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Abstract A piecewise algebraic curve is a curve determined by the zero set of a bivariate spline function.

In this paper, a conjecture on triangulation is con�rmed. The relation between the piecewise linear algebraic

curve and four-color conjecture is also presented. By Morgan-Scott triangulation, we will show the instability

of Bezout number of piecewise algebraic curves. By using the combinatorial optimization method, an upper

bound of the Bezout number de�ned as the maximum �nite number of intersection points of two piecewise

algebraic curves is presented.
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Let � be a regular triangulation of a region 
 � <2
: Denote by T1; � � � ; TN the triangles of �

where N is the number of triangles in �: The space Srd(�) of bivariate splines with smoothness r

and total degree d on � is de�ned as

S

r
d(�) = fs 2 C

r(
) : sjTi 2 Pd; i = 1; � � � ; Ng;

where Pd denotes the collection of bivariate polynomials with total degree d: The curve

� : f(x; y)js(x; y) = 0; s(x; y) 2 S

r
d(�)g

is called a piecewise algebraic curve. It is obvious that the piecewise algebraic curve is a generaliza-

tion of the classical algebraic curve. The piecewise algebraic curve is not only very important for

the interpolation by the bivariate splines[1], but also a useful tool for studying traditional algebraic

curves[2]. In the paper, we will discuss some properties on the piecewise algebraic curves.

Bezout's theorem is an important and classical theorem in the algebraic geometry[3]. Its weak

form means that two algebraic curves will have in�nitely many intersection points provided that

the number of their intersection points is larger than the product of their degrees. Denote by

BN = BN(m; r;n; t;�) the so-called Bezout's number. Any two piecewise algebraic curves

f(x; y) = 0; g(x; y) = 0; f 2 S

r
m(�); g 2 S

t
n(�)

must have in�nitely many intersection points provided that they have more than BN intersection

points. A fundamental problem of the piecewise algebraic curve is how to �nd the Bezout's

number. In this paper, we show that the Bezout number BN(m; r;n; t;�) depends heavily on

the geometry of �: An upper bound of BN(m; 0;n; 0;�) was shown in ref. [4]. In this paper,
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we convert this problem into a combinatorial optimization problem and give an upper bound of

BN(m; r;n; t;�):

1 Several results on triangulation and piecewise algebraic curve

For a given triangulation �; let E0 be the number of edges, EI the number of interior edges,

EB the number of boundary edges, V0 the number of vertices, VB the number of boundary vertices

and VI the number of interior vertices. A triangulation � is said to be of 2-vertex signs if each

vertex in � can be marked by �1 or 1 so that no vertices of the triangle in � are marked by the

same number. An interesting conjecture was shown in ref. [4]: any triangulation is of 2-vertex

signs. In the paper, we will prove that the conjecture is true.

To prove the conjecture, we need some notations and theorems in the graph theory. A graph

G is an ordered pair of disjoint sets (V;E) such that E is a subset of the set V (2) of unordered

pairs of V . V is the set of edges and E is the set of edges. A cut of the graph G = (V;E) is the

set of edges with one end in X1 and one in X2, where (X1;X2) is a nontrivial partition of V . A

graph is k-edge-connected if it has no cut of cardinality less than k. Let v be a vertex of G. The

number of edges of G incident with v is called the degree of v in G. The degree of v is denoted by

d(v): If every vertex of G has degree k, then G is said to be k-regular. A 3-regular graph is said

to be cubic. Any connected graph that has no cycles is called a tree. Given a graph G = (V;E),

a matching is de�ned as a set E0 of edges such that no two edges of E0 are adjacent. A matching

that saturates all vertices of G is called a perfect matching. If G is cubic and 2-edge-connected,

then there exits a perfect matching of G. The triangulation � is considered as a planar graph

� = (V;E). Given a triangulation, we construct another graph �0 = (V 0
; E

0): Inside each cell Tj

of � we choose a point v0j : We draw a line e0i corresponding to each interior edge ei which crosses

ei (but no other edge of �), and joins the vertices v0j in the cells Tj adjoining ei: At last, draw a

loop O to surround �: For each boundary edge ei, we draw a line e0i which crosses ei and intersects

loop O at oi; oi 6= oj ; i 6= j: The set of v0 and oi is the vertices of �
0
: The set of e0 is the vertices

of �0
: The edges ei and e

0

i are said to be dual to each other. The � and �0 are said to be dual to

each other also. For a given �; its geometric dual graph is shown in �g. 1(a).

Fig. 1. The sketch map of proof of Proposition 1.

Lemma 1.1. Each vertex in any quadrangulation can be marked by �1 or 1, so that

adjacent vertices have distinct numbers.

By induction, the Lemma can be proved easily. Hence we omit it.

Proposition 1.1. Any triangulation � is of 2-vertex signs.
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Proof. Obviously, for any �, �0 is cubic and 2-edge-connected. Hence there is a perfect

matching in graph �0, say, E0

0: The dual edge set of E
0

0 is denoted by E0: We consider the graph

D(�) = (V;EnE0); and D(�0) = (V 0
; E

0nE0

0)(�g. 1(b)). D(�) is the union of quadrangulation

and some trees. By Lemma 1.1, we can mark each vertex in D(�) by �1 and 1, so that the

adjoining vertices in D(�) are marked by di�erent numbers (�g. 1(b)). For any cell Ti in �, the

edge set adjoining with Ti is denoted by Ei. According to the de�nition, the perfect matching,

#Ei\E0 = 1; 1 6 i 6 N; where #Ei\E0 denotes the cardinality of the set Ei \E0: So no vertices

of triangle in � are marked by the same number. Hence any triangulation � is of 2-vertex signs.

By the proposition, some results, such as Theorem 3.1, Lemmas 3.2, and 3.3, in ref. [4] can

be improved.

Moreover, we have the following corollary.

Corollary 1.1. For any triangulation � and m > 1 there exists a piecewise algebraic curve

� : f(x; y) = 0; f(x; y) 2 S
0
m(�)n0 such that � \ Ti 6= ?; 1 6 i 6 N:

Remark 1.1. In general, we are interested in the following problem: when dimSrd(�) > N;

is there s(x; y) 2 S
r
d(�)n0 such that � \ Ti 6= ;; 1 6 i 6 N; where � : f(x; y) = 0?

It is well known that four-color conjecture is a very famous unsolved problem. The following

theorem shows the relation between four-color conjecture and the piecewise algebraic curves. To

state the theorem, we �rst introduce several de�nitions. For a triangle �ABC; suppose that the

middle points of BC;AC and AB are a; b and c respectively. Denote by M(�ABC) the triangle

�abc, called the middle triangle of �ABC. For a given triangulation �; M(�) is de�ned asSN

i=1M(Ti): A triangulation � is said to be of 3-edge signs, if each edge in � can be marked by

1; 2 or 3 so that the edges incident with any triangle in � has distinct numbers.

Theorem 1.1. Four-color conjecture holds if and only if for any triangulation � there exist

three piecewise algebraic curves �1 : f1(x; y) = 0;�2 : f2(x; y) = 0;�3 : f3(x; y) = 0; fi(x; y) 2

S
0
1(�); i = 1; 2; 3 such that �1 [ �2 [ �3 =M(�):

Proof. By the graph theory, four-color conjecture holds, if and only if any triangulation is

of 3-edge signs. Suppose that four-color conjecture holds. Then each edge in � can be marked by

1; 2; 3 so that 3 edges of any triangle in � has distinct numbers. Let Ei be the edges marked by i:

Consider Di(�) = (V;EnEi): Obviously, Di(�) is the union of quadrangulation and some trees.

By Lemma 1.1, we can mark each vertex in Di(�) by �1 and 1, so that the adjoining vertices in

Di(�) are marked by di�erent numbers. We de�ne fi 2 S
0
1(�) by fi(v) = w, if the vertex v is

marked by w in Di(�): Obviously,
S3

i=1 �i = M(�); where the piecewise linear algebraic curve

�i de�ned by fi(x; y) = 0:

Suppose that for any triangulation �; there exist three piecewise linear algebraic curves

�i : fi(x; y) = 0; i = 1; 2; 3 such that
S3

i=1 �i = M(�): Consider a cell in �; say, T: The edge

of T parallell to �ijT is denoted by e
(i)(T ): �ijT denotes the restriction of �i on T . Let E(i) =S

T e
(i)(T ): The edges in E

(i) are marked by i: It is easy to prove that each edge in � can be

marked by 1; 2; 3 and the edges of a triangle in � have a distinct number. Hence any triangulation

is of 3-edge sign. So four-color conjecture holds.
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2 Bezout number BN(m;1;n;1;�)

In ref. [4], the Bezout number of piecewise algebraic curve was considered and the result

Fig. 2. The Morgan-Scott triangulation.

BN(m; 0;n; 0;�) 6 mnN � [Vodd+2
3

] was presented,

where Vodd is the number of odd vertices in �, and

[x] means the greatest integer 6 x. Obviously, the

result in ref. [4] only depends on the topology struc-

ture of �: Here we show that the Bezout number

may depend on complicated geometric conditions

of �. Let �ms be the triangulation with bound-

ary vertices of V1; V2 and V3 and interior vertices

of bV1; bV2 and bV3 (�g. 2). The triangulation �ms is

called Morgan-Scott triangulation.

It is well known that dimS1
2(�ms) is instable

1). In ref. [6], the following results were presented.

dimS1
2(�ms) =

(
7; V1

b
V1; V2

b
V2 and V3

b
V3 have a common point of intersection,

6; otherwise.

When dimS1
2(�ms) = 6; S1

2(�ms) coincides with P2: Hence, when dimS1
2(�ms) = 6; BN(2; 1;

2; 1;�ms) = 4; when dimS1
2(�ms) = 7; we may suppose that the smoothing cofactor across bV1 bV2

is free[1]. It is easy to construct two spline functions f1(x; y); f2(x; y) 2 S
1
2(�ms) such that the

intersection number of two piecewise algebraic curves f1(x; y) = 0 and f2(x; y) = 0 is �nite and

greater than 6: So we have

BN(2; 1; 2; 1;�ms) =

(
> 6; V1

b
V1; V2

b
V2 and V3

b
V3 have a common point of intersection,

4; otherwise.

The example shows that the Bezout number may depend on the geometric property of the

given triangulation. So we think that the Bezout number BN(m; r;n; t;�) is very complicated

and depends on m; r; n; t; the topological structure of � and the geometrical property of � and

dimSrm(�);dimS
t
n(�):

To obtain an upper bound of Bezout number, several lemmas are needed. Denote by �k the

partition containing only k parallel lines.

Lemma 2.12).

BN(m; r;n; �;�k) 6 (k + 1)mn�min(r; �)k:

If no triangle in the triangulation � is an obtuse triangle, the triangulation is called non-

obtuse triangulation. Using the result on the polar coordinates, we have

Lemma 2.2[7]. For any given interior vertex in the non-obtuse triangulation �, say, v, the

Bezout number on R(v) satis�es

BN(m; 1;n; 1;R(v)) 6 d(v)mn� (d(v)� 1): (1)

Using a method similar to that in ref. [7], we have

1) Morgan, J., Scott, R., The dimension of the space of C1 piecewise polynomials, unpublished manuscript,

1975.

2) Luo, Z. X., Nonlinear spline function, Ph. D Dissertation, Dalian University of Technology, 1991.
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Lemma 2.3. For any given boundary vertex v in the non-obtuse triangulation �, the

Bezout number on R(v) satis�es

BN(m; 1;n; 1;R(v)) 6 (d(v)� 1)mn� (d(v)� 2): (2)

To obtain the upper bound of BN(m; 1;n; 1;�); we introduce a combinatorial optimization

problem as follows. Let

Æ1(v) =

(
d(v)� 1; if v is an interior vertex of �,

d(v)� 2; if v is a boundary vertex of �.

Let P be the set of points lying in �: Then we have

Problem 2.1.

minP #P

s:t:P satis�es Condition 2.1.

Condition 2.1.

(i) No point lies on any edges.

(ii) For each vertex v, the number of points lying in R(v) is not less than Æ1(v):

(iii) The number of points lying in two adjacent cells is not less than 1.

In general, for any given triangulation �; denoting by P1(�) the solution of Problem 2.1, we

have

Theorem 2.1. For any non-obtuse triangulation �;

BN(m; 1;n; 1;�) 6 mnN �#P1(�):

Proof. Suppose that the number of intersection points of two piecewise algebraic curves �1 :

f(x; y) = 0;�2 : g(x; y) = 0; f(x; y) 2 S
1
m(�); g(x; y) 2 S

1
n(�) is �nite and equals BN(m; 1;n; 1;�):

Label the cells and vertexes in �: By Bezout Theorem in the algebraic geometry, there exits ki > 0

such that the number of the intersection points of �1 and �2 in the ith cell ismn�ki (if an intersec-

tion point lies on a grid line, we count it only on a cell.). We scatter some points in � such that the

ith cell contains ki points. Denote by P0 the set of the points. To prove that P0 satis�es Condition

2.1, by Theorem 2.2, for the interior vertex v; we have BN(m; 1;n; 1;R(v)) 6 mnd(v)�(d(v)�1):

So
P

i2I(v)(mn � ki) 6 mnd(v) � (d(v) � 1); where I(v) is the index set such that the cells

Ti; i 2 I(v) share v as a common point. Hence
P

i2I(v) ki > d(v)� 1 holds for any interior vertex

v: Similarly, by Lemma 2.3, when v is a boundary vertex,
P

i2I(v) ki > d(v)�2. So, for any vertex,P
i2I(v) ki > Æ1(v): By using the same method and Lemma 2.1, we can prove that the number of

points lying in two adjacent cells is not less than 1. Hence the point set P0 satis�es Condition

2.1. Therefore, BN(m; 1;n; 1;�) = mnN �
P

i ki = mnN �#P0 6 mnN �#P(�):

Now, we consider how to solve Problem 2.1. Unfortunately, Problem 2.1 is an integer linear

program problem and we cannot construct a \good" algorithm for solving it. But for triangulation

�; we can obtain a lower bound of #P1(�):

Lemma 2.4. For any given triangulation �;

#P1(�) >

P
v Æ1(v)

3
:
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Proof. Suppose that P1(�) is a solution of Problem 2.1 and the number of points lying in

R(v) is Kv : Since � is a triangulation,
P

vKv = 3
P

i ki; where ki is the number of points lying

in the ith cell. According to Condition 1, Kv > Æ1(v): So we have #P1(�) =
P

i ki >

P
v
Æ1(v)

3
:

Theorem 2.2. For any non-obtuse triangulation �;

BN(m; 1;n; 1;�) 6 mnN �
2E0

3
+
V0 + Vb

3
:

By Theorems 2.1 and 2.4, the theorem can be proved easily.

3 Bezout number BN(m; r;n; t;�)

Lemma 3.11). For any given interior vertex v in �, the Bezout number on R(v) satis�es

the following inequality:

BN(m; r;n; r;R(v)) 6 d(v)mn� r�1(v); (3)

where �1(v) = max(d(v)� 4; [d(v)+1
2

]):

Proof. Firstly we prove

BN(m; r;n; r;R(v)) 6 d(v)mn� r[
d(v) + 1

2
]:

Let the union of cells containing the interior edge vvj be �vvj (�g. 3). By Lemma 2.1, we have

BN(m; r;n; r;�1) 6 2mn � r: Hence BN(m; r;n; r;�vvj ) 6 2mn � r: Using a similar approach

in Theorem 2.1, it is easy to prove that BN(m; r;n; r;R(v)) 6 d(v)mn� r[d(v)+1
2

]:

Secondly, we prove BN(m; r;n; r;R(v)) 6 d(v)mn�r(d(v)�4)+: According to the de�nition

of Bezout number, there exist two piecewise algebraic curves �1 : f1(x; y) = 0;�2 : f2(x; y) = 0

such that �1 and �2 have BN intersection points in R(v): Without loss of generality, we assume

that v is the origin, and no intersection point of �1 and �2 lies on y-axis and x-axis (�g. 3).

Make use of the transformation, � : X = y

x
; Y = 1

x
: Let g1(X;Y ) = Y

m
f1(

1
Y
;

X
Y
); g2(X;Y ) =

Y
n
f2(

1
Y
;

X
Y
): The transformation � transforms R(v) into a subset of regular partition, say, �R(v);

which contains only d(v) rays parallel to Y -axis (�g. 3). Since no intersection point of �1 and

�2 lies on y-axis and x-axis, the number of intersection points of g1(X;Y ) = 0 and g2(X;Y ) =

0; (X;Y ) 2 R
2 is equal to that of intersection points of f1(x; y) = 0 and f2(x; y) = 0; (x; y) 2 R(v):

By Lemma 2.1, it is not diÆcult to prove BN(m; r;n; r;R(v)) 6 mnd(v)� r(d(v)� 4)+:

Fig. 3

1) Lai, Y. S., Piecewise algebraic curve and piecewise algebraic variety, Ph. D Dissertation, Dalian University

of Technology, 2002.
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Therefore, we have BN(m; r;n; r;R(v)) 6 d(v)mn� r�1(v):

Lemma 3.2. For any given boundary vertex v in �, the Bezout number on R(v) satis�es

the following inequality:

BN(m; r;n; r;R(v)) 6 d(v)mn� r�2(v); (4)

where �2(v) = max(d(v)� 2; [d(v)�1
2

]):

Let

Æ2(v) =

(
�1(v); if v is an interior vertex of �,

�2(v); if v is a boundary vertex of �.

Let P be the set of points lying in �: Consider the following problem.

Problem 3.1.

minP #P

s:t: P satis�es Condition 3.1.

Condition 3.1.

(i) No point lies on any edges.

(ii) For each vertex v, the number of points lying in R(v) is not less than Æ2(v):

(iii) The number of points lying in two adjacent cells is not less than 1.

For any given triangulation �; denoting by P2(�) the solution of Problem 3.1, we have

Theorem 3.1. For any given triangulation �;

BN(m; r;n; r;�) 6 mnN �#P2(�)r:

The proof is similar to the proof of Theorem 2.1. Hence we omit it. Problem 3.1 is also

NP-complete, but we can give a lower boundary of #P2(�):

Lemma 3.3. For any given triangulation �;

#P2(�) >

P
v Æ2(v)

3
:

Therefore, we have

Theorem 3.2. For any given triangulation �;

BN(m; r;n; t;�) 6 mnN �

P
v Æ2(v)

3
�;

where � = min(r; t):

Since BN(m; r;n; t;�) 6 BN(m;�;n; �;�); the theorem holds.

Combining Theorems 2.2 and 3.2 gives

Theorem 3.3. For any given non-obtuse triangulation �;

BN(m; 1;n; 1;�) 6 mnN �
2E0

3
+
V0 + Vb

3
:

For any given triangulation �;

BN(m; r;n; t;�) 6 mnN �

P
v Æ2(v)

3
minfr; tg:

Remark 3.1. Theorem 3.1 also holds for any partition consisting of �nite straight lines.

Remark 3.2. Two approaches can be used to improve the upper bound of Bezout number.

One is to obtain the better lower bound of #P1 and #P2 by combinatorial optimization algorithm.

The other is to improve the result in Lemma 3.1.
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Remark 3.3. A further problem is to construct two piecewise algebraic curves such that

the number of intersection points of them agrees with the upper bound.
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