SCIENTIA SINICA Chimica

www.scichina.com chem.scichina.com

论 文

Fe/膨胀石墨插层复合物的简易制备与电磁 特性研究

童国秀*, 袁进好, 马吉, 秦明月, 官建国, 李良超, 宫培军, 蔡建静

浙江师范大学化学与生命科学学院,金华 321004 *通讯作者, E-mail: tonggx@zjnu.cn

收稿日期: 2010-12-08; 接受日期: 2011-01-14; 网络版发布日期: 2011-05-13

doi: 10.1360/032010-906

摘要 以膨胀石墨和硫酸亚铁为前驱物,采用一步还原法得到 Fe/膨胀石墨(Fe/EG)插层复合物. 并用 SEM、XRD、网络矢量分析仪等测试仪器分别研究了 Fe 含量(w_{Fe})对 Fe/EG 插层复合物的形貌、结构、微波电磁和吸波性能的影响. 结果表明: 改变插层剂 Fe 的含量能有效地调控 Fe/EG 插层复合物的微波电磁与吸收特性. 随 w_{Fe} 在 27.5 wt%~71.5 wt%范围内增大,Fe/EG 插层复合物的介电常数在 w_{Fe} = 27.5 wt%时达到最大值,磁导率呈现多重共振现象,微波吸收性能逐渐增强. 这种优异的微波吸收特性归功于 Fe/EG 插层复合物增强的电磁匹配和磁共振损耗.

关键词 铁 膨胀石墨 插层复合物 电磁特性

1 引言

近年来, 广泛使用的各种电子、电气设备所产 生的电磁辐射不仅干扰仪器的正常运行、泄露信息, 而且危害了人们的身体健康. 为此, 重视和加强电 磁波吸收与屏蔽材料的应用基础研究具有重要的战 略意义. 作为反射型电磁屏蔽材料, 膨胀石墨 (Expanded Graphite, 简称 EG)因其导电率高、质轻、 耐候性和加工性好等特点而备受青睐[1~3]. 膨胀石 墨的电磁屏蔽效应主要源于其高的反射电磁波的能 力,但其反射回去的电磁波易形成二次污染.作为 一种单一的电损耗型材料, 膨胀石墨单独使用难以 制备宽带电磁波吸收材料. 而以膨胀石墨为宿主材 料, 以磁性物质(如, Fe^[4], Ni^[5,6], Co^[5], 氧化铁^[7]等) 为插层剂,制备双损耗型石墨层间化合物,可改善 膨胀石墨的电磁匹配与吸收特性,减小反射电磁波 形成的二次污染. 同时, 从纳米尺度上调控插层结 构的宿主材料(膨胀石墨石墨)和插层剂的组成、尺

寸和形貌有可能赋予其特殊的电、磁功能. 尽管目 前不同合成途径已被用来制备磁性膨胀石墨层间复 合物,如邢晓玲等^[8]采用浸渍、干燥及 H₂还原途径, 和刘兰香等[6]分别制备了纳米 Co/EG 和 Ni-Fe/EG 复 合材料. 张倩等^[7]通过燃烧混合石墨层间化合物的 铁氧体干凝胶制备出一种兼具导电性和亚铁磁性的 纳米 v-Fe₂O₃/EG 复合材料, 张晏清等^[2]分别采用共 沉淀法、柠檬酸盐法和瞬时共烧法制备了铁氧体/EG 复合物. 赵芸芳等[4]采用过熔盐-高温还原法制备了 Fe/EG 复合材料. 但一方面上述方法存在周期长、复 杂多步等问题,另一方面,插层复合物的可控制备、 电磁参数的调控方法及插层结构的作用机制的研究 尚未见系统和深入地报道. 为此, 我们以膨胀石墨 和硫酸亚铁为前驱物,采用液相还原法一步得到 Fe/EG 插层复合物, 研究插层剂 Fe 的含量对插层复 合物的微波电磁与吸收特性的影响,并对插层结构 的作用机制进行了电路模拟.

2 实验部分

2.1 试剂与仪器

可膨胀石墨, 微米级, 购于青岛奥科石墨制品厂; 去离子水($10 \ M\Omega \ cm$); 其他药品如硼氢化钠、无水乙醇、硫酸亚铁均为分析纯.

D/MAX-RB 型转靶 X 射线衍射仪(XRD), Hitachi S-4800 型场发射扫描电子显微镜(FE-SEM), 美国 Agilent 公司生产 N5230 型矢量网络分析仪.

2.2 实验过程

为了提高 Fe 进入层间的几率,将可膨胀石墨在700 ℃膨胀处理 30 s 得到膨胀石墨.

将 0.15 g 上述膨胀石墨加入到 100 mL 溶解有硫酸亚铁的水溶液中,搅拌吸附 30 min. 再滴加过量 1.0 M 硼氢化钠溶液,反应 30 min 后,洗涤过滤并在 40 \mathbb{C} 真空干燥 12 h,得到所需 Fe/EG 插层复合物样品. 通过改变 Fe^{2+} 浓度 $\alpha(0.025, 0.050, 0.075$ M)调节 Fe 与 EG 的投料比,重复上述实验.

并用 XRD 和 FESEM 分析所得产物的结构和形貌. 将样品按 50%质量比与固体石蜡加热混合均匀,用模具制成外径 7.0 mm,内径 3.0 mm,高约 3.5 mm的同轴试件后,在美国 Agilent 公司生产 N5230 型矢量网络分析仪上用同轴法测量其在 2~18 GHz 范围内的微波电磁参数.

3 结果与讨论

3.1 XRD 物相分析

图 1 给出了不同 Fe^{2+} 浓度下获得的 Fe/EG 插层复合物的 XRD 谱图. 可见,在 $2\theta=26.1^\circ$,55.0°等处的衍射峰为石墨的特征峰^[9].而在 $2\theta=45.0^\circ$ 处的衍射峰为体心立方 α -Fe 的(110)晶面的特征峰^[10].随 Fe^{2+} 浓度在 $0.025\sim0.075$ M 范围内增大,膨胀石墨衍射峰的强度逐渐减弱,而 α -Fe 的(110)的衍射峰强度明显提高.利用 RIR 方法,将石墨和铁最强峰的积分强度代入到下列公式中: $w_{Fe}=I_{Fe}/(I_{Fe}+I_{EG}/K_A^B)$,计算 Fe/EG 插层复合物中 Fe 的含量,分别为(27.5 wt%,55.3 wt%,71.5 wt%).同时,用谢乐(Scherrer)方程^[11]计算 α -Fe 纳米晶的平均晶粒尺寸分别为 6.6,8.0 和 9.9 nm. 这是由于在溶液体积一定的条件下,提高

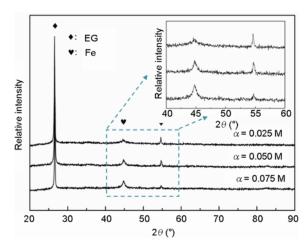
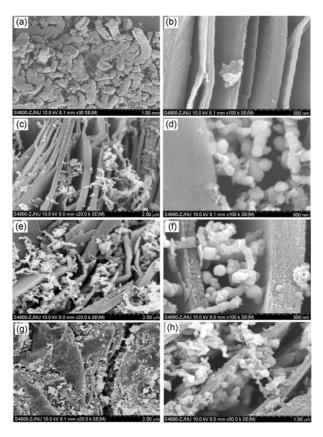


图 1 不同 Fe²⁺浓度下获得的 Fe/EG 插层复合物的 XRD 谱图


Fe²⁺浓度一方面可增大了 Fe 与 EG 的投料比,导致 Fe/EG 插层复合物中 Fe 含量的提高,另一方面可增大 Fe 纳米晶的成核和生长速率,导致 Fe 纳米晶晶化程度提高、晶粒尺寸增大.

3.2 SEM 形貌分析

图 2(a), (b)为蠕虫状膨胀石墨的低倍和高倍 SEM 像.可见,膨胀石墨的直径 0.2~0.5 μ m,长 0.5~2.0 μ m,层间距 50~200 nm.将膨胀石墨浸入到相同体积不同浓度的 Fe²⁺溶液中,经吸附-还原反应后,得到不同 Fe 含量的 Fe/EG 插层复合物. 当 α = 0.025 M 时,层间分散着少量直径 50~150 nm 的链球状 α -Fe 纳米粒子.随 α 的提高,层间链球状粒子数量增多.在 α = 0.075 M 时,层间填满了链球状 α -Fe 纳米粒子.这表明通过控制 Fe²⁺浓度能有效地调节膨胀石墨层间吸附和插层剂的含量.与其他方法相比,浸渍吸附一步还原的方法更简捷和高效,但快速的还原反应也会导致插层复合的均匀性稍差.这在后续的工作中进一步改善.

3.3 微波电磁特性

图 3 给出了不同 Fe 含量的 Fe/EG 插层复合物的 ε' 和 ε'' . 随频率的增大, 纯膨胀石墨(即 $w_{\rm Fe}$ = 0)的 ε' 在 140~20 范围内减小, 而其 ε'' 在 80~30 范围内波动并出现两共振峰. 这暗示膨胀石墨具有较高的电能储存和损耗能力. 相比之下, $w_{\rm Fe}$ = 27.5 wt%的 Fe/EG 插层复合物的 ε' 在低频范围内略微减小, 而在高频范围内保持相对稳定, 约为 45, 而其 ε'' 值显著增加. 这暗示膨胀石墨层间插入少量的 Fe 纳米粒子可以改

图 2 膨胀石墨(a), (b)和不同 Fe^{2+} 浓度 ((c), (d) 0.025 M; (e), (f) 0.050 M; (g), (h) 0.075 M)下获得的 Fe/EG 插层复合物的扫描电镜像

善其介电损耗能力. 随 w_{Fe} 的进一步增大, 层间插入的 Fe 纳米粒子的数量提高, 此时 ε' 和 ε'' 明显降低. 这暗示所获的 Fe/EG 插层复合物的储存和损耗电能的能力下降.

膨胀石墨属于电阻型吸收剂, 载流子在膨胀石

墨层内迁移和层间跳跃形成的宏观电流(包括电场引 起的电流和磁场变化产生的涡流), 使膨胀石墨具有 高的电导率和电阻损耗. 而铁是一种双损耗型材料 (介电损耗和磁损耗), 其电介质型损耗主要是依靠介 质的电子极化、离子极化、分子极化或界面极化等弛 豫衰减吸收. 这取决于铁粒子的尺寸、形貌、分布以 及极化界面的大小等[12]. 当低电导率的铁与高的电 导率的石墨插层复合形成铁/膨胀石墨复合物,具 有多种损耗机制并存,包括电导损耗、介电驰豫损 耗、共振损耗等[13]. 铁的插入一方面使膨胀石墨的电 导率及相应的电导损耗下降,另一方面其界面极化 损耗因铁含量的提高而增大. 在铁含量较低时, 复合 物电导损耗的减小速率低于介电驰豫损耗的增大速 率,导致复合物的介电常数上升.在铁含量较高时, 复合物电导损耗的减小速率高于介电驰豫损耗的增 大速率, 导致复合物的介电常数下降,

图 4 为不同 Fe 含量的 Fe/EG 插层复合物的复磁导率实部 μ' 和虚部 μ'' .可见,其 μ' 和 μ'' 值随频率的升高分别在 1.0~1.3 和 0~0.25 范围内波动,这表明抗磁性的膨胀石墨层间插入铁磁性 Fe 纳米粒子后,具有一定的储存和损耗磁能的能力.同时可以观察到多重共振峰,且随 Fe 纳米粒子含量的增大,共振峰的峰位移向高频,强度略微增大.这种多重共振特性取决于复合物中铁的含量以及其特殊的层状结构.铁的磁损耗主要源于交变磁化过程中磁滞磁畴转向、畴壁位移、磁畴自然共振等作用使磁感应强度在时间上滞后于外加磁场,引起外加能量不断地消耗.当铁与膨胀石墨形成插层复合物,多种损耗机制并存,此时,插层复合物对电磁波的吸收作用可用等效于下列电路模型[14],如图 5.

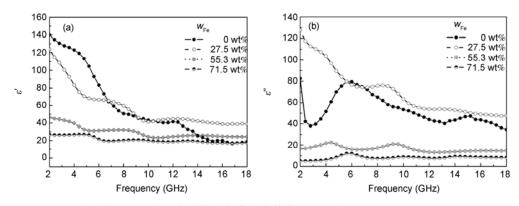
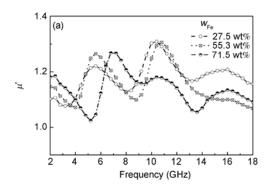



图 3 膨胀石墨和不同 Fe 含量的 Fe/EG 插层复合物的复介电常数实部(a)和虚部(b)

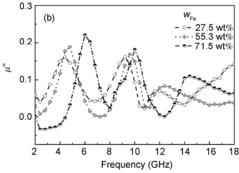


图 4 不同 Fe 含量的 Fe/EG 插层复合物的复磁导率实部(a)和虚部(b)

在该模型中, R_1 , R_3 , C_1 , C_3 分别为膨胀石墨的电阻和电容, R_2 , L_2 '为铁纳米粒子填充层的电阻和电感, L_1 , L_2 , L_3 为相关材料在电磁辐射条件下的电感. 在该等效电路中存在 5 个可调回路($L_1R_1C_1$, L_2C_1 , $L_2'C_3$, $L_3R_3C_3$, R_LC_3), 其中,对应于石墨层的 $L_1R_1C_1$ 和 $L_3R_3C_3$ 回路产生相同的电磁共振频率,因而铁/膨胀石墨插层复合物将产生四个共振峰. 这与图 4 和图 3 中结果一致. 这种相似的多重共振现象在其他文献 $^{[13,14]}$ 中也见报道.

3.4 微波吸收特性

基于上述的电磁参数, 根据传输线原理计算反射

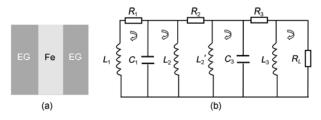


图 5 Fe/EG 插层复合物的示意图(a)和等效电路(b)

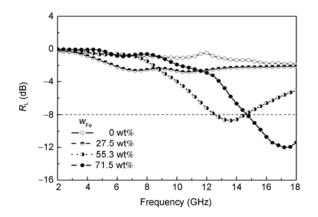


图 6 不同 Fe 含量的 Fe/EG 插层复合物的反射率曲线

率: $R_{\rm I}({\rm dB}) = 20\log|(Z_{\rm in} - Z_{\rm 0})/(Z_{\rm in} + Z_{\rm 0})|$. 从图 6 可见, 在吸波剂的质量分数(50 wt%)和涂层厚度(1.0 mm)相 同的条件下,膨胀石墨的电磁波吸收特性较差,在 2~18 GHz 范围内 R_I ≥ –2 dB. 当层间插入不同量的 Fe 纳米粒子后, Fe/EG 插层复合物的电磁波吸收特性明 显增强. 且随 wFe 的增大, Fe/EG 插层复合物的反射率 曲线向高频飘移且吸收峰的强度增大. 其中, WFe= 71.5 wt%的 Fe/EG 插层复合物的电磁波吸收性能最 佳, 最大吸收-11.99 dB, 小于-8 dB 的有效带宽 3.3 GHz. 这是由于膨胀石墨是一种单一损耗材料, 其过 高的介电常数使自由空间与吸波涂层间阻抗严重失 配,导致入射电磁波减弱,反射电磁波增强. 该电磁 特性决定膨胀石墨是一种优良的反射型电磁屏蔽材 料. 大量的磁损耗材料的插入使其介电常数下降, 磁 损耗提高. 这改善了自由空间与吸波涂层间的阻抗匹 配特性, 使入射电磁波大大增强, 反射电磁波减弱. 这表明降低膨胀石墨的介电常数, 提高磁导率, 可改 善其吸波特性. 除了插层剂的含量外, 插层复合物的 吸波性能还与膨胀石墨的膨胀率和尺寸、插层剂的形 貌与组成等因素有关. 这在我们后续的工作中进一步 报道.

4 结论

(1)以膨胀石墨和硫酸亚铁为前驱物,采用吸附-还原法,在 $0.025\sim0.075$ M 范围内控制 Fe^{2+} 浓度得到含 Fe 量 27.5 wt%~71.5 wt%的 Fe/EG 插层复合物. Fe 纳米粒子直径 $50\sim150$ nm, 呈链球状.

(2)改变插层剂 Fe 的含量能有效地调控 Fe/EG 插层复合物的微波电磁特性. Fe/EG 插层复合物的介电常数在 $w_{Fe} = 27.5$ wt%时最大, 磁导率出现多重共振

1124

现象.

(3) 随 Fe 纳米粒子含量的增大, Fe/EG 插层复合物的反射率曲线向高频飘移且吸收峰的强度和有

效带宽增大.这种增强的微波吸收特性来源于 Fe/EG 插层复合物优异的电磁匹配和多重磁共振损 耗.

致谢 本文得到浙江省自然基金(Y4100022 & Y4100074)、金华市科技计划项目(2010A12066)、浙江省新苗人才计划、浙江师范大学博士启动基金(ZC304009094)、浙江师范大学实验室开放项目和第十二期课题浙江师范大学实验室开放项目的资助,特此一并致谢.

参考文献 ____

- 1 Enoki T, Suzuki M, Eenod M. Graphite Interaction Compounds and Applications. New York: Oxford University Press Inc, 2003
- 2 张晏清, 孙庆荣. 磁性膨胀石墨的制备及性能. 材料导报, 2007, 21: 129-131
- 3 周明善,李澄俊,徐铭,吴正东. 膨胀石墨复合材料的电磁特性及其 3 mm, 8 mm 波动态衰减性能研究. 无机材料学报, 2007, 22: 509-513
- 4 赵芸芳. Fe-膨胀石墨插层复合物 EGIC 的制备与表征. 化学与黏合, 2009, 31: 21-24
- 5 贾瑛, 任强富, 李志鹏, 张秋禹. 膨胀石墨基纳米镍, 铁, 钴化学镀制备复合吸波材料. 材料保护, 2009, 42: 1-3
- 6 刘兰香,黄玉安,黄润生,唐涛,徐铮,葛欣,沈俭一. 纳米镍-铁合金/膨胀石墨复合材料的制备,表征及其电磁屏蔽性能. 无机化学学报,2007,23:1667-1670
- 7 张倩, 焦清介, 关晓存. 纳米 γ-Fe₂O₃/膨胀石墨复合材料制备及电磁性能. 材料热处理学报, 2010, 31: 30-33
- 8 邢晓玲, 黄玉安, 黄润生, 唐涛, 徐铮, 沈俭一. 纳米金属钴/膨胀石墨复合材料的制备, 表征及其电磁屏蔽性能. 南京大学学报(自然科学), 2009, 45: 570-575
- 9 林雪梅. 低温可膨胀石墨的结构与性能研究. 火工品, 2006, 5: 1-4
- Tong GX, Guan JG, Xiao ZD, Mou FZ, Wang W, Yan GQ. In situ generated H₂ bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem Mater, 2008, 20: 3535–3539
- 11 童国秀, 官建国, 樊希安, 王维, 宋发辉. 气流诱导多晶铁纤维的可控制备及生长机理. 无机化学学报, 2008, 24: 270-274
- 12 童国秀, 官建国, 樊希安, 王维, 李维. 热解温度对多晶铁纤维的静磁和微波电磁性能的影响. 金属学报, 2008, 44: 867-870
- Tong GX, Wu WH, Hua Q, Miao YQ, Guan JG, Qian HS. Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2~18 GHz ranges. *J Alloy Comp*, 2011, 509: 451–456
- 14 Chen YJ, Zhang F, Zhao GG, Fang XY, Jin HB, Gao P, Zhu CL, Cao MS, Xiao G. Synthesis, Multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe₃O₄/ZnO core/shell nanorods. *J Phys Chem C*, 2010, 114: 9239–9244

Facile preparation and electromagnetic characteristics of Fe/expanded graphite intercalation compounds

TONG GuoXiu, YUAN JinHao, MA Ji, QIN MingYue, GUAN JianGuo, LI LiangChao, GONG PeiJun & CAI JianJing

College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China

Abstract: Using expanded graphite and FeSO₄ as precursor, Fe/expanded graphite (Fe/EG) intercalation compounds were prepared by a facile one-step reduction approach. The influences of Fe nanoparticles content w_{Fe} on the morphology, structure, and microwave electromagnetic and absorbing properties of the corresponding intercalation compounds were studied by SEM, XRD, and network vector analyzer, respectively. The results showed that the change of w_{Fe} could effectively tune the microwave electromagnetic and absorbing characteristics. As the w_{Fe} was increased from 27.5 wt% to 71.5 wt%, Fe/EG intercalation compounds showed a maximal permittivity at w_{Fe} =27.5 wt%, the permeability with a multiresonant behavior, and the gradually increasing microwave absorbing properties. The excellent microwave-absorption properties of Fe/EG intercalation compounds are as a consequence of a proper electromagnetic matching and enhanced magnetic resonant loss.

Keywords: Fe, expanded graphite, intercalation compound, electromagnetic characteristics