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Current observations indicate that 95% of the energy demsthe universe is the unknown dark component. The dark coreipt

is considered composed of two fluids: dark matter and darkggneOr it is a mixture of these two dark components, i.e., one
can consider it an exotic unknown dark fluid. With this coesadion, the variable generalized Chaplygin gas (VGCG)ehed
studied with not dividing the unknown fluid into dark mattedadark energy parts in this paper. By using the Markov Chaontd
Carlo method, the VGCG model as the unification of dark sedoronstrained, and the constraint results on the VGCG mode
parameters arg) = 0.00057:03505 99008 o = 0.001575593 09017 and Bs = 0.778'50152932, obtained by the cosmic microwave
background data from the 7-year WMAP full data points, theytwa acoustic oscillation data from Sloan Digital Sky Syrve
(SDSS) and 2-degree Field Galaxy Redshift (2dFGRS) suareythe Union2 type la supernova data with systematic erddirs
last, according to the evolution of deceleration paramieisrshown that an expanded universe from decelerationdelaration

can be obtained in VGCG cosmology.
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1 Introduction is that the dark component includes dark matter and dark en-
ergy, and they are not correlative. The latter is deemed re-

The recent cosmic observations, such as the type la supepPonsible for the accelerating universe. These two dark sec
novae (SNIa) [1], the cosmic microwave background (CMB) tors are considered not_lndependent, but with |r_1teractmns

[2] and the clusters of galaxies [3], indicate that: (1) the e Ween them [4-10]. Still, one can come up with other pos-
pansion of present universe is speeding up rather than slow2iPilities about the dark component by presenting intérgst
ing down. This acceleration is not consistent with the stan-Scenarios. With this consideration, we study a unified flaid t
dard cosmology, and there seems to be a special matter with<Plain the accelerating universe in this paper, i.e., we co
the negative pressure in the universe; (2) the baryon mattefider the unknown dark component as a mixture, instead of
component is about 5% taking up the total energy densitydividing itinto two dark sectors.

and about 95% energy density (called dark component) in !t is Well known that the Chaplygin gas (CG) [11] as an
the universe is invisible. Several hypotheses about thie dar°iginal unified model of dark matter and dark energy, is al-

component have been investigated. The most popular vied'0St ruled out by the current observational data. So, sev-
_ eral extended Chaplygin gas (ECG) models are constructed
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and widely studied for interpreting the accelerating uréee  impliesp — oo, which is not the real universe. Considering
such as the variable Chaplygin gas (VCG) [12], the generalspatially flat Friedmann-Robertson-Walker universe with i
ized Chaplygin gas (GCG) [13] model and so forth [14,15]. cluding baryon mattesy, radiation mattep, and VGCG fluid

In these scenarios, the most interesting property is that thpyscs, according to the Friedmann equation the Hubble pa-
dark component in universe can be unified to an exotic equarameterH can be written as

tion of state, since these CG fluids behave as dust at early

stage and as dark energy at later stage. One knows the GCG  H?(q)
Lagrangian density can be expressed as a generalized Born- 2
Infeld form [13], Logi=—Am:[1 — (¢”6,6,) 5 ], which = H3{Qovec|Bsa™ + (1 - Bya )| ™
reduces to the Born-Infeld Lagrangian fer= 1. It can be _3 _4

found that the observational constraint on above two ECG + Q02" + Lord } @)
models: VCG [16] and GCG [17,18] have been studied. In . ,

this paper, we discuss a generalized form related to the Gedith Qovece = 1 - Qop — Qor, whereHy is the current value

model, i.e., the variable generalized Chaplygin gas (VGCG)Of the Hubble paramete®q denotes the current values of di-

model. We apply the full cosmic microwave background me_nsionless energy density for barypn, radiat.ign and VGCG
(CMB) data from 7-year WMAP [19], the baryon acoustic os- fluid, respectively. One knows that in the un|f|eq model of
cillations (BAO) data from Sloan Digital Sky Survey (SDSS) dark sectors the fferent_decompo;nmn manner is used for
and 2-degree Field Galaxy Redshift Survey (2dFGRS) Sur_dark_components, thgf@rent cosmic constraint results W|I_I
vey [20], and the 557 Union2 dataset of type supernovae I;_Pe given. And also, it is not easy to divide the VGCG fluid
(SNIa) [21] with systematic errors, to constrain this model into dark matter and dark energy in the most reasonable man-

According to the constraint results on model parameter, thd®"- So, here We_l_nve_s;tlgate the cosmic cgnstramts on VGCG

evolution of deceleration parameter is discussed. model as the unification of dark sectors, i.e., the solelk dar
The paper is organized as follows. In sect. 2, the VGCgMatter or dark energy component does not appear.

model as the unification of dark sectors is introduced briefly ~Next we show the perturbation evolution equations in

Sect. 3 presents the method of data analysis, and constraMGCG unified model of dark sectors. In the synchronous

the VGCG model parameters. Sect. 4 shows the evolution offauge, using the conservation of energy-momentum tensor

deceleration parameter in this unified model. Sect. 5 is thelv, = 0, one has the perturbation equations of density con-

H3E?(a)

conclusions. trastévgcs and velocity divergenc@,scs for VGCG
2 Variable generalized Chaplygin gas as the - h
O = (1 z
unification of dark sectors dvece = ~(1+Wece) |fvece + 5
The generalized Chaplygin gas (GCG) unified model is ex- . ~3H(cs - Wueca)dvaca. ©)
pressed by the equation of state, fvece = —H(L - 3cd)bvace
2
A Cs 2 12
Pecs = o 1) S prrvrm—— ercek dvece — Koveeas (6)

whereA ande are two constant parametepsce andpcee  following the notation of Ma and Bertschinger [22]. There-
are pressure and energy density of GCG fluid, respectivelyinto, # is the Hubble parameter defined by the conformal
We consider the paramet&in GCG model is nota constant, time, h = h; is the trace part in the synchronous metric per-
but a power-law function with respect to cosmic scale factor turbationh;j, k is the wavenumber of Fourier mode? de-
A(@) = Aca™". This extended form is called VGCG model. notes the adiabatic squared sound speees p/p denotes
Then for VGCG background fluid it has a relation betweenthe state parameter, andshows the shear perturbation. Con-

the energy densityvcce and the pressurpyece cretely, the shear perturbationgcs = O is assumed and
Aja™" the adiabatic initial conditions are adopted in our caltafg
Pvece = — o (2) with assumption of pure adiabatic contribution to the pertu
VGCG

) bations, the adiabatic squared sound speed for VGCG fluid is
whereAy, n anda are parameters in the model. For= 0, expressed as,

this model reduces to the GCG scenario. By using the energy
conservation equationt(pa®) = —pd(a®), the energy density

of VGCG can be derived as ¢ = M = WyGece — &
) ®  dpvece 3H(1+ Wyeca)
PVGCG = POVGCG [Bsa_n +(1- Bs)a_3(l+a)]m ) - ~(1+a)(3+3e — nnBsa™"
e} Ao _ _ (3+ 3a)[nBaa™ + 3(1+ a)(1 - Bga3(1+)]
where B = 3(Wra)-n e For an expanding universe, there (3 + 3a - N)aBa 1"

should ben > 0 and 3(1re) > 0. If they are negativa — co + 3+ 32)[Ba" + (1= Bya 3]’ (7)
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where “dot” denotes the derivative relative to conformaldi  numerically as shown in ref. [29], since the usually used fit-
t; and for VGCG fluid the state paramet®jscc as a func-  ting formula given by ref. [37] is only valid for the case that
tion of scale factoa can be described as the baryon matter and the dark matter scafiggx a3 and

- a3 are respected. Obviously, this fitting formula is not
Pvece -1+ 3(1rl<x)]BSa 3 Pdm > b y 9

= B (1 B)aSE’ (8)  feasible in our calculation.
PVGCG s& — Bg)a~

WvGce =

For the perturbation theory in gauge ready formalism, geas 3.2 Cosmic constraints on VGCG dark model

see ref. [23]. By using above combined datasets, we get the constraint re-

- . . e sults on cosmological parameters in VGCG unified model of
3 Data fiting and discussion on VGCG unified dark sectors. For easy to see, the contours of VGCG model
model of dark sectors parameters are shown in Figure 1, and the calculation sesult
on these parameters with their confidence levels are listed i
Table 1. From this table we can see that the value of parame-
In the following we apply the Markov Chain Monte Carlo ternwith the confidence levels is near to zero, i.e., it is indi-
(MCMC) method to investigate the global constraints on pa-cated that the VGCG model tends to reduce to GCG model.
rameter space in above VGCG unified model. The MCMC Since the value of parameteis much little in VGCG model,
code is based on the publicly available CosmoMC packagéhe evolution of squared sound spegdthe evolution of state
[24] including the CAMB [25] code. We modified the code parametemycce, and the CMBCT power spectrum in this
for the VGCG model as a unified fluid of dark sectors with its model are very similar to the cases of GCG unified model
perturbations included. The following 8-dimensional para  as shown in ref. [29], so we do not discuss these quantities

3.1 Method and data points

eter space is adopted in VGCG dark model. At last, we list the constraint values
_ oo of some other cosmological parameters in VGCG cosmol-
P = (o Os e loGHOPAL Bucunl. (9) ogy: + = 00000GRRALE 0 = 1048EAKAE 000, 2. =
wherewp, = Qoph? is the physical baryon densit@s (mul- 105341527 530 Ns = 0.9904001800%5 10g[107Ad] =
b = Qob phy y 9s (
tiplied by 100) is the ration of the sound horizon and angu—3'0877fgﬁgggt8ﬁggg% and Age- 136603113 055 Whose con-
lar diameter distance;, is the optical depthps is the scalar ~ {ours are plotted in Figure 2.
spectral indexAs is the amplitude of the initial power spec- 103
trum, Bs, @ andn are three newly added model parameters 0.050 7
related to VGCG. The pivot scale of the initial scalar power 2 .
spectrumkso = 0.05 Mpc ! is used. We take the following < 4 o 0.045 % T 72 ﬂ
priors to model parametersy, € [0.005 0.1], ®s € [0.5, 10], 0 d x10-3  0.040 68
7 € [0.0,0.8], ns € [0.515], log[10°A] € [2.7,4], 0 2 4 6 0.72 0.76 0.80 0.950 0.955 0.960
Bs € [0,1], @ € [-1, 1], andn € [0, 10]. In addition, the hard “ 5 “ovece

coded prior on the comic age 10 Gyrty < 20 Gyr is im- Figure 1 The contours of VGCG model parameters.
posed. Also, the weak Gaussian prior on the physical baryon

d_enSity‘“b = 0.022+0.002 [26] from big bang ?Udeosynthe' Table 1 The 1o and 2r confidence levels of VGCG model parameters
sis and Hubble constakly = (74.2 + 3.6) kms*Mpc [27]

are ad opted Parameters Mean values with confidence levels
The total likelihood£ o« e*°/2 is calculated to get the dis- Q 0.0445 5801200055
i i 2 i 0.0015+0.0031
tribution, herey“ is given as Qovees 0.9555" 50015-0.0051
2 5 > 2 n O.OOOSTO‘OOOHO‘OOOQ
X = X *+ ao * i (10) oo oo
] o @ 0.0015 55015 00015

The CMB data include temperature and polarization power B 0.778-0016+0.030

S —0.016-0.035

1.620+3.182
Ho 72034 1576 3703

spectrum from WMAP 7-year full data points [19] as dy-
namic constraint. The geometric constraint comes from
standard ruler BAO and standard candle SNla. For BAO

data, the values{rs(zy)/Dv(z = 0.2), r5(zg)/Dv(z = 0.5)} 14 320 14.0

and their inverse covariant matrix [20] are used. The de- 4, % < @ 138 Q
tailed descriptions of BAO constraint method, please see ~ 10 o 310 © 13.6

refs. [28,29]. The 557 SNla Union2 data with systematic er- 8 3 3.00 < 134

rors are also included [21]. For the detailed description of 002  o0.10 0.96 1.00 1.04 1.040  1.050
SNla, please see refs. [30—36]. For fitting this model to abov T ns 0

CMB+BAO-+SNIa data, the redshift at drag epagliepend- Figure 2 The contours of cosmological parameters in flat VGCG cosmol-
ing on the calculation of dark matter density is recalcudate °9Y:
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Further, comparing with ref. [38], it is found that the
VGCG model in our paper is consistent with the NGCG
(new generalized Chaplygin gas) model introduced in ref.
[38], since they have the same equation of stgie,=
—A(a)/p®. Though the required form of functioA(a) =
—w,Aa-31+w)+e) in ref, [38] is different from our case, they
are equivalent to each other with redefining model pararmeter

by relations:Bs = 7%=, & = n— 1 andn = 3(1+ Wy)(1 + a). T o

The constraint resuits on NGCG model parameters in ref. z

[38] at 1o~ confidence level arey, = —-0.98'37> andn =

1.06'920 where the used data include 157 SNIa data, theFlgure3 The evolution of deceleration parameter with its confiddecel
-0.16’ in flat VGCG cosmology.

value of dimensionless parametee 0.469+0.017 for BAO
observation and the value of shift paramé&er 1.716+0.062
for CMB observation. Equivalently, with the relations:= 5 Conclusion
n—1andn = 3(1+ wy)(1 + @), the values ofr andn in-
dicated by ref. [38] at & confidence level are = 0.06°322 In this paper we apply the recently observational data ghclu
andn = 0.064" 47! (since the constraints on the dimension- ing the full CMB data points from 7-year WMAP, the BAO
less energy density of separated dark components in rgf. [3&ata from SDSS and 2dFGRS survey, and the SNIa Union2
are not discussed, the corresponding paranitean notbe  data to constrain the VGCG unified model of dark sectors.
calculated). From these constraint results, one can seitha Here we do not divide this unknown fluid into two dark com-
confidence levels of parameterendn given by ref. [38] are  ponents. According to the constraint results on model param
larger than our results, and our constraint results on nualel  eters, it is indicated that the VGCG model tends to reduce to
rameters for the undivided VGCG unified fluid are included the GCG model, for the value of parametes near to zero.
in these results. In addition, one knows that for the NGCGFurther, considering that the value of parametatso do not
fluid it indicates there are the interaction between dark mat depart from zero much it is shown that the VGCG practically
ter and dark energy according to the analysis of the energyoincides with the\CDM model (i.e., cosmological constant
density for dark components [38]. Considering the consis-dark energy model). In addition, comparing with ref. [38] it
tency between VGCG and NGCG model, it is shown thatis found that the more stringent constraints on VGCG model
the VGCG model is also equivalent to a coupling betweenparameters are given in this paper, and the undivided VGCG
dark components, as shown in refs. [39-45]. Also, this cou-fluid is equivalent to the coupling models between dark mat-
pling behavior is consistent with the undivided operation f ter and dark energy. At last, we discuss the evolution ofldece
VGCG fluid in our paper. eration parameter in VGCG cosmology, and it is found that
an expanded universe from deceleration to acceleration can

4 The evolutions of deceleration parameter in € obtained.
VGCG cosmology
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