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Identifying Hamiltonian of a quantum system is of vital importance for quantum information processing.
In this article, we realized and benchmarked a quantum Hamiltonian identification algorithm recently
proposed (Zhang and Sarovar, 2014). we realized the algorithm on a liquid nuclear magnetic resonance
quantum information processor using two types of working media with different forms of
Hamiltonian. Our experiment realized the quantum identification algorithm based on free induction
decay signals. We also showed how to process data obtained in a practical experiment. We studied the
influence of decoherence by numerical simulations. Our experiments and simulations demonstrate that
the algorithm is effective and robust.

� 2017 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

One critical task in quantum information processing is to char-
acterize a quantum system so that it can be used for tasks, such as
quantum teleportation [1,2], quantum cryptography [3,4], quan-
tum computation [5,6], quantum simulation [7–11] and quantum
metrology [12,13]. One way of fully characterizing a quantum sys-
tem is doing quantum state tomography (QST) and quantum pro-
cessing tomography (QPT) [14–19]. The QPT approach requires
an exponential number of experiments, which makes it difficult
to be realized for even a small sized quantum system [20–23].

Meanwhile, various methods based on measurement time
traces for Hamiltonian identification have been proposed for gen-
eral quantum systems. Fourier transformation (FT) of only one
measurement observable is used for a single qubit Hamiltonian
identification [24]. Temporal evolution of concurrence measure
of entanglement is employed to identify arbitrary two-qubit
Hamiltonian [25]. Hamiltonian identification using dynamical
decouplings was proposed [26]. Schemes of estimating the cou-
pling parameters for a complex quantum network based on mea-
surements of a small part of the network were proposed [27,28].
A basic and general quantum system identification framework
has been established on how much knowledge that is attainable
about a quantum system for a given experimental setup [29]. Very
Elsevier B.V. and Science China Pr
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recently, Zhang and Sarovar [30] proposed an efficient approach
(the ZS approach) for identifying arbitrary Hamiltonian quantum
dynamics, taking advantage of available prior knowledge of the
system.

One typical dynamical system is the nuclear magnetic reso-
nance (NMR) system, which is well described by quantum
mechanics. Moreover, its control technology has been well devel-
oped during the 50 years since the birth of NMR. These factors
make the NMR system an appealing quantum system for sophisti-
cated manipulation. Therefore, NMR systems are widely used for
quantum information processing [31,32]. To obtain the informa-
tion of an NMR system, modern NMR spectrometers acquire the
free induction decay (FID) signals, which are the measurement
time traces of certain observables. Schemes based on FT (e.g. FT-
NMR) of the FID signals, which is one of the most robust ways of
processing FID, have been developed [33,34]. Because the ZS
approach is based on measurement time traces for an arbitrary
quantum system, the NMR spectrometer provides a practical and
controllable system for demonstrating and benchmarking the ZS
approach.

In this article, we implemented the ZS approach on an NMR
quantum information processor and compared the result with that
of FT approach. The experiments were performed with two types of
working media with different Hamiltonian forms. Because of dif-
ferent Hamiltonian forms, we have to choose different measure-
ment observables which require distinct experimental setups.
Unlike works of NMR quantum computing in last two decades,
ess. All rights reserved.
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we started from the thermal equilibrium state rather than the
pseudo-pure state, and directly processed the FID signals. Our
experiments demonstrated that the ZS is an very efficient approach
for Hamiltonian identification. We also analysed the influences of
imperfect experiment conditions and decoherence on the results
using numerical simulations.

2. Algorithm

Here we briefly describe the ZS approach.1 Suppose now we

have an n-qubit quantum system with Hamiltonian bH. With the ini-

tial state qð0Þ, the system evolves, governed by the Hamiltonian bH.
During the evolution, the expectation value of an observable O at
time t is measured and recorded as yðtÞ. yðtÞ is also called the mea-
surement time trace of observable O. The Hamiltonian can be written
in a parametrized form,

bH ¼
X
m

amXm; ð1Þ

where am is the unknown parameters to be acquired,
Xm 2 S ¼ fXkjXk ¼ ra � rb � � � � � rc, and Xk–Ig, and ra;rb and rc

are the Pauli matrices rx;ry and rz and 2� 2 identity operator I2.
The number of the elements in S is 4n � 1. However, if taken into
consideration of a practical physical system, the number of the
non-zero am’s can be significantly decreased.

All the elements in set S are Hermitian operators. However,
because of the physical constraints, only some of them can be
easily measured, e.g., only the transverse magnetization in NMR,
denoted by operator rx (ry), can be observed. The temporal record
of the expectations of such an observable O can be collected, which
is called a measurement time trace, and denoted by yðtÞ, then
yðtÞ ¼ TrfOqðtÞg, with qðtÞ being the density matrix at time t. Let
yðtÞ be treated as an output of a linear system, and if we can find
a set of ½C0;A0;x0ð0Þ�, which satisfies yðtÞ ¼ C0eA0tx0ð0Þ, we call this
set a realization. For a certain output, various realizations can be
obtained. Among these realizations, an invariant function, called
transfer function YðsÞ exists, which is actually the Laplace transfor-
mation of the output, i.e.

YðsÞ ¼ LðyðtÞÞ ¼ C0ðsI� A0Þ�1x0ð0Þ; ð2Þ
where s is Laplace variable, L denotes Laplace transformation, and I
is the density matrix with the same dimension of A0. The basic idea
of the ZS approach is to find two realizations, one with all the
unknown parameters am (called realization 1, denoted by

½C; eA;xað0Þ�) and the other (called realization 2, denoted by

½bC; bA; x̂ð0Þ�) with completely known numbers. With these two real-
izations, the coefficients of the Laplace variable s can be compared,
hence the unknown parameters can be obtained,2 i.e.,

CðsI� eAÞ�1
xað0Þ ¼ bCðsI� bAÞ�1

x̂ð0Þ: ð3Þ
A schematic of the ZS approach is shown in Fig. 1.

Realization 1 is obtained from the parametrized Hamiltonian bH,
the observable O and the initial state qð0Þ. The observable and the
initial state are appropriately chosen artificially according to the
structure of a physical system. In such case, the vector xað0Þ
describes the initial system state qð0Þ, the matrix ~A describes the

dynamical evolution driven by bH , and the matrix C predicts the
measurement outcome yðtÞ for the system state xt .
1 Detailed information is given in the Electronic Supplementary Material, which
also includes the details of the experiment and numerical simulations.

2 Theoretically, the equation yðtÞ ¼ CeeAtxað0Þ can be solved to obtain all the
unknown parameters in eA. However, the right hand side of this equation is a
transcendental function of am ’s, which makes it infeasible obtaining am ’s.
Realization 2 is obtained solely by performing numerical meth-
ods, without relying on specific knowledge of the underlying sys-
tem. One way to do so is the eigenstate realization algorithm
(ERA) [35]. Technical details on how to obtain the two realizations
is out of the scope of this article and shown in the Electronic Sup-
plementary Material.

3. Experiments setup and results

The ZS approach was tested in a two-qubit and a three-qubit
NMR system, which were implemented with 13C-labelled trichlor-
oethylene (TCE) and 13C-labelled L-alanine (ALA) as the working
media, respectively. The molecular structures and the thermal
spectra of ALA and TCE are shown in Fig. 2.

The Hamiltonian of a liquid NMR system is (�h ¼ 1)

bHNMR ¼
XN
j¼1

pmjr j
z þ

XN
j>i¼1

pJij
2
ri � r j; ð4Þ

where 2pmi is the Larmor frequency for the ith spin, Jij is the indirect
coupling constant between the ith and jth spin. In weak coupling,
jmi � mjj � jJijj, which is valid for ALA, only the secular components
of the scalar coupling survive. Hence the Hamiltonian of ALA is
parametrized as

bHALA ¼ aA1r
1
z þ aA

2r
2
z þ aA3r

3
z þ aA4r

1
zr

2
z þ aA5r

1
zr

3
z þ aA6r

2
zr

3
z : ð5Þ

TCE is strongly coupled, and its parametrized Hamiltonian has a
more complicated form,

bHTCE ¼ aT1r
1
z þ aT2r

2
z þ aT3ðr1

xr
2
x þ r1

yr
2
y þ r1

zr
2
z Þ: ð6Þ

Once the Hamiltonian is parametrized, the observable can be
decided. For TCE, OT ¼ r2

x is chosen, and one qubit time trace is suf-
ficient to identify the whole Hamiltonian because of strong cou-

pling. Whereas for ALA, OA ¼ r1
x þ r2

x þ r3
x has to be chosen as

the observable because of the nature of the weak coupling
Hamiltonian.

Then we prepare the initial states. Different forms of Hamilto-
nian require different experimental strategies. Different from
NMR quantum computing with pseudo-pure initial state [31],
Hamiltonian characterization should start directly from states that
are easily prepared without knowing the Hamiltonian details, e.g.,

state qð0Þ ¼ P
jr

j
x. For ALA, we repeated the experiments for three

times with three different initial states r1
x ;r2

x , and r3
x , each corre-

sponds to a different xað0Þ for ALA. Choosing three initial states
instead of one simplifies the data processing procedure. For TCE,
a single input state r2

x is enough.
After preparation, qð0Þ starts to evolve under the system Hamil-

tonian, hence the macroscopic magnetization in NMR rotates. The
rotation of the magnetization induces an electromagnetic wave
which is received by a coil, and the signal received is called the free
induction decay(FID) signal. The FID signal acquired by modern
NMR spectrometers contains real and imaginary parts. The real
part is

VRðtÞ ¼ aTrfFxqðtÞg; ð7Þ
where a is a coefficient related to the spectrometer, qðtÞ is the den-

sity matrix of the system at time t, and Fx ¼
P

jr
j
x, where the sum-

mation includes the spins in the chosen observable. For TCE, only
the second spin is observed and for ALA, all three qubits are
observed. Thus the observable for TCE is FT

x ¼ r2
x and for ALA is

FA
x ¼ r1

x þ r2
x þ r3

x , which are exactly the observables we chose for
ZS approach. The state qðtÞ evolves as qðtÞ ¼ Uqð0ÞUy with

U ¼ expð�ibHNMRtÞ. From this discussion, we can see that the real



Fig. 1. (Color online) Schematic of the ZS approach. From the forms of density matrix, Hamiltonian and observable, realization 1 (½C; ~A; xað0Þ�) with the unknown parameters
can be obtained. From the measurement time traces, realization 2 (½Ĉ; Â; xð0Þ�) can be obtained. From realizations, transfer functions could be obtained, which is unique for a
certain physical system. Therefore, by solving the equation of equalizing the two transfer functions obtained from two realizations, we can get the unknown parameters.

3 See Bruker manuals of Topspin for details.
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part of FID is the measurement time traces required by the ZS
approach.

After the FID signals are acquired, one can obtain a realization
through ERA. However, data processing is not that simple due to
the imperfections of a spectrometer. We have to deal with two
problems, the dead time of the spectrometer and the unknown
coefficient a. The dead time problem can be solved by doing phase
correction on a spectrometer, and the unknown coefficient prob-
lem can be solved by scaling the FID properly. Detailed discussion
about processing the experimental data before ERA is shown in the
Electronic Supplementary Material.

Then ERA is performed to obtain a realization of the system on
the processed FID signal. In our experiments and numerical simu-
lations, 1600 points were used in ERA. Compared with the number
of points (more than 16,000 in our experiments) FT-NMR utilized,
the number of the points ERA used is quite small. Once the realiza-
tion is obtained, the transfer function can be calculated. By com-
paring the transfer functions, the parameters of the Hamiltonian
are obtained. The results of the Hamiltonians of TCE and ALA are
shown in Tables 1 and 2, respectively.

From Tables 1 and 2, we can see that the parameters obtained
from FT and that from the ZS approach agree well with each other.
The absolute difference between the experimental values and the-
oretical values of the chemical shifts for TCE is about 1 Hz (note
there is a multiplication of p between the chemical shift and the
parameters aj), which is only slightly larger than 0.5 Hz, the reso-
lution of a modern FT-NMR spectrometer. The relative errors for
the parameters related to the chemical shifts of ALA ðaA

1 � aA
3Þ are

smaller than that of TCE (aT
1; a

T
2), while at the same time, the rela-

tive errors for the parameters related to the spin-spin couplings
of ALA (aA4 ; a

A
6) are larger than that of TCE (aT

3). From these compar-
isons, we can say that the larger the value of a parameter, the more
robust of the result. Despite the small relative error, the absolute
differences of the chemical shifts of ALA are about 2� 4 Hz, which
is tiny but can be identified on modern NMR spectrometers. The
extremely weak coupling can not be identified through looking
at the whole spectrum (which means the observable is
r1

x þ r2
x þ r3

x ), both by using FT and the ZS approach. This is caused
by the low resolution of a spectrum with a large spectral width
(SW) and the decoherence time T2. SW is a parameter decided
before acquisition. Since the difference between the chemical shifts
of C1 and C3 of alanine is large, to obtain the whole spectrum, the
spectral width in Hz (SWH) has to be very large. The FID resolution
in Hertz is FIDRES=SWH=TD.3 As FIDRES is proportional to SWH, a
large SWH means a large FIDRES, hence low resolution. Combined
with the line broadening caused by decoherence, the weak coupling
can not be identified on the spectrum of FT-NMR, which means that
the information of J13 is lost during the acquisition. To identify weak
couplings, a small SWH (for ALA, it can be set to less than 100 Hz)
should be chosen and the transmitter frequency should be set to
the frequency of C1 or C3.

It is worth noting that only the absolute value of the parameters
is provided in the Tables 1 and 2. For a signal VðtÞ ¼ cosðxtÞ, the
result of FT will give frequencies x and �x. Therefore, to identify
the sign of chemical shifts, modern NMR spectrometers use
quadrature detection [34], where the imaginary FID is generated
and employed to assist identifying the frequencies, while during
our experiments with the ZS approach, only Fx is observed. The
signs of the spin-spin couplings can not be identified by just
obtaining the 1D spectrum. To identify these signs, additional
experiments such as COSY-45 or spin polarization transfer are
required. From the above discussion, we can see that the ZS
approach gives almost the same amount of information as that
provided by FT.

Besides FT, other methods, such as maximum entropy method
[36,37], linear prediction [38,39] are also in common use. Though
not as robust as FT, these methods have advantages in certain cases



Fig. 2. (Color online) Molecule structure and spectrum for TCE (a) and ALA (b). The gray balls represent 13C. Both spectra are obtained with hydrogen decoupled. The
difference in the heights of the peaks in TCE carbon spectra are caused by strong coupling between the two carbons.

Table 1
Experimental results for TCE. Relative error is defined as jFT result-ZS resultj/FT result. The values of the parameters in FT result are obtained by numerically fitting the Fourier
transformed spectra.

am Xm FT result ZS result Relative error

a1 r1
z 1180.6 1179.4 1:05� 10�3

a2 r2
z 1081.2 1082.5 1:25� 10�3

a3 r1
xr2

x þ r1
yr2

y þ r1
zr2

z 161.9 162.6 4:24� 10�3

Table 2
Experimental results for ALA. Relative error is defined as jFT result�ZS resultj/FT result. The values of the parameters in FT result are obtained by numerically fitting the Fourier
transformed spectra.

am Xm FT result ZS result Relative error

a1 r1
z 25723.3 25721.2 7:98� 10�6

a2 r2
z 13876.7 13881.5 3:44� 10�4

a3 r3
z 24745.6 24749.9 1:71� 10�4

a4 r1
zr2

z 84.8 84.3 5:5� 10�3

a6 r2
zr3

z 54.8 55.7 1:59� 10�2
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such as when there are only a few data points. Since the data points
used by the ZS approach is much smaller than that used by FT, our
experiments show that the ZS approach is also applicable in such
cases.
4 In this article, all T2 is actually T�
2. T

�
2 consists of T2 and the inhomogeneity of the

magnetic field. The inhomogeneity can be refocused by pulses. But when we acquire
the FID, the inhomogeneity always exists and can not be eliminated. Thus all the T2’s
described in this article is T�

2, which can be straightly obtained by fitting the spectra.
4. Decoherence

In NMR systems, decoherence is a common feature, which
causes error in the ZS approach and leads information loss of
parameter aA5 . For practical experiments, the decoherence parame-
ters are decided according to the spectrometer and the preparation
of the sample. Therefore, to benchmark the ZS approach with the
presence of decoherence, numerical simulations are employed.
One common parameter used to characterize decoherence is T2. 4



Fig. 3. (Color online) Relative error against T2. (a) The three parameters for TCE. (b) The three parameters related to Larmor frequency of ALA. (c) The two parameters related
to the two largest coupling of ALA.
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Numerical simulations are performed to benchmark the influence of
T2. Using the T2 model presented in Ref. [33], the output FID reads

VRdðtÞ ¼ a
X
rs

Fxrsqsrð0Þeðixrs�krsÞt; ð8Þ

where Fxrs qsrð0Þð Þ denotes the r- and s-th (s- and r-th) entry of
Fx(qð0Þ), xrs denotes the frequency between energy level r ans s

and krs is the relaxation rate, i.e., xrs ¼ hrjbHNMRjri � hsjbHNMRjsi and
krs ¼ 1=Trs

2 . For simplicity and without loss of generosity, let all
the spins relax at the same rate, so Trs

2 ¼ T2 and
VdðtÞ ¼ VðtÞ expf�t=T2g. Our simulations show that, the magni-
tudes of the absolute value of the parameters in Hamiltonian decide
the sensitivity to T2. The parameters with smaller values are more
sensitive than that with larger values, as shown in Fig. 3.

In our simulations, the T2’s are chosen to be from 0.01 to 0.1 s,
which are shorter than T2 of the systems. The couplings of ALA’s
are much smaller than that of TCE’s, hence the errors brought by
T2 to the couplings of ALA’s are much larger than that of TCE’s,
while on the contrary, the value of the chemical shifts of ALA’s
are much larger than that of TCE’s, so the relative errors for the
chemical shifts are smaller for ALA than that for TCE. It is reason-
able to find out that the longer the T2, the smaller the relative
errors. Here, the coupling J13 is not plotted, since for short T2, it
can not be identified. In classical FT-NMR, T2 broadens the peak
width by 1=ðpT2Þ, which is about 3 Hz when T2 ¼ 0:1 s. The extre-
mely weak coupling is about 1.8 Hz, thus the information of J13 is
lost during the acquisition due to short T2. According to our simu-
lation, if the T2 time is greater than 1.5 s, J13 can be obtained with
relative error smaller than 0:02 using the ZS approach.
5. Discussion and conclusions

The number of the parameters am’s of bH in Eq. (1) is 4n � 1,
which is exponential, making QPT extremely hard to be performed.
If without any prior knowledge of the system, all these am’s have to
be identified using the ZS approach, which means the scale of the
problem grows exponentially and the ZS approach is hardly scal-
able. However, because of the physical constraints on system
energy, locality and structure, the number of the non-zero am’s
would decrease rapidly, which significantly simplifies the problem.
Taking the liquid NMR system Hamiltonian of Eq. (4) with weak
coupling as an example, the number of the non-zero am’s is
Oðn2Þ, which is polynomial, and can be further reduced because
the indirect spin-spin coupling hardly exists between two spins
that are four chemical bonds away. From this point of view, the
ZS approach for the liquid NMR Hamiltonians5 is scalable as the
number of qubits grows.
5 The number of non-zero am ’s for strong coupling system is ð3� n2 � nÞ=2, which
is also polynomial.
In summary, we have realized the ZS approach using an NMR
quantum information processor with different work media. We
showed that by choosing suitable observables for a given form of
coupling, weak or strong coupling, the Hamiltonian can be effi-
ciently identified using the ZS approach. Our experiments show
that the ZS approach simplifies for the strong coupling systems,
thus it can be used to identify these systems, such as solid-state
and liquid crystal NMR systems, whose Hamiltonians are difficult
to identify using FT approach. We also studied the influence of T2

on the result of the ZS approach. The numerical simulation indi-
cated that a very short T2, implying a strong decoherence, can
downgrade the ZS approach. However for a reasonable T2, the ZS
approach is efficient and robust.
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