Bifurcations of rough heteroclinic loop with two saddle points

JIN Yinlai (全银来)^{1,2} & ZHU Deming (朱德明)²

- 1. Department of Mathematics, Linyi Teachers' University, Linyi 276005, China (email: jinyinlai@sina.com.cn);
- 2. Department of Mathematics, East China Normal University, Shanghai 200062, China (email: dmzhu@euler. math.ecnu.edu.cn)

Received April 16, 2002; revised September 30, 2002

Abstract The bifurcation problems of rough 2-point-loop are studied for the case $\rho_1^1 > \lambda_1^1, \; \rho_2^1 < \lambda_2^1, \; \rho_1^1 \rho_2^1 < \lambda_1^1 \lambda_2^1, \; \text{where} \; -\rho_i^1 < 0 \; \text{and} \; \lambda_i^1 > 0 \; \text{are} \; \text{the pair of principal eigenvalues of unperturbed system at saddle point} \; p_i, \; i=1,2. \; \text{Under the transversal and nontwisted conditions, the authors obtain some results of the existence of one 1-periodic orbit, one 1-periodic and one 1-homoclinic loop, two 1-periodic orbits and one 2-fold 1-periodic orbit. Moreover, the bifurcation surfaces and the existence regions are given, and the corresponding bifurcation graph is drawn.$

Keywords: local coordinates, Poincaré map, 1-homoclinic loop, 1-periodic orbit, 2-fold 1-periodic orbit, bifurcation surface.

1 Introduction and hypotheses

As well known, in the last several decades, lots of papers and books were devoted to the study of the bifurcation problems of homoclinic and heteroclinic loops of planar systems^[1-10].

In recent years, the bifurcations of homoclinic and heteroclinic loops for higher dimensional cases were also studied extensively [11-18]. In this paper, we consider the bifurcations of rough heteroclinic loop with two hyperbolic saddle points (abbr. 2-point-loop) in higher dimensional space.

Consider the following C^r system

$$\dot{z} = f(z) + q(z, \mu),\tag{1.1}$$

and its unperturbed system

$$\dot{z} = f(z), \tag{1.2}$$

where $r \ge 4$, $z \in \mathbb{R}^{m+n}$, $\mu \in \mathbb{R}^l$, $l \ge 2$, $0 \le |\mu| \ll 1$, g(z,0) = 0. For i = 1, 2, we assume that $f(p_i) = 0$, $g(p_i, \mu) = 0$ and

(H1) $z=p_i$ is a hyperbolic critical point of (1.2). The C^r stable manifold W_i^s and the unstable manifold W_i^u of $z=p_i$ are m-dimensional and n-dimensional, respectively. Moreover, $-\rho_i^1$ and λ_i^1 are the simple real eigenvalues of $D_z f(p_i)$ such that any remaining eigenvalues $-\rho_i^j$ and λ_i^k of $D_z f(p_i)$ satisfy

$$-\operatorname{Re}\rho_i^j < -\rho_i^0 < -\rho_i^1 < 0 < \lambda_i^1 < \lambda_i^0 < \operatorname{Re}\lambda_i^k, \tag{1.3}$$

where $2 \leqslant j \leqslant m$, $2 \leqslant k \leqslant n$, ρ_i^0 and λ_i^0 are some positive constants.

- (**H2**) System (1.2) has a heteroclinic loop $\Gamma = \Gamma_1 \cup \Gamma_2$, where $\Gamma_i = \{z = r_i(t) : t \in \mathbb{R}\}$, $r_i(+\infty) = r_{i+1}(-\infty) = p_{i+1}$, $r_3(t) = r_1(t)$, $p_3 = p_1$. For any point $P_i \in \Gamma_i$, $\dim(T_{P_i}W_i^u \cap T_{P_i}W_{i+1}^s) = 1$, $W_3^s = W_1^s$.
- **(H3)** Define $e_i^{\pm} = \lim_{t \to \mp \infty} \dot{r}_i(t)/|\dot{r}_i(t)|$. Then, $e_i^{+} \in T_{p_i}W_i^u$ and $e_i^{-} \in T_{p_{i+1}}W_{i+1}^s$ are the unit eigenvectors corresponding to λ_i^1 and $-\rho_{i+1}^1$, respectively.

(H4)
$$\operatorname{span}(T_{r_i(t)}W_i^u, T_{r_i(t)}W_{i+1}^s, e_{i+1}^+) = \mathbb{R}^{m+n}, \ t \gg 1,$$

 $\operatorname{span}(T_{r_i(t)}W_i^u, T_{r_i(t)}W_{i+1}^s, e_{i-1}^-) = \mathbb{R}^{m+n}, \ t \ll -1,$
where $e_3^+ = e_1^+, \ e_0^- = e_2^-.$

(H4) is called the strong inclination property, which is equivalent to

$$\lim_{t \to +\infty} (T_{r_i(t)} W_i^u + T_{r_i(t)} W_{i+1}^s) = T_{p_{i+1}} W_{i+1}^{uu} + T_{p_{i+1}} W_{i+1}^s,$$

$$\lim_{t \to -\infty} (T_{r_i(t)} W_i^u + T_{r_i(t)} W_{i+1}^s) = T_{p_i} W_i^u + T_{p_i} W_i^{ss},$$

where W_i^{ss} and W_i^{uu} are the strong stable and the strong unstable manifolds of p_i , respectively. $W_i^{ss} \subset W_i^s$ is the (m-1)-dimensional solution manifold tangent to the generalized eigenspace corresponding to those eigenvalues with smaller real part than $-\rho_i^0$, and $W_i^{uu} \subset W_i^u$ is the (n-1)-dimensional solution manifold tangent to the generalized eigenspace corresponding to those eigenvalues with larger real part than λ_i^0 .

It is easy to see that under hypothesis (H1), hypotheses (H2)—(H4) are generic.

Under hypotheses (H1)——(H4), Zhu and Xia^[17] studied the bifurcation problems of 2-point-loop for the case $\rho_i^1 > \lambda_i^1$, i = 1, 2. And in ref. [18], Tian and Zhu studied the fine 2-point-loop. In this paper, we study the bifurcations of rough 2-point-loop for the case $\rho_1^1 > \lambda_1^1$, $\rho_2^1 < \lambda_2^1$, and $(\rho_1^1 \rho_2^1)/(\lambda_1^1 \lambda_2^1) < 1$. Under some transversal conditions and the nontwisted condition, we discuss the existence of one 1-periodic orbit, one 1-periodic and one 1-homoclinic loop, two 1-periodic orbits and one 2-fold 1-periodic orbit. Moreover, the relative bifurcation surfaces and the existence regions are given, and the corresponding bifurcation graph is drawn.

Our results show that the bifurcation pattern of the rough loop in case $(\rho_1^1 - \lambda_1^1)(\rho_2^1 - \lambda_2^1) < 0$ studied here is much more complicated than that in case $(\rho_1^1 - \lambda_1^1)(\rho_2^1 - \lambda_2^1) > 0$ studied by ref. [17].

2 Local coordinates and bifurcation equations

In this section, we will select the linear independent solutions of the linear variational equation along Γ_i as the demanded local coordinates to construct the Poincaré map F_i which will be the composition of two maps. One of the maps, F_i^0 , will be induced by the flow near p_i (approximately, which will be taken as the flow generated by the linearization of (1.1) at p_i). The other map, F_i^1 , will be constructed from the flow outside a neighborhood of p_i and in a sufficiently small tube neighborhood of Γ_i . The Poincaré map, F_i , will then be given by $F_i = F_i^1 \circ F_i^0$. This method is similar to that of ref. [17], but is much easier than that of ref. [17].

As well known, W_i^s and W_i^u are C^r (refs. [19, 20]). Suppose that the neighborhood U_i of p_i is small enough, then there always exists a C^r transformation such that system (1.1) has the

following form in U_i :

$$\dot{x} = [\lambda_i^1(\mu) + \cdots] x + O(u)[O(u) + O(y) + O(v)],
\dot{y} = [-\rho_i^1(\mu) + \cdots] y + O(v)[O(v) + O(x) + O(u)],
\dot{u} = [B_i^1(\mu) + \cdots] u + O(x)[O(x) + O(y) + O(v)],
\dot{v} = [-B_i^2(\mu) + \cdots] v + O(y)[O(y) + O(x) + O(u)],$$
(2.1)

for $|\mu|$ sufficiently small, where $\lambda_i^1(0) = \lambda_i^1$, $\rho_i^1(0) = \rho_i^1$, $\operatorname{Re}\sigma(B_i^1(0)) > \lambda_i^0$, $\operatorname{Re}\sigma(-B_i^2(0)) < -\rho_i^0$, $z = (x, y, u^*, v^*)^*$, $x \in \mathbb{R}^1$, $y \in \mathbb{R}^1$, $u \in \mathbb{R}^{n-1}$, $v \in \mathbb{R}^{m-1}$, and (2.1) is C^{r-1} . Here, the sign * means transposition. In U_i , we have

$$\begin{split} W_i^u &= \{z: y=0, v=0\}, & W_i^s &= \{z: x=0, u=0\}, \\ W_i^{uu} &= \{z: x=x(u), y=0, v=0\}, & W_i^{ss} &= \{z: x=0, u=0, y=y(v)\}, \\ \Gamma \cap W_i^u &= \{z: u=u(x), y=0, v=0\}, & \Gamma \cap W_i^s &= \{z: x=0, u=0, v=v(y)\}, \end{split}$$

where $u(0) = \dot{u}(0) = 0$, $v(0) = \dot{v}(0) = 0$, $x(0) = \dot{x}(0) = 0$, $y(0) = \dot{y}(0) = 0$.

Denote $r_i(t) = (r_i^x(t), r_i^y(t), (r_i^u(t))^*, (r_i^v(t))^*)^*$. Assume $r_i(-T_i^0) = (\delta, 0, \delta_{u_i}^*, 0^*)^*, r_i(T_i^1)$ = $(0, \delta, 0^*, \delta_{v_i}^*)^*$, where $\delta > 0$ is small enough such that $\{(x, y, u^*, v^*)^* : |x|, |y|, |u|, |v| < 2\delta\} \subset U_i$. Obviously, $|\delta_{u_i}| = o(\delta), |\delta_{v_i}| = o(\delta)$. Consider the linear variational system

$$\dot{z} = Df(r_i(t))z \tag{2.2}$$

and its adjoint system

$$\dot{\phi} = -(Df(r_i(t)))^*\phi. \tag{2.3}$$

By ref. [16], we see (2.2) and (2.3) have exponential dichotomies in both \mathbb{R}^- and \mathbb{R}^+ . Similar to that of ref. [17], system (2.2) has a fundamental solution matrix $Z_i(t) = (z_i^1(t), z_i^2(t), z_i^3(t), z_i^4(t))$ satisfying

$$\begin{split} z_i^1(t) &\in (T_{r_i(t)}W_i^u)^c \cap (T_{r_i(t)}W_{i+1}^s)^c, z_i^2(t) = -\dot{r}_i(t)/|\dot{r}_i^y(T_i^1)| \in T_{r_i(t)}W_i^u \cap T_{r_i(t)}W_{i+1}^s, \\ z_i^3(t) &= (z_i^{3,1}(t), \cdots, z_i^{3,n-1}(t)) \in T_{r_i(t)}W_i^u \cap (T_{r_i(t)}W_{i+1}^s)^c, \\ z_i^4(t) &= (z_i^{4,1}(t), \cdots, z_i^{4,m-1}(t)) \in (T_{r_i(t)}W_i^u)^c \cap T_{r_i(t)}W_{i+1}^s, \\ Z_i(-T_i^0) &= \begin{pmatrix} w_i^{11} & w_i^{21} & 0 & w_i^{41} \\ w_i^{12} & 0 & 0 & w_i^{42} \\ w_i^{13} & w_i^{23} & I & w_i^{43} \\ 0 & 0 & 0 & w_i^{44} \end{pmatrix}, \quad Z_i(T_i^1) &= \begin{pmatrix} 1 & 0 & w_i^{31} & 0 \\ 0 & 1 & w_i^{32} & 0 \\ 0 & 0 & w_i^{33} & 0 \\ w_i^{14} & w_i^{24} & w_i^{34} & I \end{pmatrix}, \end{split}$$

where $W_3^{ss} = W_1^{ss}$, $w_i^{21} < 0$, $w_i^{12} \neq 0$, $\det w_i^{44} \neq 0$, $\det w_i^{33} \neq 0$. Moreover, for δ small enough, $||w_i^{1j}(w_i^{12})^{-1}|| \ll 1$ for $j \neq 2$, $||w_i^{2j}(w_i^{21})^{-1}|| \ll 1$ for j = 3, 4, $||w_i^{3j}(w_i^{33})^{-1}|| \ll 1$ for $j \neq 3$, $||w_i^{4j}(w_i^{44})^{-1}|| \ll 1$ for $j \neq 4$.

Thus, we may select $z_i^1(t)$, $z_i^2(t)$, $z_i^3(t)$, $z_i^4(t)$ as a local coordinate system along Γ_i . Let $\Phi_i(t) = (\phi_i^1(t), \phi_i^2(t), \phi_i^3(t), \phi_i^4(t)) = (Z_i^{-1}(t))^*$ be the fundamental solution matrix of (2.3).

Denote $w_i^{12} = \Delta_i |w_i^{12}|$. We say that Γ is nontwisted as $\Delta = \Delta_1 \Delta_2 = 1$, and twisted as $\Delta = -1$. In this paper, we only consider the case $\Delta = 1$. The other cases are similar.

Let $N_i = (n_i^1, 0, (n_i^3)^*, (n_i^4)^*)^*$, $n_i^3 = (n_i^{3,1}, \cdots, n_i^{3,n-1})^*$, $n_i^4 = (n_i^{4,1}, \cdots, n_i^{4,m-1})^*$, $h_i(t) = r_i(t) + Z_i(t)N_i$. We define $S_i^0 = \{z = h_i(-T_i^0) : |x|, |y|, |u|, |v| < 2\delta\}$, $S_i^1 = \{z = h_i(T_i^1) : |x|, |y|, |u|, |v| < 2\delta\}$ as the cross sections of Γ_i at $t = -T_i^0$ and $t = T_i^1$, respectively.

Now, we consider the map $F_i^0: q_{i-1}^1 \in S_{i-1}^1 \mapsto q_i^0 \in S_i^0$, and the map $F_i^1: q_i^0 \in S_i^0 \mapsto q_i^1 \in S_i^1$, where $S_0^1 = S_2^1, q_0^1 = q_2^1$. Denote

$$\begin{aligned} q_i^0 &= (x_i^0, y_i^0, (u_i^0)^*, (v_i^0)^*)^* = r_i(-T_i^0) + Z_i(-T_i^0) N_i^0, N_i^0 = (n_i^{0,1}, 0, (n_i^{0,3})^*, (n_i^{0,4})^*)^*, \\ q_i^1 &= (x_i^1, y_i^1, (u_i^1)^*, (v_i^1)^*)^* = r_i(T_i^1) + Z_i(T_i^1) N_i^1, N_i^1 = (n_i^{1,1}, 0, (n_i^{1,3})^*, (n_i^{1,4})^*)^*. \end{aligned}$$

By the expressions of $Z_i(-T_i^0)$ and $Z_i(T_i^1)$, i=1,2, we get $y_i^1 \approx \delta$, $x_i^0 \approx \delta$, and

$$n_i^{1,1} = x_i^1 - w_i^{31}(w_i^{33})^{-1}u_i^1,$$

$$n_i^{1,3} = (w_i^{33})^{-1}u_i^1,$$

$$n_i^{1,4} = -w_i^{14}x_i^1 + (w_i^{14}w_i^{31} + w_i^{24}w_i^{32} - w_i^{34})(w_i^{33})^{-1}u_i^1 + v_i^1 - \delta_{v_i},$$
(2.4)

$$n_{i}^{0,1} = (w_{i}^{12})^{-1}(y_{i}^{0} - w_{i}^{42}(w_{i}^{44})^{-1}v_{i}^{0}),$$

$$n_{i}^{0,3} = u_{i}^{0} - \delta_{u_{i}} + b_{i}(w_{i}^{12})^{-1}y_{i}^{0} + [a_{i}^{3} - w_{i}^{23}(w_{i}^{21})^{-1}a_{i}^{1}](w_{i}^{44})^{-1}v_{i}^{0},$$

$$n_{i}^{0,4} = (w_{i}^{44})^{-1}v_{i}^{0},$$
(2.5)

where $b_i = w_i^{11} w_i^{23} (w_i^{21})^{-1} - w_i^{13}$, $a_i^j = w_i^{1j} (w_i^{12})^{-1} w_i^{42} - w_i^{4j}$, j = 1, 3.

Suppose that $z = h_i(t)$ is the solution of (1.1) in some small tube neighborhood of Γ_i . Substituting it into (1.1) and using $\dot{r}_i(t) = f(r_i(t))$, $\dot{Z}_i(t) = Df(r_i(t))Z_i(t)$ and some simple calculation, we obtain the maps F_i^1 defined by

$$n_i^{1,j} = n_i^{0,j} + M_i^j \mu + h.o.t., \quad j = 1, 3, 4,$$
 (2.6)

where $M_i^j = \int_{-\infty}^{+\infty} {\phi_i^j}^*(t) g_\mu(r_i(t), 0) dt$, i = 1, 2, j = 1, 3, 4 are called Melnikov vectors.

Suppose that

(H5)
$$\beta_1 = \rho_1^1/\lambda_1^1 > 1, \ \beta_2 = \rho_2^1/\lambda_2^1 < 1, \ \beta_1\beta_2 < 1.$$

By (H5) and the continuity of $\beta_i(\mu) = \rho_i^1(\mu)/\lambda_i^1(\mu)$, i=1,2, we have $\beta_1(\mu) > 1$, $\beta_2(\mu) < 1$ and $\beta_1(\mu)\beta_2(\mu) < 1$ for $|\mu| \ll 1$. We may as well denote $\beta_i(\mu) := \beta_i$, i=1,2. Let τ_i be the flying time from q_{i-1}^1 to q_i^0 , $s_1 = e^{-\lambda_1^1(\mu)\tau_1}$, $s_2 = e^{-\rho_2^1(\mu)\tau_2}$. Then, using the linearization of (1.1) at p_i , we can easily get F_1^0 defined by

$$x_0^1 \approx s_1 \delta, \quad y_1^0 \approx s_1^{\beta_1} \delta, \quad u_0^1 \approx s_1^{B_1^1(\mu)/\lambda_1^1(\mu)} u_1^0, \quad v_1^0 \approx s_1^{B_1^2(\mu)/\lambda_1^1(\mu)} v_0^1,$$
 (2.7)

and F_2^0 defined by

$$x_1^1 \approx s_2^{1/\beta_2} \delta, \quad y_2^0 \approx s_2 \delta, \quad u_1^1 \approx s_2^{B_2^1(\mu)/\rho_2^1(\mu)} u_2^0, \quad v_2^0 \approx s_2^{B_2^2(\mu)/\rho_2^1(\mu)} v_1^1, \tag{2.8}$$

if we neglect the higher order terms, (s_i, u_i^0, v_{i-1}^1) , i = 1, 2 are called Silnikov coordinates.

Thus, we have defined the Poincaré map $F_1 = F_1^1 \circ F_1^0 \colon S_2^1 \mapsto S_1^1$ as

$$\begin{split} n_1^{1,1} &= (w_1^{12})^{-1} \delta s_1^{\beta_1} + M_1^1 \mu + \text{h.o.t.}, \\ n_1^{1,3} &= u_1^0 - \delta_{u_1} + b_1 (w_1^{12})^{-1} \delta s_1^{\beta_1} + M_1^3 \mu + \text{h.o.t.}, \\ n_1^{1,4} &= (w_1^{44})^{-1} s_1^{B_1^2(\mu)/\lambda_1^1(\mu)} v_0^1 + M_1^4 \mu + \text{h.o.t.}, \end{split} \tag{2.9}$$

and $F_2 = F_2^1 \circ F_2^0 \colon S_1^1 \mapsto S_2^1$ as

$$\begin{split} n_2^{1,1} &= (w_2^{12})^{-1} \delta s_2 + M_2^1 \mu + \text{h.o.t.}, \\ n_2^{1,3} &= u_2^0 - \delta_{u_2} + b_2 (w_2^{12})^{-1} \delta s_2 + M_2^3 \mu + \text{h.o.t.}, \\ n_2^{1,4} &= (w_2^{44})^{-1} s_2^{B_2^2(\mu)/\rho_2^1(\mu)} v_1^1 + M_2^4 \mu + \text{h.o.t.}. \end{split} \tag{2.10}$$

Let $G_i(q_{i-1}^1) = (G_i^1, G_i^3, G_i^4) = F_i(q_{i-1}^1) - q_i^1$, $q_0^1 = q_2^1$. Owing to (2.4), (2.7)—(2.10), we get the successor functions G_i as follows:

$$G_{1}^{1} = \delta[(w_{1}^{12})^{-1}s_{1}^{\beta_{1}} - s_{2}^{1/\beta_{2}}] + M_{1}^{1}\mu + \text{h.o.t.},$$

$$G_{1}^{3} = u_{1}^{0} - \delta_{u_{1}} + b_{1}(w_{1}^{12})^{-1}\delta s_{1}^{\beta_{1}} - (w_{1}^{33})^{-1}s_{2}^{B_{2}^{1}(\mu)/\rho_{2}^{1}(\mu)}u_{2}^{0} + M_{1}^{3}\mu + \text{h.o.t.},$$

$$G_{1}^{4} = -v_{1}^{1} + \delta_{v_{1}} + w_{1}^{14}\delta s_{2}^{1/\beta_{2}} + (w_{1}^{44})^{-1}s_{1}^{B_{1}^{2}(\mu)/\lambda_{1}^{1}(\mu)}v_{0}^{1} + M_{1}^{4}\mu + \text{h.o.t.},$$

$$G_{2}^{1} = \delta[(w_{2}^{12})^{-1}s_{2} - s_{1}] + M_{2}^{1}\mu + \text{h.o.t.},$$

$$G_{2}^{3} = u_{2}^{0} - \delta_{u_{2}} + b_{2}(w_{2}^{12})^{-1}\delta s_{2} - (w_{2}^{33})^{-1}s_{1}^{B_{1}^{1}(\mu)/\lambda_{1}^{1}(\mu)}u_{1}^{0} + M_{2}^{3}\mu + \text{h.o.t.},$$

$$G_{2}^{4} = -v_{0}^{1} + \delta_{v_{2}} + w_{2}^{14}\delta s_{1} + (w_{2}^{44})^{-1}s_{2}^{B_{2}^{2}(\mu)/\rho_{2}^{1}(\mu)}v_{1}^{1} + M_{2}^{4}\mu + \text{h.o.t.}.$$

$$(2.11)$$

We call the following equation the bifurcation equation:

$$(G_1^1, G_1^3, G_1^4, G_2^1, G_2^3, G_2^4) = 0. (2.12)$$

Thus, there is a 1-1 correspondence between the 2-point-loop, 1-homoclinic and 1-periodic orbit of (1.1) and the solution $Q = (s_1, s_2, u_1^0, u_2^0, v_1^1, v_2^1)$ of (2.12) with $s_1 \ge 0$, $s_2 \ge 0$.

Remark 2.1. Under hypothesis (H5), G is C^{r-2} with respect to Q and μ in the region $s_1 \ge 0, s_2 \ge 0$.

3 Nontwisted bifurcations

Now, we consider the bifurcations near Γ under hypotheses (H1)—(H5). Consider the solution of (2.12). It is easy to see that the equation $(G_1^3, G_1^4, G_2^3, G_2^4) = 0$ always has a solution $u_i^0 = u_i^0(s_1, s_2, \mu), \ v_i^1 = v_i^1(s_1, s_2, \mu) \ i = 1, 2$ for δ , $|\mu|$, s_1 , s_2 sufficiently small. Substituting it into $(G_1^1, G_2^1) = 0$, we obtain

$$s_2^{1/\beta_2} = (w_1^{12})^{-1} s_1^{\beta_1} + \delta^{-1} M_1^1 \mu + \text{h.o.t.},$$

$$s_1 = (w_2^{12})^{-1} s_2 + \delta^{-1} M_2^1 \mu + \text{h.o.t.}.$$
(3.1)

Firstly, if (3.1) has solution $s_1 = s_2 = 0$, then we have

$$M_i^1 \mu + h.o.t. = 0, \quad i = 1, 2.$$
 (3.2)

If $M_i^1 \neq 0$, then by (3.2) and the implicit function theorem, there exists a (l-1)-dimensional surface L_i with a normal vector M_i^1 at $\mu = 0$, such that the *i*th equation of (3.1) has solution $s_1 = s_2 = 0$ as $\mu \in L_i$ and $|\mu| \ll 1$, that is, Γ_i is persistent.

If $\operatorname{rank}(M_1^1, M_2^1) = 2$, then $L_{12} = L_1 \cap L_2$ is a (l-2)-dimensional surface (see ref. [21]) such that (3.1) has solution $s_1 = s_2 = 0$ as $\mu \in L_{12}$ and $|\mu| \ll 1$, equivalently, system (1.1) has a 1-heteroclinic loop near Γ .

Secondly, suppose that (3.1) has solution $s_1 = 0, s_2 > 0$. Then we have

$$s_2 = -\delta^{-1} w_2^{12} M_2^1 \mu + \text{h.o.t.},$$

$$(-\delta^{-1} w_2^{12} M_2^1 \mu + \text{h.o.t.})^{1/\beta_2} = \delta^{-1} M_1^1 \mu + \text{h.o.t.}.$$
(3.3)

If $M_1^1\mu > 0$, $\Delta_2 M_2^1\mu < 0$, then following from the implicit function theorem, there exists a (l-1)-dimensional surface L_1^2 with a normal vector M_1^1 at $\mu = 0$, which means L_1^2 is tangent to L_1 at $\mu = 0$, such that (3.1) has a solution $s_1 = 0$, $s_2 = s_2(\mu) > 0$ as $\mu \in L_1^2$ and $|\mu| \ll 1$. That is to say, system (1.1) has a 1-homoclinic loop Γ_1^2 near Γ homoclinic to p_1 as $\mu \in L_1^2$ and $|\mu| \ll 1$.

In the same way, we can discuss the case $s_1 > 0$, $s_2 = 0$ and obtain the surface L_2^1 in the region $M_2^1 \mu > 0$, $\Delta_1 M_1^1 \mu < 0$ and $|\mu| \ll 1$ which is tangent to L_1 at $\mu = 0$ such that system (1.1) has a 1-homoclinic loop Γ_2^1 near Γ homoclinic to p_2 as $\mu \in L_2^1$.

Denote $R_1^2 = \{ \mu : M_1^1 \mu > 0, \ \Delta_2 M_2^1 \mu < 0, \ |\mu| \ll 1 \}, \ R_2^1 = \{ \mu : \Delta_1 M_1^1 \mu < 0, \ M_2^1 \mu > 0, \ |\mu| \ll 1 \}.$ Then, we have shown the following theorem.

Theorem 3.1. Suppose that hypotheses (H1)—(H5) are valid, and rank $(M_1^1, M_2^1) = 2$. Then

- (1) There exists a (l-1)-dimensional surface L_i with normal vector M_i^1 at $\mu=0$, such that (1.1) has a heteroclinic orbit joining p_1 and p_2 near Γ_i if and only if $\mu\in L_i$ and $|\mu|\ll 1$, i=1,2. Moreover, (1.1) has a 1-heteroclinic loop near Γ if and only if $|\mu|\ll 1$ and $\mu\in L_{12}=L_1\cap L_2$ which is a (l-2)-dimensional surface.
- (2) There exists a (l-1)-dimensional surface $L_1^2 \subset R_1^2$ which is tangent to L_1 at $\mu = 0$ such that (1.1) has a unique 1-homoclinic loop Γ_1^2 connecting p_1 for $\mu \in L_1^2$. Meanwhile, there also exists a (l-1)-dimensional surface $L_2^1 \subset R_2^1$ which is tangent to L_1 at $\mu = 0$ such that (1.1) has a unique 1-homoclinic loop Γ_2^1 connecting p_2 for $\mu \in L_2^1$.

Now, we consider the 1-periodic orbits bifurcating from Γ . That is, consider the solutions of (3.1) which satisfy $s_1 > 0$, $s_2 > 0$. For simplicity, we assume

(H6)
$$\Delta_1 = \Delta_2 = 1.$$

Obviously, for $\Delta_1 = \Delta_2 = 1$, R_1^2 and R_2^1 read as $\{\mu : M_1^1 \mu > 0, M_2^1 \mu < 0, |\mu| \ll 1\}$ and $\{\mu : M_1^1 \mu < 0, M_2^1 \mu > 0, |\mu| \ll 1\}$, respectively.

Lemma 3.1. Suppose that hypotheses (H1)—(H6) are valid, then, in addition to the 1-homoclinic loop Γ_1^2 , system (1.1) has exactly one simple 1-periodic orbit near Γ for $\mu \in L_1^2$. Moreover, the 1-periodic orbit is persistent for μ changes in the neighborhood of L_1^2 .

Proof. If $\mu \in L_1^2$ and $|\mu| \ll 1$, then we know that (1.1) has one 1-homoclinic loop Γ_1^2 homoclinic to p_1 . Now, following (3.1), we have

$$s_1^{\beta_1} + \delta^{-1} w_1^{12} M_1^1 \mu + \text{h.o.t.} = w_1^{12} (w_2^{12})^{1/\beta_2} (s_1 - \delta^{-1} M_2^1 \mu + \text{h.o.t.})^{1/\beta_2}.$$
(3.4)

Let $V_1(s_1)$ and $N_1(s_1)$ be the left and right hand of (3.4), respectively. Then, by (3.3), we get $V_1(0) = N_1(0)$ as $\mu \in L_1^2$. Moreover,

$$\dot{V}_1(s_1) = \beta_1 s_1^{\beta_1-1}, \quad \dot{N}_1(s_1) = (1/\beta_2) w_1^{12} (w_2^{12})^{1/\beta_2} (s_1 - \delta^{-1} M_2^1 \mu + \text{h.o.t.})^{1/\beta_2-1},$$

so $0 = \dot{V}_1(s_1)|_{s_1=0} < \dot{N}_1(s_1)|_{s_1=0}$ for $\beta_1 > 1$, $\beta_2 < 1$. Therefore, there is a \tilde{s}_1 , $0 < \tilde{s}_1 \ll 1$ such that for $0 < s_1 < \tilde{s}_1$, $V_1(s_1) < V_1(s_1)$.

Denote $\bar{s}_1 = -\delta^{-1} M_2^1 \mu$. Then

$$V_1(\bar{s}_1) = \bar{s}_1^{\beta_1} + \delta^{-1} w_1^{12} M_1^1 \mu + \text{h.o.t.}, \quad N_1(\bar{s}_1) = w_1^{12} (2w_2^{12})^{1/\beta_2} (\bar{s}_1)^{1/\beta_2} + \text{h.o.t.}.$$

It is not difficult to check that $V_1(\bar{s}_1) > N_1(\bar{s}_1)$ for the reason that $|\mu|, \bar{s}_2 \ll 1$ and $1 < \beta_1 < \frac{1}{\beta_2}$.

Thus, we get $V_1(s_1) = N_1(s_1)$ has at least one solution s_1^* satisfying $0 < s_1^* < \bar{s}_1$. That is to say, (1.1) has at least one 1-periodic orbit near Γ for $\mu \in L_1^2$ and $0 < |\mu| \ll 1$.

It is easy to see that $V_1(s_1) > N_1(s_1)$ as $\bar{s}_1 \leqslant s_1 \ll 1$. In fact,

$$\begin{split} \dot{V}_1(s_1) &= \beta_1 s_1^{\beta_1 - 1} > [1/(2\beta_2)] w_1^{12} (2w_2^{12})^{1/\beta_2} s_1^{1/\beta_2 - 1} + \text{h.o.t.} \\ &\geqslant (1/\beta_2) w_1^{12} (w_2^{12})^{1/\beta_2} (s_1 - \delta^{-1} M_2^1 \mu + h.o.t.)^{1/\beta_2 - 1} = \dot{N}_1(s_1) \end{split}$$

Combining it with $V_1(\bar{s}_1) > N_1(\bar{s}_1)$, we can obtain $V_1(s_1) > N_1(s_1)$ as $\bar{s}_1 \leqslant s_1 \ll 1$ immediately.

Next, we prove the uniqueness of the sufficiently small positive solution of equation $V_1(s_1) = N_1(s_1)$.

Noticing that $V_1(s_1) - N_1(s_1) = 0$ has solutions $s_1 = 0$ and $s_1 = s_1^*$, we know that $\dot{V}_1(s_1) - \dot{N}_1(s_1) = 0$ has surely a solution $s_1 = \hat{s}_1$ in $(0, \bar{s}_1)$ according to the Role middle value theorem. Thus we have

$$\beta_1 \hat{s}_1^{\beta_1 - 1} - (1/\beta_2) w_1^{12} (w_2^{12})^{1/\beta_2} (\hat{s}_1 + \bar{s}_1)^{1/\beta_2 - 1} + \text{h.o.t.} = 0,$$

$$\frac{\hat{s}_1}{\hat{s}_1 + \bar{s}_1} = (\beta_1 \beta_2)^{\frac{\beta_2}{\beta_2 - 1}} [(w_1^{12})^{\beta_2} w_2^{12}]^{\frac{1}{1 - \beta_2}} (\hat{s}_1)^{\frac{1 - \beta_1 \beta_2}{1 - \beta_2}} \ll 1 \text{ for } 0 < |\mu| \ll 1.$$

Therefore,

$$\begin{split} \frac{d^2[V_1(\hat{s}_1) - N_1(\hat{s}_1)]}{d{s_1}^2} &= (\beta_1 - 1)\beta_1 \hat{s}_1^{\beta_1 - 2} - \frac{1 - \beta_2}{\beta_2} \frac{1}{\beta_2} w_1^{12} (w_2^{12})^{1/\beta_2} (\hat{s}_1 + \bar{s}_1)^{1/\beta_2 - 2} + \text{h.o.t.} \\ &= \frac{\beta_1 - 1}{\hat{s}_1} \left[1 - \frac{1 - \beta_2}{\beta_2 (\beta_1 - 1)} \frac{\hat{s}_1}{\hat{s}_1 + \bar{s}_1} \right] \dot{N}_1(\hat{s}_1) > 0. \end{split}$$

This turns out that $s_1 = s_1^*$ is the unique sufficiently small positive solution of equation $V_1(s_1) = N_1(s_1)$. Due to (3.1) and (3.3), (3.1) has sufficiently small positive solution $s_2 = s_2^*$ corresponding to $s_1 = s_1^*$. Moreover, s_1^* is a simple zero of $V_1(s_1) = N_1(s_1)$ which is persistent under small perturbation of μ .

The proof is complete.

Lemma 3.2. Suppose that hypotheses (H1)—(H6) hold, then, system (1.1) has no any 1-periodic orbit near Γ for $\mu \in L_2^1$ except the 1-homoclinic loop Γ_2^1 .

Proof. The condition $\mu \in L_2^1$ and $|\mu| \ll 1$ means that (1.1) has one 1-homoclinic loop Γ_2^1 homoclinic to p_2 . Based on (3.1), we have

$$(s_2 + \delta^{-1}w_2^{12}M_2^1\mu + \text{h.o.t.})^{\beta_1} = w_1^{12}(w_2^{12})^{\beta_1}(s_2^{1/\beta_2} - \delta^{-1}M_1^1\mu) + \text{h.o.t.}$$
(3.4)

Let $V_2(s_2)$ and $N_2(s_2)$ be the left and right hand of (3.4)', respectively. Then $V_2(0) = N_2(0)$ as $\mu \in L_2^1$. Moreover,

$$\dot{V}_2(s_2) = \beta_1(s_2 + \delta^{-1}w_2^{12}M_2^1\mu + \text{h.o.t.})^{\beta_1 - 1}, \quad \dot{N}_2(s_2) = (1/\beta_2)w_1^{12}(w_2^{12})^{\beta_1}s_2^{1/\beta_2 - 1}.$$

Taking note of $1 < \beta_1 < 1/\beta_2$, we get

$$\dot{V}_2(s_2) > \beta_1 s_2^{\beta_1 - 1} > \dot{N}_2(s_2) \text{ for } 0 \leqslant s_2 \ll 1.$$

Therefore, $V_2(s_2) > N_2(s_2)$ for $0 < s_2 \ll 1$. The proof is complete.

Lemma 3.3. Suppose that hypotheses (H1)—(H6) hold. Then, the curve $h = V_1(s_1)$ is tangent to $h = N_1(s_1)$ at some point s_1 satisfying $0 \le s_1 \ll 1$ if and only if $\mu \in R_1^2$, $|M_1^1 \mu| \ll |M_2^1 \mu|$ and

$$-\delta^{-1}M_2^1\mu = (w_2^{12})^{\frac{1}{\beta_2-1}} \left(-\frac{M_1^1\mu}{M_2^1\mu}\right)^{\frac{\beta_2}{1-\beta_2}} - \left(\frac{w_1^{12}}{\beta_1\beta_2}\right)^{\frac{1}{\beta_1-1}} \left(-\frac{M_1^1\mu}{M_2^1\mu}\right)^{\frac{1}{\beta_1-1}}.$$
 (3.5)

Proof. It is easy to see that $h = V_1(s_1)$ is tangent to $h = N_1(s_1)$ at point s_1 if and only if $V_1(s_1) = N_1(s_1)$ and $\dot{V}_1(s_1) = \dot{N}_1(s_1)$, that is

$$s_1^{\beta_1} + \delta^{-1} w_1^{12} M_1^1 \mu + \text{h.o.t.} = w_1^{12} (w_2^{12})^{1/\beta_2} (s_1 - \delta^{-1} M_2^1 \mu + \text{h.o.t.})^{1/\beta_2}, \tag{3.4}$$

$$\beta_1 \beta_2 s_1^{\beta_1 - 1} = w_1^{12} (w_2^{12})^{1/\beta_2} (s_1 - \delta^{-1} M_2^1 \mu + \text{h.o.t.})^{1/\beta_2 - 1}.$$
(3.6)

It is not difficult to get that (3.4) and (3.6) have a unique small positive solution

$$s_1 = \left(-\frac{w_1^{12} M_1^1 \mu}{\beta_1 \beta_2 M_2^1 \mu}\right)^{\frac{1}{\beta_1 - 1}} + \text{h.o.t.}$$
(3.7)

only when $\mu \in R_1^2$ and $|M_1^1\mu| \ll |M_2^1\mu|$. Substituting (3.7) into (3.6), we get the lemma.

Lemma 3.4. Suppose that hypotheses (H1)—(H6) hold, then, the curve $h = V_2(s_2)$ cannot be tangent to $h = N_2(s_2)$ at any point s_2 satisfying $0 \le s_2 \le 1$.

Proof. By some elementary computation, one can see that $V_2(s_2) = N_2(s_2)$ and $\dot{V}_2(s_2) = \dot{N}_2(s_2)$ are equivalent to

$$(s_2 + \delta^{-1}w_2^{12}M_2^1\mu + \text{h.o.t.})^{\beta_1} = w_1^{12}(w_2^{12})^{\beta_1}(s_2^{1/\beta_2} - \delta^{-1}M_1^1\mu) + \text{h.o.t.},$$
(3.4)'

$$\beta_1(s_2 + \delta^{-1}w_2^{12}M_2^1\mu + \text{h.o.t.})^{\beta_1 - 1} = (1/\beta_2)w_1^{12}(w_2^{12})^{\beta_1}s_2^{1/\beta_2 - 1} + \text{h.o.t.}.$$
(3.6)

They have a small positive solution

$$s_2 = \left(-\frac{\beta_1 \beta_2 M_1^1 \mu}{w_2^{12} M_2^1 \mu} \right)^{\frac{\beta_2}{1-\beta_2}} + \text{h.o.t.}$$
 (3.7)'

only when $\mu \in R_2^1$ and $|M_1^1\mu| \ll |M_2^1\mu|$. Substituting (3.7)' into (3.6)', we get

$$\delta^{-1} M_2^1 \mu = (w_1^{12})^{\frac{1}{\beta_1 - 1}} \left(-\frac{M_1^1 \mu}{M_2^1 \mu} \right)^{\frac{1}{\beta_1 - 1}} - (w_2^{12})^{\frac{1}{\beta_2 - 1}} \left(-\frac{\beta_1 \beta_2 M_1^1 \mu}{M_2^1 \mu} \right)^{\frac{\beta_2}{1 - \beta_2}}. \tag{3.5}$$

Owing to (H5), we have $\frac{1}{\beta_1-1} > \frac{\beta_2}{1-\beta_2}$. Thus, for $|M_1^1\mu| \ll |M_2^1\mu|$, the right hand of (3.5)' will be negative, but $\delta^{-1}M_2^1\mu > 0$. This is a contradiction.

The proof of Lemma 3.4 is over.

If M_1^1 and M_2^1 are linearly independent, then (3.5) has a solution which defines a (l-1)-dimensional surface \tilde{L}_1^2 in the neighborhood of $\mu=0$. There is no difficulty to see that \tilde{L}_1^2 is tangent to L_1 at $\mu=0$.

Following from (H5), we get $\frac{\beta_2}{1-\beta_2} < \frac{1}{\beta_1-1}$, and so we have

$$\begin{split} -\delta^{-1}M_2^1\mu|_{L^2_1} &= (w_2^{12})^{\frac{1}{\beta_2-1}} \left(-\frac{M_1^1\mu}{M_2^1\mu}\right)^{\frac{\beta_2}{1-\beta_2}} \\ &> (w_2^{12})^{\frac{1}{\beta_2-1}} \left(-\frac{M_1^1\mu}{M_2^1\mu}\right)^{\frac{\beta_2}{1-\beta_2}} - \left(\frac{w_1^{12}}{\beta_1\beta_2}\right)^{\frac{1}{\beta_1-1}} \left(-\frac{M_1^1\mu}{M_2^1\mu}\right)^{\frac{1}{\beta_1-1}} &= -\delta^{-1}M_2^1\mu|_{\bar{L}^2_1} \\ &> 0 \approx -\delta^{-1}M_2^1\mu|_{L_2} \end{split}$$

for $\mu \in R_1^2$ and $|M_1^1 \mu| \ll |M_2^1 \mu|$. By the definitions of L_2 , L_1^2 , \tilde{L}_1^2 , L_1 , and the above inequality, we get \tilde{L}_1^2 will be in the open region that is bounded by L_2 and L_1^2 . Thus, we can define the following three open regions:

 $(R_1^2)_1$ is that whose boundaries are L_1 and L_1^2 , and has nonempty intersection with R_1^2 . $(R_1^2)_2$ is that whose boundaries are L_1^2 and \tilde{L}_1^2 , and has nonempty intersection with R_1^2 . $(R_1^2)_0$ is that whose boundaries are \tilde{L}_1^2 and L_2 , and has nonempty intersection with R_1^2 .

Now, we consider the non-negative solutions of $V_1(s_1) = N_1(s_1)$ which is defined by (3.4). Using Lemmas 3.1 and 3.3, it is not difficult to prove that:

If $\mu \in (R_1^2)_1$, then $V_1(s_1) = N_1(s_1)$ has exactly one small positive solution.

If $\mu \in L_1^2$, then $V_1(s_1) = N_1(s_1)$ has exactly one small positive and one zero solution.

If $\mu \in (R_1^2)_2$, then $V_1(s_1) = N_1(s_1)$ has exactly two small positive solutions.

If $\mu \in \tilde{L}_1^2$, then $V_1(s_1) = N_1(s_1)$ has exactly one small two-fold positive solution.

If $\mu \in (R_1^2)_0$, then $V_1(s_1) = N_1(s_1)$ has no any small non-negative solution.

Thus, we have shown the following theorem.

Theorem 3.2. Suppose that hypotheses (H1)—(H6) hold, $\mu \in R_1^2$. Then the following conclusions are true.

- (1) System (1.1) has exactly one simple 1-periodic orbit near Γ as $\mu \in (R_1^2)_1$.
- (2) System (1.1) has exactly one simple 1-periodic orbit and one 1-homoclinic loop homoclinic to p_1 near Γ as $\mu \in L^2_1$.
 - (3) System (1.1) has exactly two simple 1-periodic orbits near Γ as $\mu \in (R_1^2)_2$.
 - (4) System (1.1) has a unique two-fold 1-periodic orbit near Γ as $\mu \in \tilde{L}^2_1$.
 - (5) System (1.1) has not any 1-periodic and 1-homoclinic loop near Γ as $\mu \in (R_1^2)_0$.

Similarly, we can define two open regions $(R_2^1)_0$ and $(R_2^1)_1$ in R_2^1 and obtain the following Theorem 3.3, where $(R_2^1)_0$ is that whose boundaries are L_1 and L_2^1 , $(R_2^1)_1$ is that whose boundaries are L_2^1 and L_2^1 .

Theorem 3.3. Suppose that hypotheses (H1)—(H6) hold. Then system (1.1) has not any 1-periodic and 1-homoclinic loop near Γ as $\mu \in (R_2^1)_0$, has exactly one 1-homoclinic loop homoclinic to p_2 near Γ as $\mu \in L_2^1$, and has exactly one simple 1-periodic orbits near Γ as $\mu \in (R_2^1)_1$, respectively.

Denote D_1^2 as the open region whose boundaries are L_1 and L_2 , such that $D_1^2 \cap \{\mu : M_1^1 \mu > 0, M_2^1 \mu > 0, |\mu| \ll 1\} \neq \emptyset$. D_2^1 is the open region whose boundaries are L_2 and L_1 , such that $D_2^1 \cap \{\mu : M_1^1 \mu < 0, M_2^1 \mu < 0, |\mu| \ll 1\} \neq \emptyset$. By Lemmas 3.3 and 3.4, we obtain the following valid theorem.

Theorem 3.4. Suppose that hypotheses (H1)—(H6) hold. Then

- (1) system (1.1) has exactly one simple 1-periodic orbits near Γ as $\mu \in D_2^1$;
- (2) system (1.1) has no any 1-periodic orbits near Γ as $\mu \in D_1^2$.

Now, we assume that

(H7)
$$\Delta_1 = \Delta_2 = -1.$$

By Theorems 3.1—3.4, we obtain the bifurcation graph (fig. 1).

In this case, we have $R_1^2=R_2^1=\{\mu:M_1^1\mu>0,M_2^1\mu>0,|\mu|\ll 1\}:=R.$ Thus, we can discuss in a similar way and obtain the following theorem.

Theorem 3.5. Suppose that hypotheses (H1)—(H5) and (H7) hold. Then, in the open region R, there are three (l-1)-dimensional surfaces L_1^2 , \tilde{L}_1^2 and L_2^1 , all tangent to L_1 at $\mu=0$, and the following four open regions: R_1 is that whose boundaries are L_1 and L_1^2 , R_2 is that whose boundaries are \tilde{L}_1^2 and \tilde{L}_2^1 , and R_4 is that

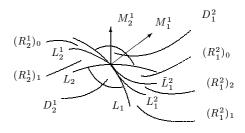


Fig. 1. $\Delta_1 = \Delta_2 = 1$

whose boundaries are L_2^1 and L_2 , all have nonempty intersection with R, such that the following conclusions are true.

- (1) System (1.1) has exactly one simple 1-periodic orbit near Γ as $\mu \in R_1 \cup R_4$.
- (2) System (1.1) has exactly one simple 1-periodic orbit and one 1-homoclinic loop homoclinic to p_1 near Γ as $\mu \in L^2_1$.
 - (3) System (1.1) has exactly two simple 1-periodic orbits near Γ as $\mu \in R_2$.
 - (4) System (1.1) has a unique two-fold 1-periodic orbit near Γ as $\mu \in \tilde{L}^2_1$.
 - (5) System (1.1) has exactly one 1-homoclinic loop homoclinic to p_2 near Γ as $\mu \in L^1_2$.
- (6) System (1.1) has no any 1-periodic orbits and 1-homoclinic loop near Γ as $\mu \in R_3$ or $\mu \in R$.

Remark 3.1. For the case $\beta_1\beta_2 > 1$, we only need to make a transformation of time, $t \to -t$.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 10071022) and the Shanghai Priority Academic Discipline.

References

- Reyn, J. W., Generation of limit cycles from separatrix polygons in the phase plane, Lecture Notes in Math., 1980, 810: 264—289.
- Roussarie, R., On the number of limit cycles which appear by perturbation of separatrix loop of planar fields, Bol. Soc. Brasil Mat., 1986, 17: 67—101.
- Feng, B., The stability of heteroclinic loop under the critical condition, Science in China, Ser. A, 1991, 34(6): 673—684.
- Feng, B., Xiao, D., Homoclinic and heteroclinic bifurcations of heteroclinic loops, Acta Math. Sinica, 1992, 35(6): 815—830.
- Han, M., Luo, D., Zhu, D., The uniqueness of limit cycles bifurcating from a singular closed orbit, Acta Math. Sinica, 1992, 35(3): 407—417.
- 6. Han, M., Luo, D., Zhu, D., The uniqueness of limit cycles bifurcating from a singular closed orbit, Acta Math. Sinica, 1992, 35(4): 541—548.
- Han, M., Luo, D., Zhu, D., The uniqueness of limit cycles bifurcating from a singular closed orbit, Acta Math. Sinica, 1992, 35(5): 673—684.
- Mourtada, A., Degenerate and nontrivial hyperbolic polycycles with vertices, J. Diff. Equs., 1994, 113(1): 68—83
- 9. Zhang, Z., Li, C., Zheng, Z. et al., The Foundation of Bifurcation Theory for Vector Field (in Chinese), Beijing: Advanced Education Press, 1997.
- Luo, D., Wang, X., Zhu, D. et al., Bifurcation Theory and Methods of Dynamical Systems, Singapore: World Scientific, 1997.
- 11. Chow, S. N., Deng, B., Fiedler, B., Homoclinic bifurcation at resonant eigenvalues, J. Dyna. Syst. and Diff. Equs., 1990, 2(2): 177—244.
- 12. Sun, J., Bifurcations of heteroclinic loop with nonhyperbolic critical points in \mathbb{R}^n , Science in China, Ser. A, 1994, 24(11): 1145—1151.
- Zhu, D., Problems in homoclinic bifurcation with higher dimensions, Acta Math. Sinica, New Series, 1998, 14(3): 341—352.
- 14. Jin, Y., Zhu, D., Degenerated homoclinic bifurcations with higher dimensions, Chin. Ann. Math., Ser. B, 2000, 21(2): 201—210.
- 15. Jin, Y., Zhu, D., Bifurcations of rough heteroclinic loops with three saddle points, Acta Math. Sinica, English Series. 2002. 18(1): 199—208.
- 16. Zhu, D., Exponential trichotomy and heteroclinic bifurcation, Nonl. Anal. TMA, 1997, 28(3): 547—557.
- 17. Zhu, D., Xia, Z., Bifurcations of heteroclinic loops, Science in China, Ser. A, 1998, 41(8): 837—848.
- Tian, Q., Zhu, D., Bifurcations of nontwisted heteroclinic loops, Science in China, Ser. A, 2000, 30(3): 193— 202.
- Fenichel, N., Persistence and smoothness of invariant manifold for flows, Indiana Univ. Math. J., 1971, 21: 193—226.
- Wiggins, S., Introduction to Applied Nonlinear Dynamical System and Chaos, New York: Springer-Verleg, 1990.
- 21. Abraham, R., Marsden, J. E., Manifolds, Tensor Analysis and Applications, London: Addison Wesley, 1983.