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1. InTRODUCTION

Let M be a complete noncompact Riemannian manifold, R* be non-negative semi-real

+o0
axis, H,,(x, y, t) be the heat kernel on M, P(x,y)= Tlrj eV H, (x,y, t*/4s)ds
b4 0

be the Poisson kernel on M. The Poisson integral of /' (x)eL?(M ) (1<p< + w0 ) is defined

by u(x, 1) =J P,(x, y) f (¥) dy. In this note by establishing some “Liouville” type
M .

theorems of harmonic functions on product Riemannian manifolds, we prove that a class of

harmonic function of M x R* must be Poisson integral of some function. When M=R",
the corresponding results are known in [1].

“ 11. LeMMAs AND THEIR PROOFS

M and N denote the complete noncompact Riemannian manifolds.

+o

Lemma 1. If Ricy(a) =0 and J VA B, (¢ )) ~'dt=+ 00, where Ricy(a) denotes

1

the Ricci curvature of N, Vi (B, (/7 )) denates the volume of the geodesic ball centered at «,

with radius [ ; » and if u(x, a) is a harmonic function on M x N satisfying sup|lu( -, &l oan
aEN

! <+ (I<p<+o0), then u(x, a)=const.

Lemma 2. If Ricy,(x)> —C{r*(x, x,) + 1} and Ricy(a) 20, where C is a positive con-
stant, r(x, x,) denotes the geodesic distance from x to some fixed point xy and if u(x, a) is a
hamonic function on M x N satisfying supllu( -, «) sy <+ (1<p<+w0), then

2N

(S N S il i PR U T RSN,

u( x, a) = const.

Lemma 3. [/ Ricy(x) >~ C{r’(x, x)) + 1} and Ricy(a) >0, then the bounded non-
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constant harmonic function on M x N must be the bounded nonconstant hammonic function on
M.

We shall show the sharpness of our curvature assumption in Lemma 3. Some other
“Liouville” type theorems can be seen in footnote!).

Proof of Lemma 1. Let ®,(x) be a cut-off function with the property that

)L on B, (R); .
(DR(x)_{ 0. on M\B,(2R), .

with 0<®4 x) <1 and |V, @4 < C/R, where V,, denotes the gradient of M, C denotes a posi
tive constant. Consider

J‘ Aylu(x, ) 1P®%(x)dx

M

=J {pluCx, )P Ay lu(x, )i+ p(p— Dl u(x, a)1P2IVlulx, a) |2} g% x)dx
M

>2p-[ lu(x, )P~ <V, Dp, V) lul>d,dx
M

+p(p—1 )f lu(x, )77V, lu(x, a)[I°®2(x) dx
M

P(P2 1) JM,VM'u(x’a)'IZIu(x’“)lp—zd)fq(x)dx

_.___J 1V, @301 luCx, o) P

Letting R —+ o0, we obtain the result that f lu(x,a)|?dx is a bounded subharmonic func

M
tion on N and then u(x, «) =const. by the results of [2} and [3].

Before the proof of Lemma 2 and Lemma 3. we prove the following

Lemma 4. If M, N and u(x, a) satisfy the assumption of Lemma 2 or Lemma 3, then
u(x,a)=j j Hy(x,y, t)Hy(a, B, t)u(y, B)dpdy. (2.1)

Proof. Let py=(xy %)eM x N, and B, (R), B.(R)and B2 (R) denote the geodesic
balls of Mx N, M and N respectively, their volumes are denoted by ¥, (R), V,(R)and
V,.(R) respectively. The heat kernel of M x N is denoted by H(p, ¢, t), then H(p, ¢, 1)

=H,(x,y, t)Hya, B, 1), where p=(x, ), g=(y. ). Aand V denote the Laplace oper-

ator and gradient on M x N respectively. Partial differentiating with respect to ¢ on the right
side of (2:1), we have.

1) Yu Ze, Harmonic functions on product Riemannian manifolds, Doctoral dissertation, Hangzhou Univers-
ty, 1989.
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We claim that integration by parts is valid and then we obtain the result that the right
side of (2-1) is independent of 1, which implies (2.1).

To justify this, we consider

aJ: AH(p, q. Du(y, B )dﬁdy—J H(p, g, 1) Au(y, B)dpdy|

8, (R) Epo( R)

b g o B - | g0 2 (. BB
(’E,,O(R) 6’), a/

By (R)

SJ IVH(p, ¢, t)lu(y, B)ldﬁdy+f H(p. g, )IVu(y, B)\ddy, (2.3)
Byy(R) Bpy(R)
where y denotes the external normal direction of Epo( R).

By applying the mean value inequality of harmonic function and the estimates of
Lemma 7 and (4.18 ) in [4] and Theorem 3.1 in [5], we have

J WH(p. g Ol §)\dBdy
By (R+1) By (R)

<_sup luly, ﬁ)lj~ IVH(p, g, t)dBdy
By R+ 1) Byo(R) '

By (R+1)

< Cexp{ CRY+ CRVZ [V, 2R+ 2) VIP(2R +2)V,A(R+ 1)V A(J7 ) x

_ 2
(R-2+z~*>*/~’exp{— A2 }sx;pﬂa( Bl (24)

Under the assumption of Ricci curvature, we know that for sufficiently small £>0, (2.4) goes

to 0 as R goes to infinity.
By applying the inequality
@y, B)lu(y, B)IAl(y, B)ldpdy >0,

MxN

we have

J IVu(y, B)FdBdy <12 J lu(y, B)PdBdy. (2.5)

By ( R+1) By (R) By (R+2)
where

1, on B, (R+1)\.B,(R);
= —_po Po L
- h) { 0, onB,(R—1)UMxN-B,(R+2)},

with

0<O<I, VOIS
By applying (2.5) and the method of heat estimate applied in [5], we can estimate the term

By, (R+1) By (R)
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1/2
< sup _H(p, g ‘){T;po(R-i- 1 )IZJ lu(y, B )Pdﬂdy}

qeBy(R+1)\ By(R) By, (R+2)

{CV',,/OZ( R+ 1) VYHR+2)V, 7 (2R+4) V' W(2R+4 )Sl;p"u( B )||L,(M)} . (26)

Also for sufficiently small >0, (2.6) goes to 0 as R goes to infinity. The estimates (2.4)
and (2.6) are obtained under the assumption of Lemma 2, similar estimates can also be
obtained under the assumption of Lemma 3.

By applying the mean valué theorem to (2.4) and (2.6), we know that there exists R,
— + o0 such that (2.3) goes to 0. This implies that (2.1)is valid for sufficiently small >0,
the semi-group property of heat kernel implies that (2.1)is valid for all #>0. '

Proof of Lemma 2. By applying (2.1), we have
Vyu(x, a) =f Hy(x,y, )VyHy(a, B, t)u(y, B)dpdy,

MxN

By applying the Holder inequality, J Hy(x, y, t)dy=1, the volume comparison theorem
M
and the following gradient estimate:

c r’(a, B)
IVyHy(a, B, 1)I< NPLZAOrD) exp {'—T },

we have

+o©
2C 72
V y g n - . Y .
IVyul o o)l ocary Nl L (14 1)"rexp( 5 )dr S}}Pﬂu( Blran
Letting 1 = + 00, we have Vyu( -, «) =0, which implies that u(x, «)is an LPharmonic
function on M, then u(x, a) =constant.
The proof of Lemma 3 is similar to that of Lemma 2, see footnote 1).

Now we show that the assumption of Lemma 3 is best in some sense: let M=R> the
metric tensor is defined by ds’=dr’+f (r) d0% where f (r) =r if re (0, 1] and f (r)
e """ if re[2, +). Then K (r) & —C2(2+¢&)? r**%, where K (r) is the sectional
curvature. By the result of Azencott!®, we know that there exists a fundamental solution of

+o
heat equation H(x, y, t) satisfying J H(x,y, t)dy<l, setu;=1, uy= \/1 f J e 512 x
n

H(x,y, «*/4s)dsdy «>0- Letting uX x, a)=u(x, &) —ufx, a), ifa>0;uXx, a)=—{u,(x,
—a) —ulx, ~a)}, if «<0, then u* is a bounded nonconstant harmonic function of M x R

1) Yu Ze, Harmonic functions on product Riemannian manifolds, Doctoral dissertation, Hangzhou Universi-
ty, 1989.
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and is related to a.

III. Main THEOREM AND THE PROOF
Theorem. [f u(x, t) is @ harmonic function on M x R* satisfying supllu(x, ¢) || ;rsr)
>0

<+, (1<p<+ ), then
(1) 1<p<+ o0, there exists f (x)eL?( M) such that

u(x,t)=j P(x,p)f (y)dy,
M

(ii)p=1 or p=+ o0, there exists a finite Borel measure p on M or f (x)eL**(M) such
that

u(x, t)=J‘ Py(x’ }’)dﬂ(}’)’
M

or

u(x, t)=f P(x.y)f (y)dy,
M

provided that M satisfies the assumption that Ricy(x) = — C{r¥(x, x,) +1}. The assumption
on Ricci curvature of M is the best in some sense.

Combining Lemma 1, Lemma 2, Lemma 3 and the method used to treat the case of
R"x R* with the L? convergence of Poisson integral, we can prove the theorem. The L?
convergence of the Poisson integral for 1 <p< + oo can be seen in [7], the L*® convergence
1s not difficult to prove, see footnote 1).
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