The p-Regular Class Length and the p-Rank in a p-Solvable Group

REN Yong-Cai (任永才)

(Department of Mathematics, Sichuan University, Chengdu 610064, PRC)

Received December 7, 1993.

Keywords: p-regular class, p-rank, p-solvable group.

In Ref. [1], O. Manz investigated the relation between the character degrees and the p-rank in a p-solvable group. In Ref. [2], Y. Q. Wang investigated the relation between the Brauer character degrees and the p-rank in a p-solvable group. Correspondingly, D. Chillag and M. Herzog investigated the relation between the conjugacy class lengths and the p-rank in a solvable group^[3]. In this note, we improve the result of D. Chillag and M. Herzog.

In the note, all groups considered are finite. G and p always denote a finite group and a prime number, respectively. G_p is a Sylow p-subgroup of G. $r_p(G)$ and $l_p(G)$ denote the p-rank and the p-length of G, respectively. For a subgroup G of G and an element G of G we denote the conjugacy class of G is a conjugacy class of G. For $G \in Con(G)$, |G| is called the length of the conjugacy class G. For an element G of G, we say G is G is G in G in G in G is called a G-regular class of G.

Let *n* be a positive integer. If $n = p^a m$ and $p \nmid m$, then we write $\omega_p(n) = a$. For the group G, $\omega c_p(G) := \max \{ \omega_p(|C|) C \in \text{Con}(G) \}^{[3]}$, we define $\overline{\omega c_p}(G) = \max \{ \omega_p(|C|) C \in \text{Con}(G) \text{ and } C \text{ is } p\text{-regular} \}$. Clearly, we have $\overline{\omega c_p}(G) \leq \omega c_p(G)$.

Lemma 1. Let $N \nabla G$. Then $\overline{\omega c}_p(N) \leq \overline{\omega c}_p(G)$ and $\overline{\omega c}_p(G/N) \leq \overline{\omega c}_p(G)$.

Proof. This is an immediate corollary of Ref. [3].

Lemma 2. Let P be a p-group and V be a p'-group. Suppose that P acts on V. If every conjugacy class of V is P-invariant, then the action of P on V is trivial.

Proof. Let C be an arbitrary conjugacy class of V. Since C is P-invariant, the action of P on V induces an action of P on the conjugacy class C. Also notice that $p \nmid |C|$. So, P must fix some element in C, and let x(C) be such an element. Set $H = \langle x(C)|C \in \text{Con}(V) \rangle$. Clearly, P acts trivially on H. Since H contains an element from each conjugacy class of V, we conclude that $V = \bigcup_{U \in V} H^v$. Hence V = H and the action of P on V is trivial.

Lemma 3. Let G be p-nilpotent with a normal p-complement $V = V_1 \times \cdots \times V_n$, where all V_i 's are isomorphic non-Abelian simple groups. If p is odd and $O_p(G) = 1$, then $|G_p| \leq p^{2\overline{\alpha c_p}(G)}$.

Proof. Put $P = G_p$. Then G = PV, $V \triangleleft G$ and $P \cap V = 1$. For every element x in P and each $i = 1, \dots, n$, by Ref. [4] we have $xV_ix^{-1} \in \{V_1 \dots, V_n\}$. Clearly, for every element y in V and each $i = 1, \dots, n$ we have $yV_iy^{-1} = V_i$. Since $C_P(V) \leq O_P(G) = 1$, $C_P(V) = 1$ and so P acts faithfully on V by conjugation. We write $Q = \bigcap_{i=1}^n N_P(V_i)$ and $C_i = C_Q(V_i)$, $i = 1, \dots, n$. Since $C_P(V) = 1$, $\bigcap_{i=1}^n C_i = 1$. Also notice that $Q \triangleleft P$ and for each $i = 1, \dots, n$, we have $Q/C_i \leq \operatorname{Out}(V_i)$.

We assume that $Q \neq 1$. Let P_i be a Sylow p-subgroup of $\operatorname{Aut}(V_i)$, $i=1, \dots, n$. Since $Q \neq 1$ and $\bigcap_{i=1}^n C_i = 1$, there exists $j \in \{1, \dots, n\}$ such that $Q/C_j \neq 1$. Hence, by Ref. [5] P_j is cyclic. Since all V_i 's are isomorphic, for each $i=1\dots, n$, P_i is cyclic. Also notice that since $\bigcap_{i=1}^n C_i = 1$, $Q \leq Q/C_1 \times \dots \times Q/C_n \leq P_1 \times \dots \times P_n$.

For each $i=1,\cdots,n$, P_i acts on the set $\operatorname{Con}(V_i)$ in an obvious way. Suppose that for every $C \in \operatorname{Con}(V_i)$ we have $C_{P_i}(C) > 1$. (Here, C is viewed as an element of the set $\operatorname{Con}(V_i)!$) Then, since P_i is cyclic, $\Omega_1(P_i)$ fixes every element of $\operatorname{Con}(V_i)$, and hence we get $\Omega_1(P_i)=1$ by Lemma 2, contradicting $1 \neq P_i \leq \operatorname{Aut}(V_i)$. So, for each $i=1,\cdots,n$ there exists some $C_i \in \operatorname{Con}(V_i)$ such that $C_{P_i}(C_i)=1$. Set $C=C_1 \times \cdots \times C_n$. Then $C \in \operatorname{Con}(V)$ and $C_{P_1 \times \cdots \times P_n}(C) = C_{P_1}(C_1) \times \cdots \times C_{P_n}(C_n)=1$. Thus, since $Q \leq P_1 \times \cdots \times P_n$, we get $C_Q(C)=1$. From C we can get a p-regular class C of G(=PV) such that $|C|=|P:C_P(C)||C|$. Therefore, since $Q \leq P$ and $C_Q(C)=1$, we get |Q| = |C| and so $|Q| \leq p^{\overline{\omega c_P(G)}}$. This is also true, of course, when Q=1.

Let $\Sigma = \{V_1, \cdots V_n\}$. G acts on the set Σ by conjugation. From the remarks at the beginning of the proof, we conclude that for $x \in G = PV$, x fixes every element of the set Σ if and only if $x \in QV$. $G/QV \cong P/V$ is therefore a permutation group on the set Σ . Since p is odd, $G/QV \cong P/Q$ is of odd order. So by Ref. [6] there exists some nonvoid subset W in Σ such that $\operatorname{Stab}_{G/QV}(W) = QV/QV$; that is, $\operatorname{Stab}_G(W) = QV$. We choose the numbering so that $W = \{V_1, \cdots, V_s\}$, $s \le n$. For each $i = 1, \cdots, s$, we take a non-identity element x_i in V_i and put $x = x_1 \cdots x_s$. Then we have $C_G(x) \le \operatorname{Stab}_G(W) = QV$. From this it follows that $|C_G(x)|_p \le |Q|$, and hence we have $|Cl_G(x)|_p \ge |P|$. Clearly, $|Cl_G(x)|_p \le |Cl_G(x)|_p \le$

Lemma 4. Let G have a nilpotent normal p-complement and let $O_p(G) = 1$. Then $(1) |G_p| \leq p^{2\overline{\omega c_p}(G)}$.

(2) If |G| is odd, then $|G_p| \leq p^{\overline{\omega c_p}(G)}$.

(3) If G_p is Abelian, then $|G_p| \leq p^{\overline{\omega c_p(G)}}$.

Proof. By hypothesis, $G = G_p F(G)$, where F(G) is the fitting subgroup of G, and F(G) is exactly the normal p-complement. Set $\overline{G} = G/\Phi(G)$. Let H be a subgroup of G such that $\Phi(G) \leq H$ and $\overline{H} = H/\Phi(G) = O_p(\overline{G})$. Since $\Phi(G) \leq F(G)$ and $p \nmid |F(G)|$, $\Phi(G)$ is a p'-group, and hence $H = P \cdot \Phi(G)$, where $P \in \operatorname{Syl}_p(H)$. As $H \triangleleft G$, we have $G = N_G(P)H = N_G(P) \cdot \Phi(G) = N_G(P)$; that is, $P \leq O_p(G) = 1$. So $O_p(\overline{G}) = \overline{H} = 1$. Also notice that $\overline{G} = \overline{G}_p \cdot F(\overline{G})$, $\Phi(\overline{G}) = 1$ and $|G_p| = |\overline{G}_p|$. So by induction on |G| we may assume that $\Phi(G) = 1$. Thus F(G) is Abelian by Ref. [7]. By Ref. [7] we have $C_{G_p}(F(G)) \leq G_p \cap F(G) = 1$. This implies that the action of G_p on F(G) by conjugation is faithful. By Passman's results [S], there exists an $x \in F(G)$ such that $|C_{G_p}(x)| \leq |G_p|^{1/2}$. If |G| is odd or if G_p is Abelian, then there even exists an $x \in F(G)$ with $|C_{G_p}(x)| \leq |G_p|^{1/2}$. As $C_G(x) = C_{G_p}(x) \cdot F(G)$, we conclude that $|Cl_G(x)| = |G_p| \cdot |G_p| \cdot |G_p|^{1/2}$, and that $|Cl_G(x)| = |G_p|$ if |G| is odd or if G_p is Abelian. Also notice that $|Cl_G(x)| \geq |G_p|^{1/2}$, and that $|Cl_G(x)| = |G_p| \cdot |G_p| \cdot |G_p|$ if |G| is odd or if G_p is Abelian. Also notice that $|Cl_G(x)| \geq |G_p|^{1/2}$, and that $|Cl_G(x)| = |G_p| \cdot |G_p| \cdot |G_p|$ if |G| is odd or if G_p is Abelian. Also notice that $|Cl_G(x)| \geq |G_p| \cdot |G_p| \cdot |G_p| \cdot |G_p|$.

Theorem 1. Let p be an arbitrary prime divisor of |G|. If the commutator subgroup G' of G is nilpotent, then $|G_p:O_p(G)| \leq p^{\overline{oc_p}(G)}$.

Proof. By induction on |G|, we may assume that $O_p(G)=1$. It is therefore sufficient to show that $|G_p| \leq p^{\overline{\omega c_p(G)}}$. Since G' is nilpotent, $G_pF(G) \triangleleft G$ and so $O_p(G_pF(G)) \leq O_p(G)=1$. Hence, by induction we may assume that $G=G_pF(G)$. Clearly, $G_p \cap F(G)=1$. It follows that $G_p \simeq G/F(G)$ is Abelian. Hence, by Lemma 4 we get $|G_p| \leq p^{\overline{\omega c_p(G)}}$. The proof is now complete.

In Ref. [3], D. Chillag and M. Herzog have proved that if G is solvable with $O_p(G)=1$, then $r_p(G) \le 2\omega c_p(G)$, and that if |G| is odd and $O_p(G)=1$, then $r_p(G) \le \omega c_p(G)$. Now let us improve the above-mentioned result.

Theorem 2. Let $O_p(G) = 1$. Then the following statements hold:

- (1) If G is p-solvable, then $r_p(G) \leq 2\overline{\omega c}_p(G)$;
- (2) If |G| is odd, then $r_p(G) \leq \overline{\omega c}_p(G)$;
- (3) If G is solvable and G_p is Abelian, then $r_p(G) \leq \overline{\omega c}_p(G)$.

Proof. Since groups of odd order are solvable, G in the above three cases is always p-solvable.

Let V be a minimal normal subgroup of G. As G is p-solvable with $O_p(G)=1$, V is a p'-group. If $O_p(G/V)=1$, then since $r_p(G)=r_p(G/V)$ and $\overline{\omega c_p}(G/V)\leq \overline{\omega c_p}(G)$, we are done by induction. Hence we assume that $O_p(G/V)\neq 1$. Let $H/V=O_p(G/V)$. We have H=PV, where $P\in \mathrm{Syl}_p(H)$ and $P\neq 1$. Clearly, V is a normal p-complement of H and $O_p(H)=1$.

If V is non-solvable, then p is odd because 2-solvable groups must be solvable. According to Lemma 3, $|P| \leq p^{2\overline{\omega c_p}(H)} \leq p^{2\overline{\omega c_p}(G)}$. If V is solvable, then V is elementary Abelian. Thus, according to Lemma 4, $|P| \leq p^{2\overline{\omega c_p}(H)} \leq p^{2\overline{\omega c_p}(G)}$, and $|P| \leq p^{\overline{\omega c_p}(H)} \leq p^{\overline{\omega c_p}(G)}$ if |G| is odd or if G is Abelian. Therefore, all the chief p-factors of G between 1 and H have rank at most $2\overline{\omega c_p}(G)$, and at most $\overline{\omega c_p}(G)$ if |G| is odd or if G is solvable with Abelian G_p .

Clearly, $O_p(G/H)=1$. We therefore can apply induction to G/H and get $r_p(G/H) \le 2\overline{\omega c}_p(G/H) \le 2\overline{\omega c}_p(G)$, and $r_p(G/H) \le \overline{\omega c}_p(G/H) \le \overline{\omega c}_p(G)$ if |G| is odd or if G is solvable with Abelian G_p . It follows that $r_p(G) \le 2\overline{\omega c}_p(G)$ and $r_p(G) \le \overline{\omega c}_p(G)$ if |G| is odd or if G is solvable with Abelian G_p . This completes the proof.

Using Theorem 2 and Huppert's estimates^[1], a bound for the p-length of a p-solvable group G, $l_p(G)$, can be obtained in terms of $\overline{\omega c}_p(G)$. Namely,

Theorem 3. Let G be p-solvable and p be an odd prime. Define b=1 if |G| is odd or if G is solvable with Abelian G_p , and b=2 if G is an arbitrary p-solvable group. Then

$$l_p(G/O_p(G) \leq \begin{cases} 2 + \log_p(b\overline{\omega c}_p(G)), & \text{if p is not a Fermat prime;} \\ 1 + \log_{p-2}(b\overline{\omega c}_p(G)(p-3) + 1), & \text{if $p \neq 3$, a Fermat prime;} \\ 2 + \log_2(b\overline{\omega c}_p(G)), & \text{if $p = 3$.} \end{cases}$$

References

- 1 Manz, O., Bull. London. Math. Soc., 1985, 17:545.
- 2 Wang, Y. Q., Pacific J. Math., 1991, 148: 351.
- 3 Chillag, D. & Herzog, M., J. Algebra, 1990, 131:110.
- 4 Rose, J. S., A Course on Group Theory, London, New York, Melbourne 1978, p. 169.
- 5 Gluck, D. & Wolf, T. R., Trans. Amer. Math. Soc., 1984, 282:137.
- 6 Gluck, D., Canad. J. Math., 1983, 35:59.
- 7 Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, 1967, p. 279; p. 277.
- 8 Passman, D., Trans. Amer. Math. Soc., 1966, 123:99.