL . 0 [ oL |
E,J_Txi ( 3U,_.- )U"' 5’U Uj.i‘ﬁt_(_‘"‘a@” )d’,n ©)

where we have used the result that the dwergenoe of the electric displacement is zero. Ap-
plying the equations of motion to the first term on the right side and then using

the following relationships
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we may have
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Comparing (11) with (8) we obtain the total energy density
oL oL
E= 3U U+ — 6@ FD,,.—L. (12)

It is worth while to mention that the instant total energy density of piezoelectric acoustic
waves looks different from those of usual non-piezoelectric acoustic waves, i.e. the segond
term is not a derivative with respect to time, but we shall later show that its timespace
averaged value gives the usual result that the mean total energy density is twice the mean
kinetic energy density.

From (7) and (12) the energy velocity can be expressed as
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where x, is a unit space vector. The energy velocity is in fact independent of the

(13)

amplitude because the amplitude components all are dependent on one common factor
determined by the governing equations of the system, and the common factors on the
denominator and on the numerator cancel out each other. On the denominator, we
have, from the periodicity of the wave field,

“’) <3x (aaa ) %("f?%j)d’):o' 4
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3 Generalized dispersion equation

The system in which we are interested is a linear homogeneous and conservative
lossless one. For such a system, a wave field is wusually of periodicity or is a
superposition of periodic waves. A linear periodic dynamic system which obeys
Hamilton’s principle has an important property: the mean timespace Lagrangian density
for the system is zero. This property is obvious for a classical system of harmonic
oscillator. However, we have not found a direct proof of such a property in piezoelectric
acoustic waves. The vanishing of the mean Lagrangian density is the key to our method
so for certainty we shall show that for piezoelectric acoustic waves under the
approximation of quasistatic electric field, the mean Lagrangian density is zero. The aver-
aged Lagrangian density over time and space can be expressed as

D ={L). (15)
First it is easy to show that the first variation D vanishes if dU, é& have the same

periodicity as U,, @ themselves even if éU,, é® do not vanish at the boundary. The first
variation éD is given by

oL oL oL
=5 U+ 30Vt o é¢,,> (16)

As usual this first variation can be rewritten in an alternative form by the commutation
property of variation and differentiation. We have

_ o (oL o [ oL 0 [ oL
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The first mean integration term vanishes because of the governing equations for

piezoelectric acoustic waves, and the second term is zero if éU,, 0® have the same
periodicity as U;, &@. Therefore, the first variation of the mean Lagrangian density is zero.

Second, we use the direct definition of the variation. For simplicity we write the
mean Lagrangian density as a functional of U, and ®.

D=D[U,, &, (18)

so that the variation can be given as
sp=D[T,, ¥)-D[U, @, | (19)
where U,=U,+6U,, ®=d+6® are arbitrarily varying functions. If we assume that
oU=alU,, d®d=ad where a is an arbitrary parameter, since D is homogeneous and

quadratic in the derivatives of U, and @, the varied mean Lagrangian density can be given
by
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DT, B)=(1+ayDIU,, @, (20)

and (19) becomes
D={(1+ay—1}D[U,, @] 21)

Since 6U, d@ have the same properties as U, @ themselves, the variation is zero as we
have shown. Thus for any nonzero parameter « the mean Lagrangian density D{U,, @)

must be zero:
D{U,, 9]=0. (22)

Equation (22) gives a relationship between the frequency and the wavenumber components
and is often called dispersion equation. Herc we should emphasize that the frequency and
the wavenumber components in the phase function have no contribution to the dispersion
equation since the average is performed over time and space. In order to make this clear
we rewrite eq. (22) as

D= J L®, w, k)dd=D(w, k)=0. (23)
]

1
P
4 Group velocity

The group velocity is consistent with the usual concept of the velocity. It is a vector,
and its component is determined by the partial derivative of the frequency with respect to
the corresponding component of wavenumber. In terms of angular frequency @ and angu-
lar wavenumber component k,, the group velocity can be expressed as

N a (24)
The group velocity is an important physical quantity which describes the essential
characteristic of a complete wave system (we should not simply consider it as an
approximation of modulated velocity of travelling wave packets). Here, we shall use the
Lagrangian density to express the group velocity. We may consider @ as an implicit func-
tion of k,, which is determined by the dispersion equation. According to the rule of im-
plicit differentiation, we have

)
oy - ok, -
b= e X e (25)
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Let us examine the partial derivative of D with respect to the frequency. Assuming
that D is a continuous function of the frequency and the wavenumber, when performing
the partial differentiation with respect to the explicit frequency, the limits of the
integration are constants with respect to the integral variable 6. So we can interchange
the order of differentiation and the integration. The denominator can be rewritten as

op _soL U, oL U, . oL 0@, >
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%0 \7U G | U, o v, o (26)
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In eq. (26) we should carefully perform the partial differentiation of the particle velocity
with respect to the frequency. We may obtain the following equations:

ou, @ ou, \ _ au, a (o,
T o (‘”6_9 )‘W My (w ) @7
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Applying the operator = to the first term on the right side, and on the second .

0
. . . 0 i)
term exchanging the order of derivatives first, then using 05 = E to rearrange the

term, we obtain

ou U, é 0U,

Eri i 2
In eq. (28) the orders of differentiations on the last term are not commutative. Since we
have interchanged the order of differentiation with respect to w and the integration with
respect to 8, when performing the differentiation with respect to w, we should consider 8
as a variable independent of the frequency. Substituting (28) into (26) and carrying out a

transformation similar to eq. (10) we get
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By the periodicity, the second-averaged term on the right side of Eq. (29) is zero. The
third averaged term vanishes according to the governing equations of piezoelectric acoustic
waves. Thus, we have

—= UD. (30)
Similarly, by use of the following equation:
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where 4, is Kronecker symbol, and the last two terms on the right side are not
commutative. The derivative of D with respect to k, is given by
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where the last term on the right side can be rewritten as
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Using (32) and (30), the group velocity becomes
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Equations (14), (23) and (33) are always true. Comparing (34) with (13) gives the re-
quired result. Although the above proof is given for piezoelectric acoustic waves, it is val-

(34)

id for acoustic waves in non-piezoelectric anisotropic media as long as we set the electric

" potential to be zero. In fact starting from the analytical solutions of a particular case, we
may show the equivalence between the energy velocity and the group velocity. But it
would be a tedious process to do so (Auld” gives a special example: for a cubic
non-piezoelectric crystal, the energy velocity is equal to the group velocity). The above
proof is relatively simple.

5 Discussion

The study on the energy velocity and the group velocity is not only of theoretical
significance but also of important practical meaning. For example, an acoustic method
for material characterization or non-destructive evaluation of an anisotropic medium is very
often used"”. In a measurement usually the main signal which we receive is that in the di-
rection of the energy flux vector. As is well known, usually in an anisotropic medium, the
group velocity and the wavenumber vector may not be in the same direction. If the ener-
gy velocity and the group velocity are identical, we know that the direction of the energy flux
does not coincide with that of the wavenumber vector. and the angle between the energy
flux and the wave vector may be determined by that of the group velocity and the wave
vector, since the group velocity is easier to obtain. Therefore, this should be taken
into account when using an acoustic method to evaluate the properties of an anisotropic
material. Our proof of the equivalence between the energy velocity and the group velocity
for acoustic waves in anisotropic media (including non-piezoelectric media) indirectly gives
theoretical evidence that in a measurement the main signal may not be in the direction of
the wavenumber vector, and the angle between the wavenumber vector and the energy flux
vector may be determined by the angle betwecen the group velocity and the wavenumber
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vector, since the group velocity is relatively easy to obtain.

This method can be easily applied to other types of linear waves, for example,

electromagnetic waves in anisotropic media, surface waves and waves in waveguides. We
hope that this method will be useful for further studying the energy velocity and the group
velocity.
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