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Abstract The bifurcation problems of rough 2-point-loop are studied for the case �
1

1 > �
1

1, �
1

2 < �
1

2,

�
1

1�
1

2 < �
1

1�
1

2, where ��
1

i < 0 and �
1

i > 0 are the pair of principal eigenvalues of unperturbed system at saddle

point pi, i = 1; 2. Under the transversal and nontwisted conditions, the authors obtain some results of the

existence of one 1-periodic orbit, one 1-periodic and one 1-homoclinic loop, two 1-periodic orbits and one 2-fold

1-periodic orbit. Moreover, the bifurcation surfaces and the existence regions are given, and the corresponding

bifurcation graph is drawn.
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1 Introduction and hypotheses

As well known, in the last several decades, lots of papers and books were devoted to the study

of the bifurcation problems of homoclinic and heteroclinic loops of planar systems[1�10].

In recent years, the bifurcations of homoclinic and heteroclinic loops for higher dimensional

cases were also studied extensively[11�18]. In this paper, we consider the bifurcations of rough

heteroclinic loop with two hyperbolic saddle points (abbr. 2-point-loop) in higher dimensional

space.

Consider the following Cr system

_z = f(z) + g(z; �); (1:1)

and its unperturbed system

_z = f(z); (1:2)

where r > 4, z 2 R
m+n , � 2 R

l , l > 2, 0 6 j�j � 1, g(z; 0) = 0. For i = 1; 2, we assume that

f(pi) = 0, g(pi; �) = 0 and

(H1) z = pi is a hyperbolic critical point of (1.2). The Cr stable manifold W s

i
and the

unstable manifold W u

i
of z = pi are m-dimensional and n-dimensional, respectively. Moreover,

��1
i
and �1

i
are the simple real eigenvalues of Dzf(pi) such that any remaining eigenvalues ��j

i

and �k
i
of Dzf(pi) satisfy

�Re�j
i
< ��0

i
< ��1

i
< 0 < �1

i
< �0

i
< Re�k

i
; (1:3)

where 2 6 j 6 m, 2 6 k 6 n, �0
i
and �0

i
are some positive constants.
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(H2) System (1.2) has a heteroclinic loop � = �1 [ �2, where �i = fz = ri(t) : t 2 Rg,

ri(+1) = ri+1(�1) = pi+1, r3(t) = r1(t), p3 = p1. For any point Pi 2 �i, dim(TPiW
u

i
\

TPiW
s

i+1) = 1, W s

3 =W s

1 .

(H3) De�ne e�
i
= limt!�1 _ri(t)=j _ri(t)j. Then, e

+
i
2 TpiW

u

i
and e�

i
2 Tpi+1W

s

i+1 are the

unit eigenvectors corresponding to �1
i
and ��1

i+1, respectively.

(H4) span(Tri(t)W
u

i
; Tri(t)W

s

i+1; e
+
i+1) = R

m+n ; t� 1;

span(Tri(t)W
u

i
; Tri(t)W

s

i+1; e
�

i�1) = R
m+n ; t� �1;

where e+3 = e+1 , e
�

0 = e�2 .

(H4) is called the strong inclination property, which is equivalent to

limt!+1(Tri(t)W
u

i
+ Tri(t)W

s

i+1) = Tpi+1W
uu

i+1 + Tpi+1W
s

i+1;

limt!�1(Tri(t)W
u

i
+ Tri(t)W

s

i+1) = TpiW
u

i
+ TpiW

ss

i
;

where W ss

i
and W uu

i
are the strong stable and the strong unstable manifolds of pi, respectively.

W ss

i
� W s

i
is the (m � 1)-dimensional solution manifold tangent to the generalized eigenspace

corresponding to those eigenvalues with smaller real part than ��0
i
, and W uu

i
� W u

i
is the

(n � 1)-dimensional solution manifold tangent to the generalized eigenspace corresponding to

those eigenvalues with larger real part than �0
i
.

It is easy to see that under hypothesis (H1), hypotheses (H2)|(H4) are generic.

Under hypotheses (H1)||(H4), Zhu and Xia[17] studied the bifurcation problems of 2-point-

loop for the case �1
i
> �1

i
, i = 1; 2. And in ref. [18], Tian and Zhu studied the �ne 2-point-loop.

In this paper, we study the bifurcations of rough 2-point-loop for the case �11 > �11, �
1
2 < �12,

and (�11�
1
2)=(�

1
1�

1
2) < 1. Under some transversal conditions and the nontwisted condition, we

discuss the existence of one 1-periodic orbit, one 1-periodic and one 1-homoclinic loop, two 1-

periodic orbits and one 2-fold 1-periodic orbit. Moreover, the relative bifurcation surfaces and the

existence regions are given, and the corresponding bifurcation graph is drawn.

Our results show that the bifurcation pattern of the rough loop in case (�11��11)(�
1
2��12) < 0

studied here is much more complicated than that in case (�11 � �11)(�
1
2 � �12) > 0 studied by ref.

[17].

2 Local coordinates and bifurcation equations

In this section, we will select the linear independent solutions of the linear variational equation

along �i as the demanded local coordinates to construct the Poincar�e map Fi which will be the

composition of two maps. One of the maps, F 0
i
, will be induced by the 
ow near pi (approximately,

which will be taken as the 
ow generated by the linearization of (1.1) at pi). The other map, F 1
i
,

will be constructed from the 
ow outside a neighborhood of pi and in a suÆciently small tube

neighborhood of �i. The Poincar�e map, Fi, will then be given by Fi = F 1
i
Æ F 0

i
. This method is

similar to that of ref. [17], but is much easier than that of ref. [17].

As well known, W s

i
and W u

i
are Cr (refs. [19, 20]). Suppose that the neighborhood Ui of

pi is small enough, then there always exists a Cr transformation such that system (1.1) has the
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following form in Ui:

_x = [�1
i
(�) + � � � � � �] x+O(u)[O(u) +O(y) +O(v)];

_y = [��1
i
(�) + � � � � � �] y +O(v)[O(v) +O(x) +O(u)];

_u = [B1
i
(�) + � � � � � �] u+O(x)[O(x) +O(y) +O(v)];

_v = [�B2
i
(�) + � � � � � �] v +O(y)[O(y) +O(x) +O(u)];

(2:1)

for j�j suÆciently small, where �1
i
(0) = �1

i
, �1

i
(0) = �1

i
, Re�(B1

i
(0)) > �0

i
, Re�(�B2

i
(0)) < ��0

i
,

z = (x; y; u�; v�)�, x 2 R
1 , y 2 R

1 , u 2 R
n�1 , v 2 R

m�1 , and (2.1) is Cr�1. Here, the sign �

means transposition. In Ui, we have

W u

i
= fz : y = 0; v = 0g; W s

i
= fz : x = 0; u = 0g;

W uu

i
= fz : x = x(u); y = 0; v = 0g; W ss

i
= fz : x = 0; u = 0; y = y(v)g;

� \W u

i
= fz : u = u(x); y = 0; v = 0g; � \W s

i
= fz : x = 0; u = 0; v = v(y)g;

where u(0) = _u(0) = 0, v(0) = _v(0) = 0, x(0) = _x(0) = 0, y(0) = _y(0) = 0.

Denote ri(t) = (rx
i
(t); ry

i
(t); (ru

i
(t))�; (rv

i
(t))�)�. Assume ri(�T

0
i
) = (Æ; 0; Æ�

ui
; 0�)�, ri(T

1
i
)

= (0; Æ; 0�; Æ�
vi
)�, where Æ > 0 is small enough such that f(x; y; u�; v�)� : jxj, jyj, juj, jvj< 2Æg � Ui.

Obviously, jÆui j = o(Æ), jÆvi j = o(Æ). Consider the linear variational system

_z = Df(ri(t))z (2:2)

and its adjoint system
_� = �(Df(ri(t)))

��: (2:3)

By ref. [16], we see (2.2) and (2.3) have exponential dichotomies in both R� and R+ . Similar to

that of ref. [17], system (2.2) has a fundamental solution matrix Zi(t) = (z1
i
(t); z2

i
(t), z3

i
(t); z4

i
(t))

satisfying

z1
i
(t) 2 (Tri(t)W

u

i
)c \ (Tri(t)W

s

i+1)
c; z2

i
(t) = � _ri(t)=j _r

y

i
(T 1

i
)j 2 Tri(t)W

u

i
\ Tri(t)W

s

i+1;

z3
i
(t) = (z3;1

i
(t); � � � ; z3;n�1

i
(t)) 2 Tri(t)W

u

i
\ (Tri(t)W

s

i+1)
c;

z4
i
(t) = (z4;1

i
(t); � � � ; z4;m�1

i
(t)) 2 (Tri(t)W

u

i
)c \ Tri(t)W

s

i+1;

Zi(�T
0
i
) =

0
BBBB@

w11
i

w21
i

0 w41
i

w12
i

0 0 w42
i

w13
i

w23
i

I w43
i

0 0 0 w44
i

1
CCCCA ; Zi(T

1
i
) =

0
BBBB@

1 0 w31
i

0

0 1 w32
i

0

0 0 w33
i

0

w14
i

w24
i

w34
i

I

1
CCCCA ;

where W ss

3 = W ss

1 , w21
i

< 0, w12
i
6= 0, detw44

i
6= 0, detw33

i
6= 0. Moreover, for Æ small enough,

jjw
1j
i
(w12

i
)�1jj � 1 for j 6= 2, jjw2j

i
(w21

i
)�1jj � 1 for j = 3; 4, jjw3j

i
(w33

i
)�1jj � 1 for j 6= 3,

jjw
4j
i
(w44

i
)�1jj � 1 for j 6= 4.

Thus, we may select z1
i
(t), z2

i
(t), z3

i
(t), z4

i
(t) as a local coordinate system along �i. Let

�i(t) = (�1
i
(t); �2

i
(t); �3

i
(t); �4

i
(t)) = (Z�1

i
(t))� be the fundamental solution matrix of (2.3).

Denote w12
i

= �ijw
12
i
j. We say that � is nontwisted as � = �1�2 = 1, and twisted as

� = �1. In this paper, we only consider the case � = 1. The other cases are similar.

Let Ni = (n1
i
; 0; (n3

i
)�; (n4

i
)�)�, n3

i
= (n3;1

i
; � � � ; n

3;n�1
i

)�, n4
i
= (n4;1

i
; � � � ; n

4;m�1
i

)�, hi(t) =

ri(t) + Zi(t)Ni. We de�ne S0
i
= fz = hi(�T

0
i
) : jxj; jyj; juj; jvj < 2Æg, S1

i
= fz = hi(T

1
i
) :

jxj; jyj; juj; jvj < 2Æg as the cross sections of �i at t = �T 0
i
and t = T 1

i
, respectively.
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Now, we consider the map F 0
i
: q1

i�1 2 S1
i�1 7! q0

i
2 S0

i
, and the map F 1

i
: q0

i
2 S0

i
7! q1

i
2 S1

i
,

where S1
0 = S1

2 , q
1
0 = q12 . Denote

q0
i
= (x0

i
; y0

i
; (u0

i
)�; (v0

i
)�)� = ri(�T

0
i
) + Zi(�T

0
i
)N0

i
; N0

i
= (n0;1

i
; 0; (n0;3

i
)�; (n0;4

i
)�)�;

q1
i
= (x1

i
; y1

i
; (u1

i
)�; (v1

i
)�)� = ri(T

1
i
) + Zi(T

1
i
)N1

i
; N1

i
= (n1;1

i
; 0; (n1;3

i
)�; (n1;4

i
)�)�:

By the expressions of Zi(�T
0
i
) and Zi(T

1
i
), i = 1; 2, we get y1

i
� Æ, x0

i
� Æ, and

n
1;1
i

= x1
i
� w31

i
(w33

i
)�1u1

i
;

n
1;3
i

= (w33
i
)�1u1

i
; (2.4)

n
1;4
i

= � w14
i
x1
i
+ (w14

i
w31
i

+ w24
i
w32
i
� w34

i
)(w33

i
)�1u1

i
+ v1

i
� Ævi ;

n
0;1
i

= (w12
i
)�1(y0

i
� w42

i
(w44

i
)�1v0

i
);

n
0;3
i

= u0
i
� Æui + bi(w

12
i
)�1y0

i
+ [a3

i
� w23

i
(w21

i
)�1a1

i
](w44

i
)�1v0

i
; (2.5)

n
0;4
i

= (w44
i
)�1v0

i
;

where bi = w11
i
w23
i
(w21

i
)�1 � w13

i
, aj

i
= w

1j
i
(w12

i
)�1w42

i
� w

4j
i
, j = 1; 3.

Suppose that z = hi(t) is the solution of (1.1) in some small tube neighborhood of �i.

Substituting it into (1.1) and using _ri(t) = f(ri(t)), _Zi(t) = Df(ri(t))Zi(t) and some simple

calculation, we obtain the maps F 1
i
de�ned by

n
1;j
i

= n
0;j
i

+M
j

i
�+ h:o:t:; j = 1; 3; 4; (2:6)

where M j

i
=
R +1
�1

�
j

i

�

(t)g�(ri(t); 0)dt, i = 1; 2, j = 1; 3; 4 are called Melnikov vectors.

Suppose that

(H5) �1 = �11=�
1
1 > 1, �2 = �12=�

1
2 < 1, �1�2 < 1.

By (H5) and the continuity of �i(�) = �1
i
(�)=�1

i
(�), i = 1; 2, we have �1(�) > 1, �2(�) < 1

and �1(�)�2(�) < 1 for j�j � 1. We may as well denote �i(�) := �i, i = 1; 2. Let �i be the 
ying

time from q1
i�1 to q0

i
, s1 = e��

1
1(�)�1 , s2 = e��

1
2(�)�2 . Then, using the linearization of (1.1) at pi,

we can easily get F 0
1 de�ned by

x10 � s1Æ; y01 � s
�1

1 Æ; u10 � s
B
1
1(�)=�

1
1(�)

1 u01; v01 � s
B
2
1(�)=�

1
1(�)

1 v10 ; (2:7)

and F 0
2 de�ned by

x11 � s
1=�2
2 Æ; y02 � s2Æ; u11 � s

B
1
2(�)=�

1
2(�)

2 u02; v02 � s
B
2
2(�)=�

1
2(�)

2 v11 ; (2:8)

if we neglect the higher order terms, (si; u
0
i
; v1

i�1), i = 1; 2 are called Silnikov coordinates.

Thus, we have de�ned the Poincar�e map F1 = F 1
1 Æ F

0
1 : S

1
2 7! S1

1 as

n
1;1
1 = (w12

1 )�1Æs�11 +M1
1�+ h:o:t:;

n
1;3
1 = u01 � Æu1 + b1(w

12
1 )�1Æs�11 +M3

1�+ h:o:t:; (2.9)

n
1;4
1 = (w44

1 )�1s
B
2
1(�)=�

1
1(�)

1 v10 +M4
1�+ h:o:t:;

and F2 = F 1
2 Æ F

0
2 : S

1
1 7! S1

2 as

n
1;1
2 = (w12

2 )�1Æs2 +M1
2�+ h:o:t:;

n
1;3
2 = u02 � Æu2 + b2(w

12
2 )�1Æs2 +M3

2�+ h:o:t:; (2.10)

n
1;4
2 = (w44

2 )�1s
B
2
2(�)=�

1
2(�)

2 v11 +M4
2�+ h:o:t::
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Let Gi(q
1
i�1) = (G1

i
; G3

i
; G4

i
) = Fi(q

1
i�1) � q1

i
, q10 = q12 . Owing to (2.4), (2.7)|(2.10), we get

the successor functions Gi as follows:

G1
1 = Æ[(w12

1 )�1s�11 � s
1=�2
2 ] +M1

1�+ h:o:t:;

G3
1 = u01 � Æu1 + b1(w

12
1 )�1Æs�11 � (w33

1 )�1s
B
1
2(�)=�

1
2(�)

2 u02 +M3
1�+ h:o:t:;

G4
1 = � v11 + Æv1 + w14

1 Æs
1=�2
2 + (w44

1 )�1s
B
2
1(�)=�

1
1(�)

1 v10 +M4
1�+ h:o:t:;

G1
2 = Æ[(w12

2 )�1s2 � s1] +M1
2�+ h:o:t:;

G3
2 = u02 � Æu2 + b2(w

12
2 )�1Æs2 � (w33

2 )�1s
B
1
1(�)=�

1
1(�)

1 u01 +M3
2�+ h:o:t:;

G4
2 = � v10 + Æv2 + w14

2 Æs1 + (w44
2 )�1s

B
2
2(�)=�

1
2(�)

2 v11 +M4
2�+ h:o:t:: (2.11)

We call the following equation the bifurcation equation:

(G1
1; G

3
1; G

4
1; G

1
2; G

3
2; G

4
2) = 0: (2:12)

Thus, there is a 1-1 correspondence between the 2-point-loop, 1-homoclinic and 1-periodic

orbit of (1.1) and the solution Q = (s1; s2; u
0
1; u

0
2; v

1
1 ; v

1
2) of (2.12) with s1 > 0, s2 > 0.

Remark 2.1. Under hypothesis (H5), G is Cr�2 with respect to Q and � in the region

s1 > 0, s2 > 0.

3 Nontwisted bifurcations

Now, we consider the bifurcations near � under hypotheses (H1)|(H5). Consider the solution

of (2.12). It is easy to see that the equation (G3
1; G

4
1; G

3
2; G

4
2) = 0 always has a solution u0

i
=

u0
i
(s1; s2; �), v

1
i
= v1

i
(s1; s2; �) i = 1; 2 for Æ, j�j, s1, s2 suÆciently small. Substituting it into

(G1
1; G

1
2) = 0, we obtain

s
1=�2
2 = (w12

1 )�1s�11 + Æ�1M1
1�+ h:o:t:;

s1 = (w12
2 )�1s2 + Æ�1M1

2�+ h:o:t::
(3:1)

Firstly, if (3.1) has solution s1 = s2 = 0, then we have

M1
i
�+ h:o:t: = 0; i = 1; 2: (3:2)

If M1
i
6= 0, then by (3.2) and the implicit function theorem, there exists a (l� 1)-dimensional

surface Li with a normal vector M1
i
at � = 0, such that the ith equation of (3.1) has solution

s1 = s2 = 0 as � 2 Li and j�j � 1, that is, �i is persistent.

If rank(M1
1 ;M

1
2 ) = 2, then L12 = L1 \ L2 is a (l� 2)-dimensional surface (see ref. [21]) such

that (3.1) has solution s1 = s2 = 0 as � 2 L12 and j�j � 1, equivalently, system (1.1) has a

1-heteroclinic loop near � .

Secondly, suppose that (3.1) has solution s1 = 0, s2 > 0. Then we have

s2 = �Æ�1w12
2 M1

2�+ h:o:t:; (3.3)

(�Æ�1w12
2 M1

2�+ h:o:t:)1=�2 = Æ�1M1
1�+ h:o:t::

If M1
1� > 0, �2M

1
2� < 0, then following from the implicit function theorem, there exists a

(l � 1)-dimensional surface L2
1 with a normal vector M1

1 at � = 0, which means L2
1 is tangent to

L1 at � = 0, such that (3.1) has a solution s1 = 0, s2 = s2(�) > 0 as � 2 L2
1 and j�j � 1. That is

to say, system (1.1) has a 1-homoclinic loop � 2
1 near � homoclinic to p1 as � 2 L2

1 and j�j � 1.
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In the same way, we can discuss the case s1 > 0, s2 = 0 and obtain the surface L1
2 in the

region M1
2� > 0, �1M

1
1� < 0 and j�j � 1 which is tangent to L1 at � = 0 such that system (1.1)

has a 1-homoclinic loop � 1
2 near � homoclinic to p2 as � 2 L1

2.

Denote R2
1 = f� : M1

1� > 0, �2M
1
2� < 0, j�j � 1g, R1

2 = f� : �1M
1
1� < 0, M1

2� > 0,

j�j � 1g. Then, we have shown the following theorem.

Theorem 3.1. Suppose that hypotheses (H1)|(H5) are valid, and rank(M1
1 , M

1
2 ) = 2.

Then

(1) There exists a (l � 1)-dimensional surface Li with normal vector M1
i
at � = 0, such that

(1.1) has a heteroclinic orbit joining p1 and p2 near �i if and only if � 2 Li and j�j � 1, i = 1; 2.

Moreover, (1.1) has a 1-heteroclinic loop near � if and only if j�j � 1 and � 2 L12 = L1 \ L2

which is a (l � 2)-dimensional surface.

(2) There exists a (l � 1)-dimensional surface L2
1 � R2

1 which is tangent to L1 at � = 0 such

that (1.1) has a unique 1-homoclinic loop � 2
1 connecting p1 for � 2 L2

1. Meanwhile, there also

exists a (l � 1)-dimensional surface L1
2 � R1

2 which is tangent to L1 at � = 0 such that (1.1) has

a unique 1-homoclinic loop � 1
2 connecting p2 for � 2 L1

2.

Now, we consider the 1-periodic orbits bifurcating from � . That is, consider the solutions of

(3.1) which satisfy s1 > 0, s2 > 0. For simplicity, we assume

(H6) �1 = �2 = 1.

Obviously, for �1 = �2 = 1, R2
1 and R1

2 read as f� : M1
1� > 0;M1

2� < 0; j�j � 1g and

f� :M1
1� < 0;M1

2� > 0; j�j � 1g, respectively.

Lemma 3.1. Suppose that hypotheses (H1)|(H6) are valid, then, in addition to the 1-

homoclinic loop � 2
1 , system (1.1) has exactly one simple 1-periodic orbit near � for � 2 L2

1.

Moreover, the 1-periodic orbit is persistent for � changes in the neighborhood of L2
1.

Proof. If � 2 L2
1 and j�j � 1, then we know that (1.1) has one 1-homoclinic loop � 2

1

homoclinic to p1. Now, following (3.1), we have

s
�1

1 + Æ�1w12
1 M1

1�+ h:o:t: = w12
1 (w12

2 )1=�2(s1 � Æ�1M1
2�+ h:o:t:)1=�2 : (3:4)

Let V1(s1) and N1(s1) be the left and right hand of (3.4), respectively. Then, by (3.3), we

get V1(0) = N1(0) as � 2 L2
1. Moreover,

_V1(s1) = �1s
�1�1
1 ; _N1(s1) = (1=�2)w

12
1 (w12

2 )1=�2(s1 � Æ�1M1
2�+ h:o:t:)1=�2�1;

so 0 = _V1(s1)js1=0 < _N1(s1)js1=0 for �1 > 1, �2 < 1. Therefore, there is a ~s1, 0 < ~s1 � 1 such

that for 0 < s1 < ~s1, V1(s1) < N1(s1).

Denote �s1 = �Æ�1M1
2�. Then

V1(�s1) = �s�11 + Æ�1w12
1 M1

1�+ h:o:t:; N1(�s1) = w12
1 (2w12

2 )1=�2(�s1)
1=�2 + h:o:t::

It is not diÆcult to check that V1(�s1) > N1(�s1) for the reason that j�j, �s2 � 1 and 1 < �1 <
1
�2
.

Thus, we get V1(s1) = N1(s1) has at least one solution s�1 satisfying 0 < s�1 < �s1. That is to

say, (1.1) has at least one 1-periodic orbit near � for � 2 L2
1 and 0 < j�j � 1.

It is easy to see that V1(s1) > N1(s1) as �s1 6 s1 � 1. In fact,

_V1(s1) = �1s
�1�1
1 > [1=(2�2)]w

12
1 (2w12

2 )1=�2s
1=�2�1
1 + h:o:t:

> (1=�2)w
12
1 (w12

2 )1=�2(s1 � Æ�1M1
2�+ h:o:t:)1=�2�1 = _N1(s1):
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Combining it with V1(�s1) > N1(�s1), we can obtain V1(s1) > N1(s1) as �s1 6 s1 � 1 immediately.

Next, we prove the uniqueness of the suÆciently small positive solution of equation V1(s1) =

N1(s1).

Noticing that V1(s1) �N1(s1) = 0 has solutions s1 = 0 and s1 = s�1, we know that _V1(s1) �

_N1(s1) = 0 has surely a solution s1 = ŝ1 in (0; �s1) according to the Role middle value theorem.

Thus we have

�1ŝ
�1�1
1 � (1=�2)w

12
1 (w12

2 )1=�2(ŝ1 + �s1)
1=�2�1 + h:o:t: = 0;

ŝ1

ŝ1 + �s1
= (�1�2)

�2
�2�1 [(w12

1 )�2w12
2 ]

1
1��2 (ŝ1)

1��1�2
1��2 � 1 for 0 < j�j � 1:

Therefore,

d2[V1(ŝ1)�N1(ŝ1)]

ds12
= (�1 � 1)�1ŝ

�1�2
1 �

1� �2

�2

1

�2
w12
1 (w12

2 )1=�2(ŝ1 + �s1)
1=�2�2 + h:o:t:

=
�1 � 1

ŝ1

�
1�

1� �2

�2(�1 � 1)

ŝ1

ŝ1 + �s1

�
_N1(ŝ1) > 0:

This turns out that s1 = s�1 is the unique suÆciently small positive solution of equation V1(s1) =

N1(s1). Due to (3.1) and (3.3), (3.1) has suÆciently small positive solution s2 = s�2 corresponding

to s1 = s�1. Moreover, s�1 is a simple zero of V1(s1) = N1(s1) which is persistent under small

perturbation of �.

The proof is complete.

Lemma 3.2. Suppose that hypotheses (H1)|(H6) hold, then, system (1.1) has no any

1-periodic orbit near � for � 2 L1
2 except the 1-homoclinic loop � 1

2 .

Proof. The condition � 2 L1
2 and j�j � 1 means that (1.1) has one 1-homoclinic loop � 1

2

homoclinic to p2. Based on (3.1), we have

(s2 + Æ�1w12
2 M1

2�+ h:o:t:)�1 = w12
1 (w12

2 )�1(s
1=�2
2 � Æ�1M1

1�) + h:o:t: (3:4)0

Let V2(s2) and N2(s2) be the left and right hand of (3:4)0, respectively. Then V2(0) = N2(0)

as � 2 L1
2. Moreover,

_V2(s2) = �1(s2 + Æ�1w12
2 M1

2�+ h:o:t:)�1�1; _N2(s2) = (1=�2)w
12
1 (w12

2 )�1s
1=�2�1
2 :

Taking note of 1 < �1 < 1=�2, we get

_V2(s2) > �1s2
�1�1 > _N2(s2) for 0 6 s2 � 1:

Therefore, V2(s2) > N2(s2) for 0 < s2 � 1. The proof is complete.

Lemma 3.3. Suppose that hypotheses (H1)|(H6) hold. Then, the curve h = V1(s1) is

tangent to h = N1(s1) at some point s1 satisfying 0 6 s1 � 1 if and only if � 2 R2
1, jM

1
1�j � jM1

2�j

and

�Æ�1M1
2� = (w12

2 )
1

�2�1

�
�
M1

1�

M1
2�

� �2
1��2

�

�
w12
1

�1�2

� 1
�1�1

�
�
M1

1�

M1
2�

� 1
�1�1

: (3:5)

Proof. It is easy to see that h = V1(s1) is tangent to h = N1(s1) at point s1 if and only if

V1(s1) = N1(s1) and _V1(s1) = _N1(s1), that is

s
�1

1 + Æ�1w12
1 M1

1�+ h:o:t: = w12
1 (w12

2 )1=�2(s1 � Æ�1M1
2�+ h:o:t:)1=�2 ; (3:4)
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�1�2s
�1�1
1 = w12

1 (w12
2 )1=�2(s1 � Æ�1M1

2�+ h:o:t:)1=�2�1: (3:6)

It is not diÆcult to get that (3.4) and (3.6) have a unique small positive solution

s1 =

�
�
w12
1 M1

1�

�1�2M
1
2�

� 1
�1�1

+ h:o:t: (3:7)

only when � 2 R2
1 and jM1

1�j � jM1
2�j. Substituting (3.7) into (3.6), we get the lemma.

Lemma 3.4. Suppose that hypotheses (H1)|(H6) hold, then, the curve h = V2(s2) cannot

be tangent to h = N2(s2) at any point s2 satisfying 0 6 s2 � 1.

Proof. By some elementary computation, one can see that V2(s2) = N2(s2) and _V2(s2) =

_N2(s2) are equivalent to

(s2 + Æ�1w12
2 M1

2�+ h:o:t:)�1 = w12
1 (w12

2 )�1(s
1=�2
2 � Æ�1M1

1�) + h:o:t:; (3:4)0

�1(s2 + Æ�1w12
2 M1

2�+ h:o:t:)�1�1 = (1=�2)w
12
1 (w12

2 )�1s
1=�2�1
2 + h:o:t:: (3:6)0

They have a small positive solution

s2 =

�
�
�1�2M

1
1�

w12
2 M1

2�

� �2
1��2

+ h:o:t: (3:7)0

only when � 2 R1
2 and jM1

1�j � jM1
2�j. Substituting (3:7)0 into (3:6)0, we get

Æ�1M1
2� = (w12

1 )
1

�1�1

�
�
M1

1�

M1
2�

� 1
�1�1

� (w12
2 )

1
�2�1

�
�
�1�2M

1
1�

M1
2�

� �2
1��2

: (3:5)0

Owing to (H5), we have 1
�1�1

> �2

1��2
. Thus, for jM1

1�j � jM1
2�j, the right hand of (3:5)0

will be negative, but Æ�1M1
2� > 0. This is a contradiction.

The proof of Lemma 3.4 is over.

If M1
1 and M1

2 are linearly independent, then (3.5) has a solution which de�nes a (l � 1)-

dimensional surface ~L2
1 in the neighborhood of � = 0. There is no diÆculty to see that ~L2

1 is

tangent to L1 at � = 0.

Following from (H5), we get �2

1��2
< 1

�1�1
, and so we have

�Æ�1M1
2�jL2

1
= (w12

2 )
1

�2�1

�
�
M1

1�

M1
2�

� �2
1��2

> (w12
2 )

1
�2�1

�
�
M1

1�

M1
2�

� �2
1��2

�

�
w12
1

�1�2

� 1
�1�1

�
�
M1

1�

M1
2�

� 1
�1�1

= �Æ�1M1
2�j~L2

1

> 0 � �Æ�1M1
2�jL2

for � 2 R2
1 and jM1

1�j � jM1
2�j. By the de�nitions of L2, L

2
1, ~L

2
1, L1, and the above inequality,

we get ~L2
1 will be in the open region that is bounded by L2 and L2

1. Thus, we can de�ne the

following three open regions:

(R2
1)1 is that whose boundaries are L1 and L

2
1, and has nonempty intersection with R2

1. (R
2
1)2

is that whose boundaries are L2
1 and ~L2

1, and has nonempty intersection with R2
1. (R2

1)0 is that

whose boundaries are ~L2
1 and L2, and has nonempty intersection with R2

1.

Now, we consider the non-negative solutions of V1(s1) = N1(s1) which is de�ned by (3.4).

Using Lemmas 3.1 and 3.3, it is not diÆcult to prove that:
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If � 2 (R2
1)1, then V1(s1) = N1(s1) has exactly one small positive solution.

If � 2 L2
1, then V1(s1) = N1(s1) has exactly one small positive and one zero solution.

If � 2 (R2
1)2, then V1(s1) = N1(s1) has exactly two small positive solutions.

If � 2 ~L2
1, then V1(s1) = N1(s1) has exactly one small two-fold positive solution.

If � 2 (R2
1)0, then V1(s1) = N1(s1) has no any small non-negative solution.

Thus, we have shown the following theorem.

Theorem 3.2. Suppose that hypotheses (H1)|(H6) hold, � 2 R2
1. Then the following

conclusions are true.

(1) System (1.1) has exactly one simple 1-periodic orbit near � as � 2 (R2
1)1.

(2) System (1.1) has exactly one simple 1-periodic orbit and one 1-homoclinic loop homoclinic

to p1 near � as � 2 L2
1.

(3) System (1.1) has exactly two simple 1-periodic orbits near � as � 2 (R2
1)2.

(4) System (1.1) has a unique two-fold 1-periodic orbit near � as � 2 ~L2
1.

(5) System (1.1) has not any 1-periodic and 1-homoclinic loop near � as � 2 (R2
1)0.

Similarly, we can de�ne two open regions (R1
2)0 and (R1

2)1 in R1
2 and obtain the following

Theorem 3.3, where (R1
2)0 is that whose boundaries are L1 and L

1
2, (R

1
2)1 is that whose boundaries

are L1
2 and L2.

Theorem 3.3. Suppose that hypotheses (H1)|(H6) hold. Then system (1.1) has not

any 1-periodic and 1-homoclinic loop near � as � 2 (R1
2)0, has exactly one 1-homoclinic loop

homoclinic to p2 near � as � 2 L1
2, and has exactly one simple 1-periodic orbits near � as

� 2 (R1
2)1, respectively.

Denote D2
1 as the open region whose bound-

aries are L1 and L2, such that D2
1 \ f� : M1

1� >

0;M1
2� > 0; j�j � 1g 6= �. D1

2 is the open re-

gion whose boundaries are L2 and L1, such that

D1
2 \ f� : M1

1� < 0;M1
2� < 0; j�j � 1g 6= �. By

Lemmas 3.3 and 3.4, we obtain the following valid

theorem.

Theorem 3.4. Suppose that hypotheses

(H1)|(H6) hold. Then

(1) system (1.1) has exactly one simple 1-periodic

orbits near � as � 2 D1
2 ;

M
1

1

M
1

2

L1

L2

L
2

1

L
1

2

Fig. 1. �1 = �2 = 1
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1
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(R1

2
)1
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2

1

D
1

2

(2) system (1.1) has no any 1-periodic orbits near � as � 2 D2
1.

Now, we assume that

(H7) �1 = �2 = �1.

By Theorems 3.1|3.4, we obtain the bifurcation graph (�g. 1).

In this case, we have R2
1 = R1

2 = f� : M1
1� > 0;M1

2� > 0; j�j � 1g := R. Thus, we can

discuss in a similar way and obtain the following theorem.

Theorem 3.5. Suppose that hypotheses (H1)|(H5) and (H7) hold. Then, in the open

region R, there are three (l � 1)-dimensional surfaces L2
1,

~L2
1 and L1

2, all tangent to L1 at � = 0,

and the following four open regions: R1 is that whose boundaries are L1 and L2
1, R2 is that

whose boundaries are L2
1 and ~L2

1, R3 is that whose boundaries are ~L2
1 and L1

2, and R4 is that
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whose boundaries are L1
2 and L2, all have nonempty intersection with R, such that the following

conclusions are true.

(1) System (1.1) has exactly one simple 1-periodic orbit near � as � 2 R1 [R4.

(2) System (1.1) has exactly one simple 1-periodic orbit and one 1-homoclinic loop homoclinic

to p1 near � as � 2 L2
1.

(3) System (1.1) has exactly two simple 1-periodic orbits near � as � 2 R2.

(4) System (1.1) has a unique two-fold 1-periodic orbit near � as � 2 ~L2
1.

(5) System (1.1) has exactly one 1-homoclinic loop homoclinic to p2 near � as � 2 L1
2.

(6) System (1.1) has no any 1-periodic orbits and 1-homoclinic loop near � as � 2 R3 or

��2R.

Remark 3.1. For the case �1�2 > 1, we only need to make a transformation of time,

t! �t.
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