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Abstract The Hankel transform is an important transform. In this paper, we study the
wavelets associated with the Hankel transform, then define the Weyl transform of the
wavelets. We give criteria of its boundedness and compactness on the LP— spaces.
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1 Introduction

The Weyl transform was introduced by Weyl in ref. [1], then studied by many people.
Remarkable papers include refs. [2,3]. Weyl proved that the Weyl transform is a Hilbert-
Schmidt operator when the symbol is square integrable. In 1966[% Pool considered the
situation for the symbol belonging to LP(1 < p < 2), in this case the Weyl correspon-
dence is bounded, moreover the Weyl transform is also compact. For the case of p > 2,
Simon, in 1992[], obtained the result that the Weyl correspondence is not bounded. All
these results may be found in ref. [4], in which Wong also studied some other important
properties of the Weyl transform. Nowadays, the Weyl correspondence has found many
applications to time-frequency analysis, the theory of differential equations, linear system
theory and etc. And the Weyl transforms under other background have been studied. In
ref. [5] Jiang studied the rotational invariance of the Weyl correspondence. In ref. [6],
Rachdi and Trimeche defined the Weyl transforms associated with the spherical mean op-
erator, then studied its properties. In ref. [7] Peng and Zhao studied the wavelet and Wey!I
transforms associated with the spherical mean operator. We defined the Weyl transforms
of wavelets and discussed the problem of their boundedness in ref. [8]. As well known,
the Fourier transform restricted on the radical function is the Hankel transform. In this
paper we study the wavelets associated with the Hankel transform and the Weyl transform
of the wavelets.

An important transform relating with the classical Weyl transform is the Wigner trans-
form. In order to get the unboundedness of the Weyl correspondence, Simon changed the
problem into the unboundedness of the Wigner transform. In fact, the boundedness of the
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Weyl correspondence is equivalent to the boundedness of the Winger transform. In our
case, the problem is transferred into the boundedness of the wavelet transform. We obtain
the following result: in the case that the symbol belongs to L?(1 < p < 2), the Weyl
correspondence is bounded and the Wey! transform is also compact; in the case of p > 2,
the Weyl correspondence is not bounded, i. e. there exists a function o € L? such that the
Weyl transform W, is not a bounded operator.

For the function f defined on R™, n > 2, as in ref. [10], the spherical mean operator
‘R is defined by

RIG) = [ frw)dow),

where S™ ! is the unite sphere in R™ and o is the normalized surface measure on S™ 1.
And we know

/ e—irw~wd0.(w) — / eirlzl“’ldo-(w) Yr > 0,.7/' S R™.
Sn—1 Sn—1

Denote @5 (r) = [¢n 1 €™ do(w), A,7 > 0. Then
I'(3)

4 A
— 2 17’Acos9 n 2 odg _ ( > Jn ) )\ <'f' )
¢/\(r) ﬁI‘(y + %) A € (’I" ) )
(1.1)
where J,, is the Bessel function (see ref. [11] or ref. [12] ) defined by

(2/2)" /7r i 6 i 2v 1

J(2) = ——F—F—— 1z cos 0do, ——.

(2) T +1/2) Jy e sin v> =3

By expression (1.1), we can generalize the half integer or integer index v = "7*2 to
all the real number v > —%. Then we obtain the generalized function and denote it by the
same symbol.

Fv+1) " irAcos6 ;2 (7')‘>
— 1T A COS v — F 1
NG NGO %)/0 € sin“” 6d6 (v+1)J,(r)) 5
Define the measure dv(r) = 2,,1,(1—U+1)7'2”+1dr onR, = (0,00). Let L?(dv) be the

space of measurable function on R, = (0, oco) satisfying

191, = ([T eram) <o 1<p<s,

[[fllc =ess sup [f(r)] <oo,  p=o0.

r€(0,00
For r € (0, 00) the translation operator 7, is defined on L' (dv) by

7.f(s) = \/1:; v+l /

Then, we define the convolution of f,g € L'(dv) by
fror) = [ fs)mgls)dv(s)

The translation operator is commutative and it has the following properties.

F(V/72 + 52 — 2rscos 6) sin® 0d6.

Copyright by Science in China Press 2004



Wavelets associated with Hankel transform 395

Proposition 1.1[!.

1. 7.0x(8) = Pr(r)Pa(s).

2. [T f(s)dv(s) = [J° f(s)dv(s),forall r € [0, 00).

3. If f € LP(dv),1 < p < oo, then for all » € [0, 00), the function 7,.f belongs to
L?r(dv), and

£ lle < 1 £1lp-
4. For f € L'(dv),g € LP(dv),1 < p < oo, the function f x g € LP(dv), and
1S glle < [1£ 1l [lgll,-

Now we can introduce the definition of the Hankel transform on L*(dv).

nro = [ " ) pa(r)du(r).

In fact, it is the Fourier transform restricted on the radical functions for v = "T_z, n > 2,
and n € N. Similar to the Fourier transform, the Hankel transform has the following
properties.

Proposition 1.2[°!.
1. For f € L*(dv) such that Hf € L'(dv), we have the Hankel inversion formula
fr) = /O T HINEBDdr(N), aer € [0,00).
2. For f,g € L%(dv), we have the Parseval equality
< f,g>=<H[f, Hg > .
3. Given f € L'(dv), then for all s € [0, o), we have
H(: [)(A) = ds(AHF(A).

4.1f f,g € L'(dv), then

H(f *g)(A) = Hf(A)Hg(N).

5. If f belongs to L?(dv),1 < p < 2, then 1 f belongs to L?'(dv), where p/ is the
dual index of p, and
Al < ([ f]p-

In fact, the Hankel inversion formula is essentially a Fourier-Bessel integral, which is
described in detail in ref. [11].

2 Admissible wavelet transform

Let f € L?*(dv). The dilation D, (a > 0) is defined by D, f(r) = a**'f(ar).
Now we can introduce the conception of the admissible wavelet (compared with ref. [13],
pages 24 and 25).
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Definition 2.1. 1) € L?(dv), not identically zero, is called an admissible wavelet if
it satisfies

/ / | <, 9™ > |2a® T dadv(r) < oo,
o Jo

where " (s) = 7,.D, ().

In fact, we have
/Ooo /Ooo | < b, ™" > [2a® T dadv(r)
- /0 b /0 0+ Dud(r)Pdu(r)a®+da
_ /0 b /0 T Y O)HDLBN) [2d(N) e da

= [T [ oo e (2)]

a2V dy(N)a*+da
o) 2
=l [~ O,
0 a

So the admissible condition in the above definition is equivalent to

oo 2
Com [Ty
0 a

Let AW denote the space of all admissible wavelets, define the normal on AW by

oo [e s} da %
ollaw = ([ W) Pavte + [~ o)
The wavelet transform associated with an admissible wavelet v is defined by

Ty f(a,r) =< f,9*" >,  f€ L*(dv).
Easily, we obtain the Moyal’s formula

JEGEGIOR c%,, | [ TeftanTigana dadv(r),  (21)

forall f,g € L?(dv). Formula (2.1) can be read as

1 <[ a,r 2u+1
f6) =& / / Ty f(a, 7)6" (3)a>+ dady(r)

with convergence of the integral in a weak sense. A special case of (2.1) is

/000 |f(r)|Pdv(r) = x /0°° /000 Ty f(a,7)*a® dadv(r), f e L*(dv).

P

This means the wavelet transform T\, maps L?(dv) into L?(R?, a®**'dadv(r)). But the
image space H,, is a subspace, notall of L?(R?% , a®**'dady(r)). Forany F' € H,, there
exists a function f € L?(dv) such that F' = T}, f. By (2.1), we have
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1 oo oo
Flar) =< fuo > = g [ [ my (e o) Tyger (@ o™ daldv(r)

1 oo [e o] v
= —/ / F(d',v"\K(a,r,a',7")a’>" " da'dv(r")
Cy

with K (a,r,a’',r") = Typ*(a’,7") =< 97, %" > . The above shows that Hyisa
reproducing kernel Hilbert space.

Denote L?(da @ dv) as the space of measurable functions on R? satisfying

/p
|Fll, = (/ / |F(a,r)[Pa* ' dadv(r )> < 00, 1< p< oo,

|F||, =ess sup |F(a,r)| < oo, p = oo.
a,r€(0,00)

By the definition of the wavelet transform and (2.1), we have the following theorem.

Theorem 2.1. Lety € AW. Then forany f € L?(dv), T,f € LP(da ® dv),
2<p<ooand

1Ty fllp < N1 law [ £]l2-

3 Weyl transform of wavelet

3.1 Weyl transform with symbols in L?(da ® dv),for1 < p < 2

The rapidly decreasing function space S(R? ) is the space of infinite differential func-
tion satisfying
ooth

sup |(1+a* +7%)" 2 <5501 < Cmaypy

a,reER
where m, o, 8 € N, and C,, . g is a constant only depending on m, o, 3. It is easy to see
that S(R? ) is dense in L?(da ® dv) for 1 < p < oo.

Definition 3.1. Leto € S(Ri). We define the Weyl transform W, by
< f,Wy >=/ / a(a,r) < f,*" > a®**'dadv(r), (3.1)
R, JRy
where f € L?(dv),v¥ € AW.

From (3.1), we get the expression of the Weyl transform
= / / o(a, )™ (s)a* dady(r). (3.2)

Using Theorem 2.1, we have the following proposition.

Proposition3.1.  If o € S(R2), then W,, : AW — L?*(dv) is a bounded operator,
andforl < p<2
IWell < llolp-

By the density of the rapidly decreasing functions, we can extend the Weyl correspon-
dence o — W, to LP(dp @ dv).
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Theorem 3.1. For p € [1,2], there exists a unique bounded operator W from
LP(dp @ dv) into B(AW, L*(dv)) : ¢ — W,, such that for all p € AW, f € L?(dv),
we have

< f,Wytp >=/ / g(a,r) < f,*" > a®**dadv(r),
ry JR,

and
Woll < llollp-

Theorem 3.2.  For o € L?(da ® dv), p € [1,2], the operator W, from AW into
L?(dv) is a compact operator.

Proof.  We only need to prove the conclusion for o € S(R?%). Let the space S =
{v € LXdv) : |[¥lls = (Ja, [H(a)PL)"? < oo} We know AW = S and
l¥|ls < ||2|| aw, so if we prove that the operator W, is compact according to the normal
of S, then it is also compact according to the normal of AW. In the following, we will
prove the operator is compact on S. By (3.2), we have

- / / o(a, 7). (\)Hop (5) a”™"""a®dady(r)

= Hos(a, A)H¢< ) Yda

Ry

A\ A d
= (_> HU? <_7 /\> %d)(a)_aa
R, \Q a a
where Hos(a, A) denotes the Hankel transform of o with respect to the second variable.
Then
A v+1
Wa' 2 2 = / / <_> H -
I ”HS(S,L ) R, 02 |a|

—/ / |Hoy(a, N)|a® T dadv (A

:/ / lo(a,7)|?a® T dadv(r) < oo

This means that the operator is Hilbert-schmidt operator. So, the operator is compact.

3.2 Weyl transform with symbols in L?(da @ dv), for2 < p < oo

In order to consider the property of the Weyl transform with the symbol in L?,2 <
p < oo, we first define the Weyl transform for o € S'(R?).

Foro € S'(R%),and ¢ € AW N S(R..), we define the operator W, (1) on S(R..)
by
(Wo()I(f) = a(<y™", f>)  feS(Ry). (3.3)

Obviously, W, () belongs to S'(R, ).

Theorem 3.3.  For 2 < p < oo, there exists a function ¢ in L?(da ® dv) such that
W, defined by (3.3), is not a bounded linear operator from AW to L?(dv).
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The theorem is a consequence of the following two lemmas.

Lemma 3.1. Suppose that for all ¢ € LP(da ® dv), 2 < p < oo, the Weyl
transform W,,, defined by (3.3), is a bounded linear operator from AW to L?(dv). Then
there exists a positive constant C such that

IWall < Clloll,, o€ L?(dp @ dv). (3-4)

Proof.  Suppose that forall o € L?(da ® dv),2 < p < oo. There exists a positive

constant C,, such that forall ¢ € AW
[Wotbllz < Co 9] aw-
Let f € S(R.),vp € AW N S(R.) such that ||f]l; = ||¥|law = 1. Consider the
bounded linear functional Q. ; : L?(da ® dv) — C defined by
Qy,s(0) =< Woih, f > .
Then
sup |Qy,f(0)] < Cs, o € LP(da ® dv),

where the supremum is taken over all functions f, ) satisfying the previous conditions.
By the uniform boundedness principle, there exists a positive constant C such that

sup [|Qy sl < C,ie. sup | <W,oo, f>|<C.

lo|lp=1

So,
| <Wo, f > | < Cllollp|[¥][aw || fl]25

forall 0 € LP(da ® dv),and f € S(Ry),yy € AW N S(R,). Thus, we prove the
lemma.

Lemma 3.2. For2 < p < oo, there is no positive constant C such that (3.4) holds.
Proof.  Suppose that there exists a positive constant C such that (3.4) holds. Then
| <47, f >y = sup

/ / o(a,r) < *", f > a®dady(r)
lellp=1|/ Ry SRy
= sup | <Wop,f > |

llollp=1

< sup ||[Woobla| fll2

allp=1

< Cllellawll Iz,
forall f € S(R.),v € AW NS(R,).

Let f € L?(dv),v» € AW. Then, we let {f,}$2, be a sequence of functions in
S(Ry) and {1 }22, be a sequence of functions in AW N S(R, ) such that f, — f in
L%(dv) and ¢, — 9 in AW as k — oo. Itis easy to prove that {< ¥, fr. >}, isa
Cauchy sequence in I*' (da ® dv) and its limit is equal to < ¥®", f >. Then,

| <97 f > llp < Cllgllawll f]l2 (35)
forall f € L?(dv),v € AW.
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Take Hp(X) = A¥Xj0,11(A) with o > 0, where x[0,1)(A) is the character function of

[0,1], 4 is an admissible wavelet. And we have || < ¥*", ¢ > ||, < co. But

/ / | <7, > P dadu(r)
R+ R+ ,

> [ p<vmvs Pdny) e da
Ry \/R4

’
P

=[ ([ w0 0

’

oo 1 %
> / (/ |a”1°‘)\2°‘|pdu()\)> a®tda
1 0

1 , oo
— / AZapdy(/\) % / a—(u+1+a)p’a2y+1 da
0 1

1 , 1
= / A2erdy(N) 5 / avHi+elr g3,
0 0

Therefore, if we choose « such that (v + 1)(p’ — 2) + ap’ — 1 < —1, then

1
’
/ a(u+1+a)p a—2u—3da = o0,
0

which is contract to < 9", >€ L¥ (da @ dv).
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