
. RESEARCH PAPERS .
Special Focus

SCIENCE CHINA
Information Sciences

March 2011 Vol. 54 No. 3: 542–550

doi: 10.1007/s11432-011-4196-9

c© Science China Press and Springer-Verlag Berlin Heidelberg 2011 info.scichina.com www.springerlink.com

Phugoid dynamic characteristic of hypersonic gliding
vehicles

CHEN XiaoQing, HOU ZhongXi, LIU JianXia & CHEN XiaoQian∗

College of Aerospace and Materials Engineering, National University of Defense Technology,
Changsha 410073, China

Received August 15, 2010; accepted December 16, 2010

Abstract This paper focuses on the phugoid dynamic characteristic of hypersonic gliding vehicle. By re-

garding equilibrium glide as the fixed state of reentry trajectory, the dynamic equations are simplified and a

hyper-geometric equation with a forcing function is deduced. Linearization theory is applied to analyze the

characteristic of the motion, and the phugoid mode is found to be stable. An analytical solution of flight path

angle as a function of speed is derived based on General Multiple Scale theory. The dynamic characteristic is

analyzed, and the analytic solution is found to be in good agreement with the numerical simulation. When

the initial states do not satisfy equilibrium glide condition or perturbation occurs, a damped oscillation along

the equilibrium glide trajectory would occur. The damping diminishes as the speed decreases. The number of

oscillations is decided by the lift-to-drag ratio, the initial altitude and the initial/final speed.
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1 Introduction

Various hypersonic and reentry vehicle technologies are being pursued to enable global reach capability at
present [1]. The Force Application Launch from the Continental United States (FALCON) Program [2]
and the NASA Next Generation Launch Technology Program Office [3] of the United States government
validate both the interest and the need.

Much work has been done to generate/optimize the reentry trajectory [1, 4], while the purpose of
this paper is to study the longitudinal dynamics of a lifting vehicle gliding at hypersonic speed such as
common aero vehicle (CAV), which is an unmanned aerial vehicle supporting these technologies with the
role of “striking from space” [5]. For the purpose of better aerodynamic performance, the basic shape is
based on lifting body or waverider configuration.

Because of experiment limitation, the dynamic characteristic of such hypersonic vehicle is investigated
using analytical methods. Etkin [6] first analyzed the dynamic stability of hypervelocity aerospace planes.
By extending the classical theory of aircraft longitudinal dynamics to the case of hypervelocity orbital
flight, he investigated the perturbed motion of a lifting, thrusting vehicle on a circular orbit in the outer
fringes of the Earth’s atmosphere (30–200 km). Rangi [7] extended Etkin’s results by including certain
∗Corresponding author (email: gkbatchelor@gmail.com)
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Figure 1 Axis system and nomenclature.

nonlinear terms in the linearized equations and studying their effects on the perturbed vehicle motion.
He also found that the effects of the nonlinear terms considered were negligible. Laitone [8] obtained
analytical solutions of the linearized equations and compared them with Etkin’s numerical results. He
found that the phugoid relations were in excellent agreement with the numerical calculations presented
by Etkin. Vinh [9, 10] studied the dynamic stability of shuttle vehicle systematically. He analyzed the
phugoid oscillations during planar reentry maneuvers of single-stage-to-orbit vehicles and obtained an
explicit formula for the number of phugoid oscillations [11].

Berry [12] and Sachs [13, 14] used root-locus method to investigate how jet and rocket engine affect
the longitudinal stability of Space Shuttle and NASP (national aerospace plane program). Ferreira [15]
studied the nonlinear, unsteady cases of actual atmospheric planetary entry, viz., ballistic and gliding
entries. He found that for gliding entry, the two longitudinal modes (phugoid and pitching) are governed
by the same general type of equation, viz., forced hypergeometric equation. In ballistic entry, on the
contrary, that will not happen.

This paper is dedicated to the phugoid dynamics of high lift-to-drag ratio vehicles gliding at hypersonic
speed. The solution of equilibrium glide is analyzed, when the initial state does not satisfy the equilibrium
glide condition or perturbation occurs, the dynamic characteristic is analyzed through linearization and
generalized multiple scales methods. The analysis show that the vehicle would restore to the equilibrium
state as a damping oscillator and the oscillating amplitude fade down as the speed decreases.

2 Dynamic equation analysis

This study focuses on the reentry dynamics of hypersonic gliding vehicle; it is assumed that the vehicle
motion takes place around a non-rotating, spherical, homogeneous earth, with a static atmosphere, and
the side slip angle is zero. Then the reentry motion would be a planar motion without side force.

2.1 Equations of motion

Based on the assumption above, a coordinate system e-xy which is determined by the vector of initial
position r0 and speed V0 is established, as shown in Figure 1.

For simplicity, the dynamic equations are listed as eqs. (1a)–(1d). In a planet centric inertial reference
frame, the longitudinal dynamic equations [15, 16] are

dr

dt
= V sin γ, (1a)

dV

dt
= −D

m
− g sinγ, (1b)

dγ

dt
=

L

mV
+

1
V

(
V 2

r
− g

)
cos γ, (1c)

dη

dt
=

V

r
cos γ, (1d)

where r measures the radial distance from the earth’s center, V is the speed along the trajectory, γ is
the flight path angle, η is the range angle, g is the acceleration of gravity, m the vehicle’s mass, and D

and L are the aerodynamic drag and lift force.
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The problem of longitudinal dynamics for reentry is formulated as follows. The initial condition at
entry is

t = 0, r = r0, V = V0, γ = γ0, η = 0. (2)

Let H be the altitude measured from the reference level, and let h be its normalized value, that is,

H = r − r0, h =
H

r0
. (3)

Then
r

r0
= 1 − h + h2 − · · · (4)

For a central Newtonian gravitational attraction, we have

g

g0
=

(
r0

r

)2

� 1 − 2
Δr

r0
= 1 − 2h + 3h2 − · · · (5)

Since in the relevant terms, the reentry altitude is about 100 km, h is the order of 10−2, during reentry
we take r/r0 ≈ 1 and g/g0 ≈ 1. In addition, to simplify the analytical process, we assume that γ is small,
so that cos γ � 1 and sinγ � γ. For example, when |γ| � 8◦ (in degree) or |γ| < 0.1396 (in radian),
|γ − sin γ| < 0.001 and | cos γ − 1| < 0.01; we use γ and 1 to replace sinγ and cos γ.

The atmosphere density ρ is assumed to be a simple exponential, i.e. not broken up into multiple
layers. The density is ρsl at the Earth surface, so

ρ = ρsle−βH , (6)

where β is the density decay constant. So in differential form, we have

dρ = −β · ρ · dH. (7)

Substituting (7) into (1a), we get
dρ

dt
= β · ρ · V · γ. (8)

2.2 The equilibrium glide analysis

The standard glide mode for the long-range, hypersonic vehicle is the equilibrium glide, in which the
aerodynamic lift is used to balance the combined gravitational and centrifugal forces.

1
2
ρV 2SCL = mg

(
1 − V 2

gr

)
. (9)

This means that the flight path angle is very small and nearly constant during the descent, which means
that sin γ � γ and cos γ � 1. Then the equilibrium solution is (see [15])

ρ =
2m(1 − u)

SCLru
, (10)

γ = − 2(1 − u)
K(2 + βru(1 − u))

, (11)

where K is the lift-to-drag ratio and u = V 2

gr is the dimensionless speed in terms of the kinetic energy.
When u ∈ [0.01, 0.99], the term βru(1 − u) � 2, so the flight path angle, as a function of speed, can

be approximated by

γ = − 2
Kβru

. (12)

Figure 2 shows the variation of flight path angle for equilibrium glide as a function of the dimensionless
speed. The numerical simulation and the analytical solution are nearly identical down to a very low
speed. When the dimensionless speed decreases to 0.05, the flight path angle is −1.69◦ for K = 1.5 and
−0.85◦ for K = 3, which means that the small flight path angle assumption is reasonable and the analytic
solution can be accepted.
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Figure 2 Variation of flight path angle during equilibrium glide.

Remark. The relationship equation (9) could also be obtained by setting dγ
dt = 0, so from the view

point of nonlinear dynamics, the equilibrium glide is the fixed state of hypersonic reentry motion.

3 Stability of phugoid motion in equilibrium glide

Subsection 2.2 provides the analytical solutions for equilibrium glide of hypersonic reentry. For most
hypersonic vehicles, the initial states do not satisfy the equilibrium glide conditions. This section discusses
the analytical solutions when there is a small initial deviation, either in speed or the flight path angle,
or both.

For simplicity, neglecting the small gravity component in eq.(1b), we divide (1a) and (1c) by (1b). The
dynamic equations are translated into

dρ

dV
= − 2m · β · γ

CD · V · S , (13a)

dγ

dV
=

K

V
+

2m

ρ · CD · S · V 3

(
V 2

r
− g

)
cos γ. (13b)

We now introduce dimensionless variables to simplify the equations. In addition to the dimensionless
speed u, the density is represented by Chapman’s altitude variable (see [15]):

Y =
ρSCD

m

√
r

β
, (14)

while the flight path angle is analyzed in the form of the dimensionless variable

ϕ = −
√

βrγ. (15)

Then the equilibrium glide flight path angle solution (12) is can be rewritten as

ϕ =
2

ωu
, (16)

where
ω = K

√
βr0. (17)

And eqs. (13a) and (13b) can be rewritten as

dY

du
= −ϕ

u
, (18a)

dϕ

du
=

ω

2u
− 1 − u

u2Y
cos

(
ϕ√
βr0

)
. (18b)
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3.1 Linearization analysis

In this section, we first linearize eqs. (18a) and (18b) in the neighbored of equilibrium points. Let
ξ1 = Y − Ys, ξ2 = ϕ− ϕs where Ys and ϕs stand for the equilibrium states. Then the equations could be
rewritten as

ξ̇1 = a11ξ1 + a12ξ2,

ξ̇2 = a21ξ1 + a22ξ2

(19)

with a11 = 0, a12 = − 1
u , a21 = 1−u

u2Y 2 cos( ϕ√
βr0

), a22 = 1−u
u2Y

√
βr0

sin( ϕ√
βr0

).
The trace of the coefficient matrix is

T = a11 + a22 > 0. (20)

And the determinant of the coefficient matrix is

Δ = a11a22 − a12a21 > 0. (21)

So

T 2 − 4Δ =
(

1 − u

u2Y
√

βr0

sin
(

ϕ√
βr0

))2

− 4
1 − u

u3Y 2
cos

(
ϕ√
βr0

)

=
1 − u

u3Y 2

(
1 − u

u
√

βr0
sin2

(
ϕ√
βr0

)
− 4 cos

(
ϕ√
βr0

))
. (22)

T 2−4Δ < 0 while u ∈ [0.01, 0.99] and ϕ = 2
ωu . According to equilibrium point theory, the equilibrium

point is an unsteady focus and the amplitude increases exponentially, with an exponent of T/2. But
in reality, the dimensionless speed decreases from 0.99 to 0.01, so in this sense, the equilibrium point is
a steady focus. Any small deviation from the equilibrium glide would result in an oscillation and the
amplitude decreases as the speed decreases.

3.2 GMS theory analysis

The general multiple scales (GMS) theory developed by Ramnath [17] is an asymptotic approach for
approximating solutions for linear and nonlinear time-varying systems. The GMS theory has been used
to study dynamics of various applications [18–20].

3.2.1 Second-order GMS solution

Consider the second order LTV differential equation:

d2y

dt2
+ Z1(t)

dy

dt
+ Z0(t)y = 0. (23)

The characteristic roots which describe the solution of eq. (23) are given by the second order algebraic
equation:

S2 + Z1S + Z0 = 0. (24)

As developed by Ramnath, the GMS solution for eq. (23) can be described by two time scales. The
fast part of the solution provides frequency information and the slow part provides correction for the
amplitude. The GMS solution for eq. (23) is given by

y(t) = ys(t)yf (t), (25)

where the fast solution is

yf (t) = C1e
∫ t1

t0
Kr(t)dt sin

(∫ t1

t0

Ki(t)dt

)
+ C2e

∫ t1
t0

Kr(t)dt cos
(∫ t1

t0

Ki(t)dt

)
(26)

and the slow solution is
ys(t) = |4Z0(t) − Z1(t)2|−1/4, (27)

Ki and Kr are the imaginary and real parts of the characteristic roots of eq. (24), respectively. Based
on the initial condition, unknown parameters C1 and C2 can be determined.
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3.2.2 GMS analysis

Taking the derivative of eq. (18b), and using eq. (18a) we can obtain

d2ϕ

du2
= − ω

2u2
+

2uY − u2 dY
du

u4Y 2
− Y + dY

du

u2Y 2

= − ω

2u2
+

2 − u

u3Y
− 1 − u

u3Y 2
ϕ. (28)

From eq. (18b) we can get
1
Y

=
u2

1 − u

(
ω

2u
− dϕ

du

)
. (29)

Substitute expression (29) into eq. (28). Then a second order nonlinear differential equation for ϕ is
obtained:

u(1 − u)
d2ϕ

du2
− u

dϕ

du
+

ω2

4
ϕ =

ω

2u
− (2 − ωϕu)

dϕ

du
− ϕu2

(
dϕ

du

)2

. (30)

An equilibrium glide path would be observed if the initial conditions satisfy expressions (10) and (11).
Here we analyze the dynamic characteristics when there are small initial deviations from equilibrium
glide state, either in the speed or in the flight path angle, or both. Using the reference solution (12)
to evaluate the last two terms −(2 − ωϕu)dϕ

du − ϕu2(dϕ
du )2, we obtain −8/ω3u2, which can be neglected

compared to ω/2u. Therefore, in liberalized form, eq. (30) becomes

u(1 − u)
d2ϕ

du2
− u

dϕ

du
+

ω2

4
ϕ =

ω

2u
. (31)

Therefore, the flight path angle is governed by a hyper-geometric equation with a forcing term in gliding
entry. Here we will apply GMS theory to analyze the characteristic of the motion.

First, normalize eq. (31) as

d2ϕ

du2
− 1

1 − u

dϕ

du
+

ω2

4u(1 − u)
ϕ =

ω

2u2(1 − u)
. (32)

The characteristic roots of eq. (32) are

Kr(u) =
1

2(1 − u)
,

Ki(u) =
1
2

√
ω2(1 − u) − u

u(1 − u)2
≈ ω

2
√

u(1 − u)
.

(33)

So the fast solution is

ϕf (u) = C1e
∫ u

u0 Kr(u)du sin
(∫ u

u0

Ki(u)du

)
+ C2e

∫ u
u0 Kr(u)du cos

(∫ u

u0

Ki(u)du

)

and the slow solution is
ϕs(u) = (u(1 − u)/ω2)1/4. (34)

The GMS solution is

ϕ = ϕsϕf =
(

u(1 − u)
ω2

) 1
4

e−
1
2 ln 1−u

1−u0 f(u), (35)

where

f(u) = C1 sin
(

ω

2
(arccos(1−2u)−arccos(1−2u0))

)
+C2 cos

(
ω

2
(arccos(1−2u)−arccos(1−2u0))

)
, (36)

f(u) is a periodic function. Considering the neglected item ω
2u2(1−u) , the complete solution (= equilibrium

+ perturbation) for the flight path angle is

ϕ =
ω/2u2(1 − u)
ω2/4u(1 − u)

+
(

u(1 − u)
ω2

) 1
4

e−
1
2 ln 1−u

1−u0 f(u)
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=
2

ωu
+

√
1 − u0

ω

(
u

1 − u

) 1
4

f(u). (37)

It is clear the first item is equilibrium glide solution. When the vehicle glides along the reference equi-
librium glide trajectory, C1 = C2 = 0 and the flight path angle decreases continuously as the speed
decreases. When a perturbation occurs, ϕ undergoes an oscillation and the damping is provided by the
following function:

ξ(u) = u1/4(1 − u)−1/4. (38)

Expression (38) is the same as that Ferreira developed in [15] while he derived it through Liouville’s
transformation. The dimensionless density Y can be obtained as

1
Y

=
u2

1 − u

(
ω

2u
− dϕ

du

)

=
u2

1 − u

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω

2u
+

2
ωu2

−
√

1 − u0

ω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω(
u

1 − u
)1/4

√
1−(1−2u)2

(
C1 cos

(
ω

2
arccos(1 − 2u)

)

+C2 sin
(

ω

2
arccos(1 − 2u)

))

+
1

4(1 − u)5/4u3/4

(
C1 sin

(
ω

2
arccos(1 − 2u)

)

+C2 cos
(

ω

2
arccos(1 − 2u)

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

The first item gives the equilibrium glide solution; the second item is very small compared to the first
item while the last item provides the damped oscillatory perturbation.

3.3 Damping characteristic

From the analysis above, it is known that when the initial states do not satisfy the equilibrium glide
condition, the flight path angle would oscillate along the equilibrium glide trajectory and the amplitude
decreases as the speed decreases. When the deviation from the equilibrium glide state is too large, the
speed would not decrease monotonously at the early stage, and the analytical expression could forecast
the damping oscillation but it is hard to give an accurate solution.

Figure 3 presents the plot of height and flight path angle as a function of dimensionless speed with
different initial states: u0=0.95, γ0=0, H0=80 km and u0=0.9, γ0=0, H0=80 km with K = 3. The equi-
librium states at H0=80 km are u=0.9865 and γ = −0.0367◦. Compared with equilibrium glide trajectory,
when perturbation occurs and the states do not satisfy the equilibrium glide condition, the trajectory
would be a skip trajectory along the equilibrium glide trajectory, and the larger the perturbation, the
larger the amplitude.

The damping characteristic of the dimensionless variable ϕ is depicted by eq. (37), which depends
on the dimensionless speed only. When considering the flight path angle γ, the factor

√
βr used in eq.

(15) should be considered. Figure 4 shows the plot of damping characteristic, which appears that the eq.
(37) correctly predicts the damping in the equilibrium glide mode. It should be noted that the damping
characteristic is rescaled by the maximum oscillation amplitude.

3.4 Oscillation number analysis

As analyzed above, when perturbation occurs, or the initial states do not satisfy equilibrium glide con-
dition (eqs. (10) and (11)), the trajectory would oscillate along the equilibrium glide trajectory. This
part would analyze the number of oscillations, viz. the characteristic of function (36), and furthermore,
function arccos(1 − 2u).
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Figure 3 Variation of altitude and flight path angle during gliding reentry. (a) Altitude-dimensionless speed; (b) flight

path angle-dimensionless speed.

Figure 4 Damping characteristic. (a) u0 = 0.9, γ0 = 0, H0=80 km; (b) u0 = 0.95, γ0 = 0, H0=80 km.

As has been mentioned previously, u varies from 1 to 0, which means that arccos(1 − 2u) varies from
−π/2 to π/2. Thus, over the complete range of the speed the number of oscillations with frequency w is
computed by

N =
ω
2 × π

2π
=

ω

4
=

√
βr0

4
K. (40)

The number of oscillations is proportional to the lift to drag ratio K. As a numerical example, N=11.3
while K=1.5 and N = 22.6 while K=3. The initial altitude also affects the number of oscillations, but
numerical calculation shows that the influence can be neglected.

Given the initial and final dimensionless speed ui and ue, the number of oscillations is

N =
K
√

βr0

4π
× |arccos(1 − 2ue) − arccos(1 − 2ui)|. (41)

Using fourth order Runge-Kutta methods to solve the ordinary differential eqs. (1a)–(1d) numerically,
we count the number of oscillation. Table 1 gives the calculation results with different ui but the same
ue = 0.05 with the initial states H0=80 km, γ0 = 0◦. The numerical result is calculated by rounding
method which causes the difference. From Table 1, it can be concluded that the analytical expression
(41) can be accepted with a high reliability.

As to the period of oscillation, because the fly time is different with different initial states and the
function cos(ω

2 arccos(1 − 2u)) is nonlinear, the frequency and the period of f(u) is not a constant. We
use average period to estimate the period of phugoid:

T =
t

N
, (42)

where t is the fly time and N is the number of oscillation. In the case K = 3, h0=80 km, ui = 0.95,
γ0 = 0◦ and ue = 0.05, the fly time is 5000 s, the average period is about 300 s.
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Table 1 Oscillation number

u0 Numeric Analytic

0.97 17 16.7

0.95 17 16.1

0.93 16 15.4

0.92 16 15.2

0.90 15 14.6

4 Conclusions

The phugoid dynamics of hypersonic glide vehicle is analyzed theoretically using general multiple scale
theory and the following conclusions can be obtained:

Equilibrium glide is the fixed state of hypersonic glide vehicle, when the initial states do not satisfy
equilibrium glide condition or perturbation occurs, a damped oscillation along the equilibrium glide
trajectory, viz. skip trajectory, could be observed.

Dimensionless speed is one of the parameters that influence the damping characteristic, and the damp-
ing diminishes as the speed decreases, and the analytical solution agrees well with the numerical simula-
tion.

The number of oscillations is decided by the lift-to-drag ratio, the initial altitude and the initial/final
speed. The initial altitude’s influence can be neglected and the number of oscillations is proportional to
the lift-to-drag ratio.
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