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Abstract The bifurcation problems of rough 2-point-loop are studied for the case pi > A1, p3 < A3,
p1ps < A3, where —p! < 0 and A} > 0 are the pair of principal eigenvalues of unperturbed system at saddle
point p;, ¢ = 1,2. Under the transversal and nontwisted conditions, the authors obtain some results of the
existence of one 1-periodic orbit, one 1-periodic and one 1-homoclinic loop, two 1-periodic orbits and one 2-fold
1-periodic orbit. Moreover, the bifurcation surfaces and the existence regions are given, and the corresponding
bifurcation graph is drawn.
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1 Introduction and hypotheses

As well known, in the last several decades, lots of papers and books were devoted to the study
of the bifurcation problems of homoclinic and heteroclinic loops of planar systems!* 10!,

In recent years, the bifurcations of homoclinic and heteroclinic loops for higher dimensional
cases were also studied extensively' 18], In this paper, we consider the bifurcations of rough
heteroclinic loop with two hyperbolic saddle points (abbr. 2-point-loop) in higher dimensional
space.

Consider the following C” system

z = f(2) +9(zn), (1.1)

and its unperturbed system
z2 = f(2), (1.2)

where r >4, z € R™" p e R 1>20< |yl <1, g(2,0) =0. For i = 1,2, we assume that
f(pi) =0, g(pi, p) = 0 and

(H1) =z = p; is a hyperbolic critical point of (1.2). The C" stable manifold W7 and the
unstable manifold W}* of z = p, are m-dimensional and n-dimensional, respectively. Moreover,
—p! and A} are the simple real eigenvalues of D, f(p;) such that any remaining eigenvalues —pg

and A¥ of D, f(p;) satisfy
—Repl < —p? < —p} <0< A} < A2 < Ref, (1.3)

where 2 < j <m, 2 <k <n, p? and A} are some positive constants.
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(H2) System (1.2) has a heteroclinic loop I' = I'y U I's, where I; = {z = r;(¢) : t € R},
ri(+00) = riy1(—00) = pit1, r3(t) = r1(t), p3 = p1. For any point P, € I3, dim(Tp,W* N
Tp,Wi,) =1, W5 =Wy,

(H3) Define eii = limy_, 00 73(t)/|7:(t)|. Then, ef € T,,W* and e; € Tp, . Wi, are the
unit eigenvectors corresponding to A} and —p} 1, respectively.

(H4) span(Tri(t)Wiu,Tri(t)Wi‘:_l,617:_1) =R™t" > 1,

span(Tri(t)Wi“,Tri(t)Wi‘:_l,eiil) =R"t" t g -1,
where e?{ =ef, ey =€ -

(H4) is called the strong inclination property, which is equivalent to

limg 4 oo (Tr,-(t)Wiu + Tri(t)WiiL1) =1, Wfﬁ + T, Wis+1a

Pit1 Pit1

limt%foo(Tr,-(t) Wiu + Tri(t) WZS_H) = Tpi Wiu + Tpi Wiss,
where W7% and W** are the strong stable and the strong unstable manifolds of p;, respectively.
W#s C W7 is the (m — 1)-dimensional solution manifold tangent to the generalized eigenspace
corresponding to those eigenvalues with smaller real part than —p{, and W** C W is the

(n — 1)-dimensional solution manifold tangent to the generalized eigenspace corresponding to

those eigenvalues with larger real part than A\Y.
It is easy to see that under hypothesis (H1), hypotheses (H2)—(H4) are generic.

Under hypotheses (H1)——(H4), Zhu and Xial'”l studied the bifurcation problems of 2-point-
loop for the case p} > A!, i = 1,2. And in ref. [18], Tian and Zhu studied the fine 2-point-loop.
In this paper, we study the bifurcations of rough 2-point-loop for the case pi > A, pl < AL
and (pip3)/(AMIA}) < 1. Under some transversal conditions and the nontwisted condition, we
discuss the existence of one 1-periodic orbit, one 1-periodic and one 1-homoclinic loop, two 1-
periodic orbits and one 2-fold 1-periodic orbit. Moreover, the relative bifurcation surfaces and the

existence regions are given, and the corresponding bifurcation graph is drawn.

Our results show that the bifurcation pattern of the rough loop in case (p! — Al)(pd —A\) <0
studied here is much more complicated than that in case (p} — A})(ps — A\3) > 0 studied by ref.
[17].

2 Local coordinates and bifurcation equations

In this section, we will select the linear independent solutions of the linear variational equation
along I; as the demanded local coordinates to construct the Poincaré map F; which will be the
composition of two maps. One of the maps, F, will be induced by the flow near p; (approximately,
which will be taken as the flow generated by the linearization of (1.1) at p;). The other map, F},
will be constructed from the flow outside a neighborhood of p; and in a sufficiently small tube
neighborhood of I';. The Poincaré map, F;, will then be given by F; = F! o F?. This method is

similar to that of ref. [17], but is much easier than that of ref. [17].
As well known, W2 and W are C" (refs. [19, 20]). Suppose that the neighborhood U; of

k2 7

p; 1s small enough, then there always exists a C” transformation such that system (1.1) has the
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following form in Uj;:

&= [N(p)+- ] z 4+ O(u)[O(u) + O(y) + O(v)],

g=[=pH(w) + ]y + 0(v)[0(v) + O(x) + O(u)); 21
= [Bi(p)+ - Ju+ O(2)[O(z) + O(y) + O(v)],

o= [-B7(p)+----- v+ 0(y)[O(y) + O(z) + O(u)],

for |u| sufficiently small, where A} (0) = Al p}(0) = p!, Rea(B}(0)) > A0, Rea(—B%(0)) < —p?,
z = (z,y,u*,v)*, 2 € R y e R', u € R"™! v € R™7! and (2.1) is C"~!. Here, the sign *
means transposition. In U;, we have

Wi ={z:y=0,v=0}, Wp ={z:2=0,u=0},

wiv = {z: 2 ==xz(u),y = 0,v = 0}, W ={z:2=0,u=0,y=y(v)},

rnwt={z:u=u(z),y=0,v=0}, I'nWf={z:2=0,u=0,v=0uv(y)},
where u(0) = 4(0) =0, v(0) = v(0) =0, z(0) = £(0) = 0, y(0) = y(0) = 0.

Denote r;(t) = (r2(t),r?(t), (rt(¢))*, (r2(t))*)*. Assume r;(=T°) = (4,0,d7 ,0*)*, r;(T})

7 v g ) 2 » Vg

= (0,6,0%,63.)%, where 6 > 0 is small enough such that {(z,y,u*,v*)* : |z|, |y, |u], [v|< 20} C U;.
Obviously, |64, = 0(8), |6.,| = 0(8). Consider the linear variational system
z=Df(ri(t))z (2.2)
and its adjoint system
¢ = —(Df(ri(t)))*o. (2:3)

By ref. [16], we see (2.2) and (2.3) have exponential dichotomies in both R~ and R*. Similar to
that of ref. [17], system (2.2) has a fundamental solution matrix Z;(t) = (2}(t), 22(t), 23(t), 24(t))

satisfying
2 (t) € (T, )W) N (T, yWi1)©, 25 () = —7:(8) /|7 (TH)] € Ty Wi N Ty Wik

i(
2= (@), 2" () € Ty W 0 (Tryn Wi1)®,
ZHt) = (271 @), 2™ () € (Truy W) N Ly Wi
will w?l 0 wfl 1 0 wf’l 0
12 42 32
' oy w; 0 0 w; oy 0 1 w; 0
Z(-T) = w® w2 T owB | Z(T) = 0 0 wB 0 |’
0 0 0 wf4 wi14 wl-24 w?4 I

where W3¢ = W%, w?! < 0, w}? # 0, detw?* # 0, det w® # 0. Moreover, for § small enough,
llw;? (w}?) M| < L for j # 2, |lw (wf') Y| < 1 for j = 3,4, [Ju;? (wi*) || < 1 for j # 3,
llw;? (wi) | < 1 for j # 4.

Thus, we may select z2}(t), 22(t), 23(t), z}(t) as a local coordinate system along I;. Let

®;(t) = (pL(t), d2(t), #3(t), p2(t)) = (Z,; 1(t))* be the fundamental solution matrix of (2.3).

Denote wz-12 = Ai\wl-12|. We say that I' is nontwisted as A = A; A = 1, and twisted as
A = —1. In this paper, we only consider the case A = 1. The other cases are similar.
Let N; = (n},o, (n?)*v (’I’L?)*)*, n? = (n?lv T 7n?7n_1)*7 n;l = (n?lv T ’nzl,m—l)*’ hi(t

Ti(t) + Zz(t)Nz We define Szo = {Z = hz(_T'zo) : |$‘7|y|7‘u|7‘v| < 25}5 Szl = {Z = hz(Tzl) :
|z|, |yl, |ul, |v| < 28} as the cross sections of I at t = —T7 and t = T}, respectively.

~—
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Now, we consider the map F? : ¢} ; € S} | — ¢? € S?, and the map F}! : ¢? € S? — ¢} € S},

where S} = S1, gt = ¢}. Denote

q? = (ac?,y?, (u?)*, (U?)*)* = Ti(_TiO) + Zi(_TiO)NiOﬂ Nzo = (n?l?o? (nQ,S)*’ (n(‘)A)*)*’

k2 k2

qi1 = (a:zlvyil: (u%)*, (Uil)*)* = Ti(Til) + Zi(Til)NilaNil = (n?lvov (nLB)*v (n}A)*)*'

7 7

By the expressions of Z;(—T}) and Z;(T}), i = 1,2, we get y! ~ J, 20 ~ §, and

=t @)l

n%,s _ (wf’?’)*lu}, (2.4)
bt =ttt - ) el o -

0% = () 3!~ ) o),

B0 = w8, + bi(w!?) g+ [a? — wP (W) Ll (wi) 1ol (2.5)

nft = (w1,

J i, 12\—1, 42 4
a] = w;? (w?*) tw? —w;?, j=1,3.

11 23(wi21)71 _ w13 ! ;

where b; = w; w; I

Suppose that z = h;(t) is the solution of (1.1) in some small tube neighborhood of I7.
Substituting it into (1.1) and using 7;(t) = f(r;(t)), Zi(t) = Df(ri(t))Zi(t) and some simple
calculation, we obtain the maps F! defined by

np? =nd? + MIp+ hot., j=1,3,4, (2.6)

where MZJ = fj;; ¢z*(t)gu(ri(t),0)dt, 1=1,2,7=1,3,4 are called Melnikov vectors.

Suppose that

(H5) Bi=pl/M > 1, B=pi/A <1, Bi1B2 < 1.

By (H5) and the continuity of 3;(u) = pl(u)/A} (), i = 1,2, we have B(u) > 1, Ba(u) < 1
and By (p)B2(p) < 1 for |u| < 1. We may as well denote §;(u) := 04, i = 1,2. Let 7; be the flying
time from ¢} ; to ¢?, 51 = e’)‘i(“)ﬁ, S9 = e P2(W)T2, Then, using the linearization of (1.1) at p;,

we can easily get Fy defined by

1 1 2 1
1:(1] ~ 815, y? ~ 5?15’ u(l] ~ S?I(H)/Al(u)u(l), ’U? ~ 5?1 (M)/)\I(M)’Ué, (27)
and FY defined by
1 1 2 1
mi ~ s;/ﬁz(;’ yg ~ 850, Ui ~ sz(u)/pz(u)ug’ Ug ~ sz(l‘)/ﬂz(ﬂ)v%’ (2.8)

if we neglect the higher order terms, (s;,u?,v}_;), i = 1,2 are called Silnikov coordinates.
Thus, we have defined the Poincaré map Fy = F} o F: S+ S} as
npt = (wi?) 7 + Mlp+hot.,
ny® =ud — 6, + by (wi?)718s + Mip+ hot., (2.9)
n}’4 = (w‘ll‘l)_lsff(”)//\}(”)vé + M}u+hot.,

and Fy = F§ o F: S} + S} as

né’l = (wy?)"'0sy + Myp +hoo.t.,
ny® = ug — 8y, + by(wi?)"0sy + M3p + hoo.t., (2.10)

né’4 = (wg4)713233(“)/p§(”)v% + Mélu +h.o.t..
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Let Gi(q} ;) = (G}, G3,G%) = Fi(ql |) — q}, ¢t = ¢3. Owing to (2.4), (2.7)—(2.10), we get
the successor functions G; as follows:
Gl = §[(wi?) s — sé/ﬁz] + Mlu+hot.,
G} =uf — 8y, + by (wi?) st — (w?S)flsfé(“)/P;(”)ug + M}u+hot.,
Gl = — ol 44, —l—wi‘lés;/ﬁz n (w4114)—151133(u)//\}(u)v5 + My + hot,
Gy = 6[(w3®) sy — s1] + Myp+ho.t.,
G3 =uf — 8y, + bo(wd?) Losy — (wg’s)*ls?i(”)/)‘i(”)u? + M3u+hot.,
Gy = — Uh + 6y, +witds; + (w§4)7ls2B§(”)/p;(”)v} + Myp+h.o.t.. (2.11)
We call the following equation the bifurcation equation:
(G1,G3,G1,G3,G3,G3) = 0. (2.12)
Thus, there is a 1-1 correspondence between the 2-point-loop, 1-homoclinic and 1-periodic
orbit of (1.1) and the solution @ = (s1,s2,u,ud, v}, vd) of (2.12) with s; > 0, s5 > 0.
Remark 2.1. Under hypothesis (H5), G is C" 2 with respect to Q and p in the region
s1 20,52 >0.

3 Nontwisted bifurcations

Now, we consider the bifurcations near I under hypotheses (H1)—(H5). Consider the solution
of (2.12). It is easy to see that the equation (G%,G%,G3,G3) = 0 always has a solution u) =
ud(s1, 82, 1), v} = vi(s1,82,1) i = 1,2 for , |u|, s1, s2 sufficiently small. Substituting it into
(G}, GY) = 0, we obtain

Sé/ﬂz _ (w%2)7lsfl + 5*1M11u + h.o.t.,

3.1
s1 = (wi?)lsy + 5 'Mip+hot.. 31)

Firstly, if (3.1) has solution s; = sy = 0, then we have
M!y+hot. =0, i=1,2. (3.2)

If M} # 0, then by (3.2) and the implicit function theorem, there exists a (I — 1)-dimensional
surface L; with a normal vector M} at u = 0, such that the ith equation of (3.1) has solution
s1 =82 =0as pu € L; and |p| < 1, that is, I; is persistent.

If rank(M}, M) = 2, then Ly = Ly N Ly is a (I — 2)-dimensional surface (see ref. [21]) such
that (3.1) has solution s; = sy = 0 as p € Ly and |u| < 1, equivalently, system (1.1) has a
1-heteroclinic loop near I'.

Secondly, suppose that (3.1) has solution s; = 0, s > 0. Then we have
sy = =6 twiM}pu+hot., (3.3)
(=0 w2 Mip+ h.ot)VP =6 Mlu+ho.t.
If Mip >0, AsM3ip < 0, then following from the implicit function theorem, there exists a
(I — 1)-dimensional surface L? with a normal vector M at u = 0, which means L? is tangent to

L; at u =0, such that (3.1) has a solution s; = 0, s3 = s3(u) > 0 as u € L? and |u| < 1. That is
to say, system (1.1) has a 1-homoclinic loop I'? near I homoclinic to p; as p € L? and |u| < 1.
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In the same way, we can discuss the case s; > 0, s, = 0 and obtain the surface L} in the
region Mjpu >0, A;Mju < 0 and |p| < 1 which is tangent to L; at g = 0 such that system (1.1)
has a 1-homoclinic loop I'j near I" homoclinic to py as p € L3.

Denote R? = {u : Miu > 0, AgMiu < 0, |u| < 1}, R = {u : A;Mip < 0, M}y > 0,
|#| < 1}. Then, we have shown the following theorem.

Theorem 3.1. Suppose that hypotheses (H1)—(H5) are valid, and rank(M;, M]) = 2.
Then

(1) There exists a (I — 1)-dimensional surface L; with normal vector M} at u = 0, such that
(1.1) has a heteroclinic orbit joining p; and py near I if and only if p € L; and |pu| < 1,7 =1,2.
Moreover, (1.1) has a 1-heteroclinic loop near I' if and only if |pu| < 1 and p € Lig = Ly N Lo
which is a (I — 2)-dimensional surface.

(2) There exists a (I — 1)-dimensional surface L? C R? which is tangent to L; at u = 0 such
that (1.1) has a unique 1-homoclinic loop I'f connecting p; for 4 € L?. Meanwhile, there also
exists a (I — 1)-dimensional surface L} C R} which is tangent to L; at u = 0 such that (1.1) has
a unique 1-homoclinic loop I'f connecting p, for u € L}.

Now, we consider the 1-periodic orbits bifurcating from I'. That is, consider the solutions of
(3.1) which satisfy s; > 0, so > 0. For simplicity, we assume

(H6) A;=A4,=1.

Obviously, for A; = Ay = 1, R? and Rl read as {u : M}pu > 0,Mjp < 0,|p| < 1} and
{p: Mip <0, M}u>0,|ul < 1}, respectively.

Lemma 3.1. Suppose that hypotheses (H1)—(H6) are valid, then, in addition to the 1-
homoclinic loop I'Z, system (1.1) has exactly one simple 1-periodic orbit near I' for u € L3.
Moreover, the 1-periodic orbit is persistent for p changes in the neighborhood of L2.

Proof. If yu € L? and |u| < 1, then we know that (1.1) has one 1-homoclinic loop I'?
homoclinic to p;. Now, following (3.1), we have

s’?l + 6wl My + hot. = wi?(wi?)VP2(sy — 6 M}p+ hoot.)/ Pz, (3.4)

Let Vi(s1) and Ny(s1) be the left and right hand of (3.4), respectively. Then, by (3.3), we

get V1(0) = N1(0) as p € L2. Moreover,

Vi(s1) = Bisy" ™", Ni(s1) = (1/Ba)wi(wh®) /%2 (s1 — 6" My p+ hoo.t.) /P2,
so 0 = V1(51)|51:0 < N1(51)|51:0 for 81 > 1, By < 1. Therefore, there is a §;, 0 < §; < 1 such
that for 0 < s1 < 31, Vi(s1) < Ni(s1).

Denote 57 = —§ ' M p. Then

Vi(51) = 8 + 0w M p+ hot.,  Ni(51) = wi?(2ws?)/%2(5,)V/% 4 hoot..
It is not difficult to check that V1(5;) > N;(5;) for the reason that |u|, 5o < 1and 1 < 31 < ﬂ_lz

Thus, we get Vi(s1) = N1(s1) has at least one solution s satisfying 0 < s < 5;. That is to
say, (1.1) has at least one 1-periodic orbit near I" for u € L? and 0 < |u| < 1.

Tt is easy to see that Vi(s1) > Ni(s1) as §; < 57 < 1. In fact,

Vi(s) = BisP 7 > [1/(28) w2 (2wi?) /P25~ 4 hot.
> (1/B2)wi*(wg®) P2 (51 — 6 " My p + hoot.) /71 = Ni(s1).
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Combining it with V7(s1) > Ni(s1), we can obtain V7(s1) > Ni(s1) as 51 < s1 < 1 immediately.
Next, we prove the uniqueness of the sufficiently small positive solution of equation V;(s1) =
Ny (s1).
Noticing that V3 (s1) — Ni(s1) = 0 has solutions s; = 0 and s; = s}, we know that Vl(sl) —
N, (s1) = 0 has surely a solution s; = §; in (0, §1) according to the Role middle value theorem.

Thus we have
BL& T — (1) Ba)wi® (wy?) VP (31 + 51)V% 7+ hot. =0,

5 B2 1 1818
L = (3182) 7 [(w]?) Pl T (51) T <1 for 0< [u] < 1.
S$1+ 51
Therefore,
d?[Vi(51) — N1(8 B 1— 1 A
[ 1(53312 1(31)] — (ﬂ1 _ 1)ﬁ1§f1 2 ﬁfz Ew%z(wéz)l/ﬁz(sl + 51)1/52,2 T hot.
fr—1 1-02 81 .
= T2 1- . — | N1(51) > 0.
51 B2(B1—1) 81 + 5 1(51)

This turns out that s; = s7 is the unique sufficiently small positive solution of equation Vi (s;) =
Ni(s1). Due to (3.1) and (3.3), (3.1) has sufficiently small positive solution so = s3 corresponding
to s1 = sj. Moreover, s} is a simple zero of Vi(s1) = Ni(s;) which is persistent under small
perturbation of pu.

The proof is complete.

Lemma 3.2. Suppose that hypotheses (H1)—(H6) hold, then, system (1.1) has no any
1-periodic orbit near I' for u € L} except the 1-homoclinic loop I';.

Proof. The condition p € L} and |u| < 1 means that (1.1) has one 1-homoclinic loop I'y

homoclinic to ps. Based on (3.1), we have
(s2+ 67wl Mip + hoo.t )P = wi2(wl?)P (s/P2 — 5= M) + hoot. (3.4)
Let Va(s2) and Na(sz2) be the left and right hand of (3.4)’, respectively. Then V5(0) = N2(0)

as pu € L. Moreover,
‘./2(82) = ﬂl(SZ + (Sil’w%QM;/,L + h.O.t.)ﬁlil, NZ(SZ) = (1//82)10%2(11}%2)[318;/'82_1.
Taking note of 1 < 81 < 1/f82, we get

‘./2(82) > ﬂlsz'glil > N2(52) for 0 < sy < 1.

Therefore, V2(s2) > Na(s2) for 0 < so < 1. The proof is complete.
Lemma 3.3. Suppose that hypotheses (H1)—(H6) hold. Then, the curve h = Vi(s1) is
tangent to h = Ny (s1) at some point s; satisfying 0 < s1 < 1if and only if u € R, |M{pu| < |M3pl

B2 1 1
N Mlu T2 wl2 \ P11 Ml,u Br—1
g e () (R

Proof. It is easy to see that h = Vi(s1) is tangent to h = Ny(s1) at point s; if and only if
Vl(sl) = Nl(Sl) and Vl(sl) = Nl(sl), that is
s+ 0 w2 Ml + hot. = wi2(wi?) /P2 (s; — 6 ' Mip + hoot.)/ P2, (3.4)

and
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B18257 ™1 = wlP(wi?)V P2 (sy — 6 ' M}p+ hoot.)V/P2 L (3.6)
It is not difficult to get that (3.4) and (3.6) have a unique small positive solution
1
12371, \ i1
wi "M p > !
si1=————+r— + h.o.t. 3.7
! < B1Ba My (3.7
only when p € R? and | M} u| < |M3p|. Substituting (3.7) into (3.6), we get the lemma.
Lemma 3.4. Suppose that hypotheses (H1)—(H6) hold, then, the curve h = V5(s2) cannot
be tangent to h = N3(s2) at any point s, satisfying 0 < sy < 1.
Proof. By some elementary computation, one can see that Va(sy) = Ny(s2) and Va(sz) =

Ny(s2) are equivalent to

(24 6 w2 My + hot)? = wi2(wi2)? (s5/? — 57 M!p) + hot., (3.4)
Bi(sz+ 6 w2 M} +hot) =1 = (1/8)w!>(wh?)P st/ f hot.. (3.6)'

They have a small positive solution

B2
ﬁ1ﬂ2M11M> =
Sog=|—"—5—— +h.o.t. 3.7)
< w3 My (37
only when p € R} and | M} u| < |M3p|. Substituting (3.7) into (3.6)’, we get
1 B2
o Mip\# (P Mip\ T

§ ' Myp = (wy? e <— L > — (wy?) P21 (—71 . 3.5)
Owing to (H5), we have ﬁ > 12252' Thus, for |M}u| < |M3p|, the right hand of (3.5)’

will be negative, but 6~ MJp > 0. This is a contradiction.

The proof of Lemma 3.4 is over.

If M} and M} are linearly independent, then (3.5) has a solution which defines a (I — 1)-
dimensional surface f/% in the neighborhood of ¢ = 0. There is no difficulty to see that I~/% is
tangent to Ly at p = 0.

Following from (H5), we get lfzﬁz < 511—1’ and so we have

- . Mlp\ ™%
~5 My = (o) = (1)

Ba 1 1
N Ml 135 12 Br1—1 Ml By—1
> (w%z)—ﬁzﬂ _ 11M [ w _ 11.U _ —5_1M21,u|i2
M B1B2 My !

>0 7671M21/'L|L2

for p € R? and |M}u| < |[Mip|. By the definitions of Ly, L3, Iif, L., and the above inequality,
we get E% will be in the open region that is bounded by L, and L%. Thus, we can define the
following three open regions:

(R?), is that whose boundaries are L; and L?, and has nonempty intersection with R?. (R?),
is that whose boundaries are L? and E%, and has nonempty intersection with R?. (R?), is that
whose boundaries are i% and Lo, and has nonempty intersection with R3.

Now, we consider the non-negative solutions of Vj(s;) = Ni(s1) which is defined by (3.4).
Using Lemmas 3.1 and 3.3, it is not difficult to prove that:
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If 4 € (R?)1, then Vi(s1) = Ni(s1) has exactly one small positive solution.
If p € L2, then Vi(s;) = Ny(s1) has exactly one small positive and one zero solution.

(
)
If 4 € (R?),, then Vi (s1)
)
(

(
)
Ni(s1) has exactly two small positive solutions.
If u € L3, then Vi (s1) = Ni(s1) has exactly one small two-fold positive solution.

If 4 € (R?)o, then Vi(s1) = Ni(s1) has no any small non-negative solution.

Thus, we have shown the following theorem.

Theorem 3.2. Suppose that hypotheses (H1)—(H6) hold, u € R?. Then the following
conclusions are true.

(1) System (1.1) has exactly one simple 1-periodic orbit near I' as u € (R?);.

(2) System (1.1) has exactly one simple 1-periodic orbit and one 1-homoclinic loop homoclinic
to p; near I' as p € L2.

(3) System (1.1) has exactly two simple 1-periodic orbits near I" as p € (R?),.

(4) System (1.1) has a unique two-fold 1-periodic orbit near I' as u € L3.

(5) System (1.1) has not any 1-periodic and 1-homoclinic loop near I" as p € (R%)g.

Similarly, we can define two open regions (R1), and (R31); in R} and obtain the following
Theorem 3.3, where (R3), is that whose boundaries are Ly and L, (R}); is that whose boundaries
are L and Ls.

Theorem 3.3. Suppose that hypotheses (H1)—(H6) hold. Then system (1.1) has not
any 1-periodic and 1-homoclinic loop near I' as p € (R})o, has exactly one 1-homoclinic loop
homoclinic to py near I' as u € L3, and has exactly one simple 1-periodic orbits near I" as

p € (RY)1, respectively.
Denote D? as the open region whose bound-

aries are Ly and Lg, such that D? N {u : Miu > D}
0,Mip > 0,|u] < 1} # ¢. D) is the open re-
gion whose boundaries are L, and Lj, such that (R%)o
Diyn{p: Mip < 0,Myp < 0,|u] < 1} # ¢. By
Lemmas 3.3 and 3.4, we obtain the following valid (RD)2
theorem.

(R

Theorem 3.4. Suppose that hypotheses
(H1)—(H6) hold. Then

(1) system (1.1) has exactly one simple 1-periodic
orbits near I" as u € DJ;

(2) system (1.1) has no any 1-periodic orbits near I' as u € D?.

Fig. 1. Ay =A;=1

Now, we assume that

(H7) A, =A4,=-1.

By Theorems 3.1—3.4, we obtain the bifurcation graph (fig. 1).

In this case, we have R? = R} = {u : M{p > 0, Mju > 0,|u| < 1} := R. Thus, we can
discuss in a similar way and obtain the following theorem.

Theorem 3.5. Suppose that hypotheses (H1)—(H5) and (H7) hold. Then, in the open
region R, there are three (I — 1)-dimensional surfaces L?, INJ% and L}, all tangent to Ly at p =0,
and the following four open regions: R; is that whose boundaries are L; and L2, R, is that

whose boundaries are L? and L2, Rs is that whose boundaries are L? and L, and Ry is that
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whose boundaries are L} and Lo, all have nonempty intersection with R, such that the following
conclusions are true.

(1) System (1.1) has exactly one simple 1-periodic orbit near I" as u € Ry U Ry.

(2) System (1.1) has exactly one simple 1-periodic orbit and one 1-homoclinic loop homoclinic
to p; near I" as p € L2.

3) System (1.1) has exactly two simple 1-periodic orbits near I" as u € Ry.

4) System (1.

(

(4) 1)

(5) System (1.1)
- ©

has a unique two-fold 1-periodic orbit near I' as u € f/%
has exactly one 1-homoclinic loop homoclinic to ps near I' as pu € L.

(1
6) System (1.1) has no any 1l-periodic orbits and 1-homoclinic loop near I' as u € Rz or

LER.
Remark 3.1. For the case #1082 > 1, we only need to make a transformation of time,

t — —t.
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