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Abstract Noncommutative moment problems for C
∗-algebras are studied. We general-

ize a result of Hadwin on tracial states to nontracial case. Our results are applied to obtain
simple solutions to moment problems on the square and the circle as well as extend the
positive unital functionals from a (discrete) complex group algebra to states on the group
C

∗-algebra.
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1 Introduction

The classical Hamburger moment theorem gives conditions on a sequence {κn} of
numbers so that there is a positive Borel measure on R whose sequence of moments is
{κn}. The following is an immediate consequence of Hamburger’s result.

Theorem 1. Given a sequence {κn}n>0 of real numbers, there is a probability mea-
sure µ on [−1, 1] such that∫

[−1,1]

tndµ (t) = κn for n = 0, 1, 2, . . .

if and only if the linear functional ϕ : C [t] → C defined by ϕ (tn) = κn for n > 0

satisfies

(1) ϕ (1) = 1,

(2) ϕ(|p|2) > 0 for every p ∈ C [t] , and

(3) lim inf
n→∞

κ2n <∞.

Note that the probability measures on [−1, 1] correspond to the states on theC∗-algebra
C [−1, 1] of continuous functions on [−1, 1] . In Theorem 1.3 of ref. [1], Don Hadwin
generalized the preceding theorem to the noncommutative setting of tracial states on free
products of copies of C [−1, 1] . As a tool in his proof he gave a simple proof of a gen-
eralized Hölder’s inequality. For background on C∗-algebras and free products the reader
can consult, respectively, refs. [2] and [3].
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In this paper we give a simpler proof of Hadwin’s theorem, and we show that the theo-
rem and Hadwin’s version of Hölder’s inequality are not true without the tracial assump-
tion (τ (ab) = τ(ba)). We prove a version of Hadwin’s result when C [−1, 1] is replaced
by C (T) (where T is the unit circle). We then prove an analogue of Hadwin’s result in
the nontracial setting, and we prove an extension theorem for (nontracial) functionals on
a group algebra C (G) to states on the group C∗-algebra C∗ (G), when G is a discrete
group.

2 Noncommutative moment problem for states

Suppose An is the C∗-algebraic free product of n copies of C[−1, 1]. If we consider
that C[−1, 1] is the universal unital C∗-algebra generated by an element t subject to the
relations t = t∗ and −1 6 t 6 1, then An is naturally generated by elements t1, . . . , tn,
where tk is the generator of the kth copy of C [−1, 1] . Let Pn denote the vector space of
all noncommutative polynomials in t1, t2, . . . , tn, and let Mn denote all of the monomials
in t1, t2, . . . , tn. We then have Pn ⊂ An. When n = 1, let t = t1. We have Pn=C [t] ,

Mn = {1, t, t2, . . .} and An = C[−1, 1]. It is clear that Mn is a linear basis for the vector
space Pn, so there is a bijection between the functions on Mn and the linear functionals
on Pn. A functional ϕ is tracial if ϕ (ab) = ϕ (ba) always holds. Here is Don Hadwin’s
noncommutative moment theorem with our simplified proof.

Theorem 2. A tracial linear functional ϕ on Pn can be extended to a (tracial) state on
An if and only if

(1) ϕ (1) = 1,

(2) lim inf
m→∞

|ϕ(t2m
j )| <∞ for 1 6 j 6 n, and

(3) ϕ (p∗p) > 0 for every p ∈ Pn [t] .

Proof. “⇒” Suppose (1), (2) and (3) are true. Define a semi-inner product (·, ·) on
Pn by (p, q) = ϕ(q∗p) = ϕ(pq∗) and, for 1 6 j 6 n, define a linear transformation Ltj

on Pn byLtj
p = tjp.We want to show that eachLtj

induces a contractive linear mapping
on the semi-inner product space, i.e.

(Ltj
p, Ltj

p) = ϕ(p∗t2jp) 6 ϕ(p∗p) = (p, p)

for every p ∈ Pn.

Clearly, we can assume that ϕ(p∗p) > 0. Define a functional ψ on C[tj ] by
ψ(q) = ϕ(qp∗p)/ϕ(p∗p).

Then ψ(1) = 1 and
ψ(q∗q) = ϕ(q∗qp∗p)/ϕ(p∗p) = ϕ((qp)∗(qp))/ϕ(p∗p) > 0.

By the Cauchy-Schwarz inequality, we have
ψ(t2m

j ) = ϕ(t2m
j p∗p)/ϕ(p∗p) 6 ϕ(t4m

j )
1

2ϕ((p∗p)2)
1

2 /ϕ(p∗p)

for 1 6 j 6 n, 0 6 m <∞. Since for each j andm, |ϕ(tmj )| 6 1, it follows that
ψ(t2m

j ) = ϕ(t2m
j p∗p)/ϕ(p∗p) <∞,
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for 1 6 j 6 n, 0 6 m < ∞. Hence, ψ satisfies the conditions of classical moment
theorem, then we have |ψ(t2j )| 6 1, which is the desired inequality

ϕ(t2jp
∗p) 6 ϕ(p∗p).

Thus, each Ltj
defines a selfadjoint contraction operator on the Hilbert-space completion

of our semi-inner product space Pn. It follows from the definition of An that there is a
unital*-homomorphism π on An such that π(tj) = Ltj

for 1 6 j 6 n. Clearly, for each
p ∈ Pn, ϕ(p) = (π(p)[1], [1]), which completes the proof. 2

Next, we will show that without the tracial assumption on ϕ, none of the above results
remains true.

Example 1. Define ϕ : P(t1, t2) → C by ϕ(p(t1, t2)) = (p(T1, T2)e, e), where

T1 =

(
1 0

0 2

)
, T2 =

(
0 1

1 0

)
, and e =

(
1

0

)
. Clearly, ϕ is linear and ϕ(1) =

1. Moreover, for every p ∈ P(t1, t2),

ϕ(p∗p) = (p(T1, T2)
∗p(T1, T2)e, e)

= (p(T1, T2)e, p(T1, T2)e) = ||p(T1, T2)e||
2

> 0.

Also, ϕ(t2n
1 ) = ϕ(t2n

2 ) = 1, for n = 1, 2, 3 . . .. Therefore, except for the tracial property,
ϕ satisfies all of the conditions in Theorem 1.3 of ref. [1]. However, ϕ(t2t

n
1 t2) = 2n

for n = 1, 2, 3 . . .. This implies that the version of Hölder’s inequality in the proof of
Theorem 1.3 of ref. [1] is not true. Also, in C[−1, 1] ∗ C[−1, 1]

||t2t
n
1 t2|| 6 1 and 2n = ϕ(t2t

n
1 t2),

which implies that ϕ cannot be extended to a continuous linear functional on C[−1, 1] ∗

C[−1, 1].

The previous counter-example shows that without tracial assumption the theorem may
fail. But with some modifications of the conditions, we will get the following theorem:

Theorem 3. Suppose ϕ is a linear functional on Pn satisfying ϕ(1) = 1, and
ϕ(p∗p) > 0. Then the following are equivalent:

(1) supx∈Mn
|ϕ(x)| <∞;

(2) lim inf
k→∞

ϕ
(
(x∗x)

2k
)
<∞ for every x ∈ Mn;

(3) supx∈Mn
|ϕ(x)| 6 1;

(4) ϕ can be extended to a state on An.

Proof. The proofs of (4) ⇒ (1) ⇒ (2) is trivial.

(2) ⇒ (3). It follows from Theorem 1 that if t = x∗x, then there is a probability
measure µ on [−1, 1] such that

ϕ
(
t2k
)

=

∫ 1

−1

t2kdµ 6 1

for k > 1.
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(3) ⇒ (4). As in the GNS construction, define a semi-inner product ( , ) on Pn by

(p, q) = ϕ(q∗p)

and, for 1 6 j 6 n, define a linear transformation Ltj
on Pn by Ltj

p = tjp (where

t∗j = tj for each j). We want to show that each Ltj
induces a contractive linear mapping

on the semi-inner product space, i.e.

(Ltj
p, Ltj

p) = (tjp, tjp) = ϕ(p∗t2jp) 6 ϕ(p∗p) = (p, p)

for every p ∈ Pn. Clearly, we can assume that ϕ(p∗p) > 0. Define a linear functional ψ
on C[tj ] by

ψ(q) = ϕ(p∗qp)/ϕ(p∗p)

for each q ∈ C[tj ] and p ∈ Pn.

Then ψ(1) = 1 and

ψ(q∗q) = ϕ(p∗q∗qp)/ϕ(p∗p) = ϕ((qp)∗(qp))/ϕ(p∗p) > 0.

Since any non-commutative polynomial p ∈ Pn can be written as the finite sum of mono-
mials, suppose

p =

N∑

i=1

λimi,

where each mi ∈ Mn. Then

p∗ =
∑N

i=1
λimi.

Thus, for α = 1, 2, 3 . . .

ψ(tαj ) = ϕ(p∗tαj p)/ϕ(p∗p) = ϕ

(
N∑

i=1

N∑

k=1

λiλkmit
α
j mk

)/
ϕ(p∗p)

=
N∑

i=1

N∑

k=1

λiλkϕ(mit
α
j mk)/ϕ(p∗p).

Since mit
α
j mk is a monomial, by (1) , we have ψ(tαj ) < ∞. That means ψ(t2m

j ) < ∞

for 1 6 j 6 n, 0 6 m < ∞. Hence, ψ satisfies the conditions of classical moment
theorem, then we have |ψ(t2j )| 6 1, which is the desired inequality

ϕ(p∗t2jp) 6 ϕ(p∗p).

Thus, each Ltj
defines a selfadjoint contraction operator on the Hilbert-space completion

of our semi-inner product space Pn. It follows from the definition of An that there is a
unital∗-homomorphism π on An such that π(tj) = Ltj

for 1 6 j 6 n. Clearly, for each
p ∈ Pn, ϕ(p) = (π(p)[1], [1]), which completes the proof. 2

3 Unitary generator case

Theorem 2 can be used to show that any positive unital tracial linear functional on the
algebraic free product of C∗-algebras extends to a tracial state on the C∗-algebraic free
product completion.
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Considering GNS construction from the states on the free product of copies ofC [−1, 1] ,

we have C∗-algebras generated by selfadjoint contractions. It is often more convenient to
look at C∗-algebras generated by unitaries. We next use Theorem 2 to prove a version of
Theorem 1 with C [−1, 1] replaced by C (T) , where

T = {λ ∈ C : |λ| = 1} .

To do this we need a few simple lemmas.

Lemma 1. Suppose A = C [−1, 1] , with a variable s and B = C [−1, 1] with a
variable t. Let J be the closed ideal in A ∗ B generated by st − ts. Let x, y be the
coordinate functions in C ([−1, 1] × [−1, 1]) . Then the map that sends 1 7→ 1, s 7→ x,

t 7→ y generates a ∗-isomorphism from (A ∗ B) /J onto C ([−1, 1] × [−1, 1]) .

Proof. This follows intuitively from the fact that A ∗ B is the universal unital C∗-
algebra generated by s, t subject to the conditions −1 6 s, t 6 1, while C([−1, 1]×

[−1, 1]) is the universal unital C∗-algebra generated by s, t subject to the conditions
−1 6 s, t 6 1 and st = ts. It is easy to check that the map defined in the lemma is
an isomorphism. 2

We can now use the Hadwin’s result to obtain the well-known version of the Hamburger
moment problem for the square.

Corollary 1. If ϕ : C [x, y] 7→ C is a positive linear functional such that ϕ(1) = 1,

lim inf
k→∞

ϕ
(
x2k
)
<∞

and
lim inf

k→∞

ϕ(y2k) <∞,

then there is a probability measure µ on [−1, 1] × [−1, 1] such that for any p ∈ C [x, y] ,

ϕ(p) =

∫

[−1,1]×[−1,1]

pdµ.

Proof. Define π : P2(s, t) → C [x, y] by π(p (s, t)) = p (x, y) . Then π is a unital
∗-homomorphism. If we take Ψ = ϕ ◦ π then Ψ satisfies the hypothesis of Theorem 2.
Therefore, there exists a state Ψ̂ onC [−1, 1]∗C [−1, 1] , such that Ψ̂|P2

= ϕ◦π. Then by
the GNS construction, there exist a Hilbert space H and e ∈ H , ||e|| = 1, ρ : C [−1, 1]∗

C [−1, 1] → B(H) so that Ψ̂(A) = (ρ(A)e, e), and ρ(C [−1, 1] ∗ C [−1, 1])e = H.
Suppose p, q ∈ P2(s, t), then

Ψ̂ (p∗(st− ts)q) = Ψ (p∗ (st− ts) q) = ϕ (π (p∗ (st− ts) q))

= ϕ (π (p∗) π (st− ts)π (q)) = ϕ (π (p∗) 0π (q)) = 0.

So, for any p, q ∈ P2,

(ρ (p∗ (st− ts) q) e, e) = (ρ (st− ts) ρ (q) e, ρ (p) e) = 0,

that implies (ρ (st− ts)u, v) = 0 for any u, v ∈ H . Thus, ρ (st− ts) = 0. Therefore,
st − ts ∈ ker ρ. Then the closed ideal J generated by st − ts is contained in ker ρ.

Suppose η is the natural quotient map from A ∗ B to A ∗ B/J , then there is a unique
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homomorphism σ : A ∗ B/J → B(H) such that σ ◦ η = ρ. By Lemma 1, we know that
A ∗ B/J is isomorphic to C ([−1, 1] × [−1, 1]) . For every f ∈ C ([−1, 1] × [−1, 1]) ,

define
δ (f) = (σ (f) e, e) .

Then δ is a state on C ([−1, 1] × [−1, 1]) . So there exists a probability measure µ on
C [−1, 1] × [−1, 1] such that

δ (f) =

∫
fdµ.

Thus, for any commutative polynomial p (x, y) ,

δ (p (x, y)) =

∫

[−1,1]×[−1,1]

p (x, y) dµ.

Since

δ (p (x, y)) = (σ (η (p (s, t))) e, e) = ((ρ (p (s, t))) e, e)

= Ψ (p (s, t)) = ϕ (p (x, y)) ,

we see that

ϕ (p (x, y)) =

∫

[−1,1]×[−1,1]

p (x, y) dµ. 2

The preceding corollary gives us an easy proof of the moment problem for the square.

Corollary 2. If ϕ : C [x, y] → C is a positive linear functional, ϕ (1) = 1, and
ϕ((x2 +y2−1)2) = 0, then there exists a probability measure µ on the unit circle T such
that, for any p ∈ C [x, y] ,

ϕ (p) =

∫

T

pdµ,

i.e. ϕ extends to a state on C (T) .

Proof. For any n ∈ N,∣∣ϕ
((
x2 + y2

)n
− 1
)∣∣ =

∣∣ϕ
((
x2 + y2 − 1

)
q (x, y)

)∣∣ ,
where

q (x, y) = 1 + (x2 + y2) + (x2 + y2)2 + · · · + (x2 + y2)n−1.

It follows from the Cauchy-Schwarz inequality that,∣∣ϕ((x2 + y2)n − 1)
∣∣ 6 ϕ((x2 + y2 − 1)2)

1

2ϕ(q∗(x, y)q(x, y))
1

2 = 0.

Thus,
ϕ
((
x2 + y2

)n)
= 1

for any n ∈ N. Also,

(
x2 + y2

)n
− x2n =

n−1∑

k=0

(
n

k

)
(
x2
)k (

y2
)n−k

,
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so the positivity of ϕ on C [x, y] implies

ϕ
((
x2 + y2

)n
− x2n

)
= ϕ

(
n−1∑

k=0

(
n

k

)
(
xkyn−k

)∗ (
xkyn−k

)
)

> 0.

Thus,
ϕ
(
x2n
)

6 ϕ
((
x2 + y2

)n)
= 1.

Similarly, we have
ϕ
(
y2n
)

6 1.

That tells us that ϕ satisfies the hypothesis of Theorem 2, and by arguing as in the proof
of Corollary 1, there is a probability measure µ on [−1, 1] × [−1, 1] such that for any
p ∈ C [x, y] ,

ϕ(p) =

∫

[−1,1]×[−1,1]

pdµ.

Since

0 = ϕ
((
x2 + y2 − 1

)2)
=

∫

[−1,1]×[−1,1]

(
x2 + y2 − 1

)2
dµ,

µ is supported on the unit circle T. Therefore, for any p ∈ C [x, y] ,

ϕ (p) =

∫

[−1,1]×[−1,1]

pdµ =

∫

T

pdµ. 2

With the identification z = x+ iy, z∗ = z = x− iy, we see that C [x, y] = C [z, z] .

Corollary 3. If ϕ : C [z, z] → C is a positive linear functional with ϕ (1) = 1,

and ϕ
(
(1 − zz)

2
)

= 0, then there exists a probability measure µ on T such that for any

p ∈ C [z, z] ,

ϕ (p) =

∫

T

p (z, z) dµ.

If we define z∗ = 1
z

on C
[
z, 1

z

]
, we get a unital ∗-algebra.

Corollary 4. Suppose ϕ : C
[
z, 1

z

]
→ C is a positive linear functional, ϕ (1) = 1.

Then there exists a probability measure µ on T, such that for any p ∈ C
[
z, 1

z

]
,

ϕ (p) =

∫

T

p

(
z,

1

z

)
dµ.

Proof. It is clear that the map z 7→ z, z 7→ 1
z
, 1 7→ 1 extends to a ∗-homomorphism

ρ from C [z, z] onto C
[
z, 1

z

]
. Then ϕ ◦ ρ is a positive linear functional on C [z, z] with

(ϕ ◦ ρ) (1) = 1 and
ϕ ◦ ρ((1 − zz)2) = ϕ(ρ((1 − zz)2))

= ϕ((ρ(1 − zz))2) = ϕ

((
1 −

1

z
z

)2
)

= 0.
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Thus, by Corollary 3, there is a probability measure µ on T such that for any p ∈ C [z, z] ,

(ϕ ◦ ρ) (p) =

∫

T

p (z, z) dµ =

∫

T

p

(
z,

1

z

)
dµ,

since on the unit circle z = 1
z

. 2

We can actually get Corollary 4 much more easily. This is because with unitaries, the
boundedness of the norm is automatic, so the version of Theorem 2 for unitaries is easy.
Suppose G is a discrete group with an identity element 1. We let C [G] denote the group
algebra over C generated by G. With g∗ = g−1 for each g ∈ G, we see that C [G]

becomes a unital ∗-algebra that is contained in the groupC∗-algebraC∗ (G) generated by
G. It is tempting to hope that somehow Theorem 2 might be recaptured from this simple
proposition, but C [t] contains no unitary elements that are not scalars.

Proposition 1. Suppose G is a discrete group and ϕ : C [G] → C is a positive linear
functional with ϕ (1) = 1, then ϕ extends to a state on C∗ (G) .

Proof. When we use the GNS construction on C [G] , we see that Lg is unitary for
every g ∈ G, so the mapping g → Lg is a unitary representation of G, which, by defini-
tion, extends to a unital ∗-homomorphism on C∗ (G) . 2
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