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Abstract This paper deals with observer design for generalized Hamiltonian systems
and its applications. First, by using the systems’ structural properties, a new observer
design method called Augment Plus Feedback is provided and two kinds of observers are
obtained: non-adaptive and adaptive ones. Then, based on the obtained observer, H∞

control design is investigated for generalized Hamiltonian systems, and an observer-based
control design is proposed. Finally, as an application to power systems, an observer and
an observer-based H∞ control law are designed for single-machine infinite-bus systems.
Simulations show that both the observer and controller obtained in this paper work very
well.
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1 Introduction

In state feedback control designs, if states of the system under consideration are not
measurable, the need to design an observer is well understood by now. Since the ap-
pearance of Luenberger’s observer[1], observer designs for dynamic systems have drawn
considerable attention and seen many remarkable results[2−6]. The design of observers for
linear systems has been well studied by now. But for general nonlinear systems, the design
problem still remains challenging, though there are numerous observer results for certain
classes of nonlinear systems.

In recent years, port-controlled Hamiltonian (PCH) systems[7] have been well inves-
tigated, see, e.g. refs. [8—15]. The Hamiltonian function in a PCH system is the total
energy, i.e. sum of potential and kinetic energies in physical systems, and can play the role
of Lyapunov function for the system. At present, there are two “hot” topics worth notic-
ing about PCH systems: one is the application study of energy-based Lyapunov function
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method[9−13], and the other is how to express a nonlinear system as a dissipative Hamil-
tonian system, i.e. the generalized Hamiltonian realization problem[14,15]. In these topics,
the key is the design of suitable state feedback control laws.

For observer design for Hamiltonian systems, Hebert et al. proposed a design method
for a special class of generalized Hamiltonian systems, in which the output was assumed
to be linear and the structure matrix was assumed to be constant, and then they used the
method to design observers for synchronization of chaotic systems[16]. Lohmiller and
Slotine used their earlier work on contraction analysis for nonlinear systems to design a
globally convergent observer for a class of Hamiltonian systems[17]. However, to the au-
thors’ best knowledge, there are few results on observer design for general PCH systems.

This paper investigates observer design for PCH systems and its applications. Based
on the systems’ structural properties, a new observer design method called Augment plus
Feedback is provided in this paper. The new method is different from traditional ap-
proaches, in which one usually gets a dynamic system of state error e(:= x − x̂) and
then shows that the error system converges to zero asymptotically. The new method has
advantages in observer design for systems whose error dynamics are hard to obtain (e.g.
PCH systems). By using the new method, two kinds of observers are obtained: one is
a non-adaptive observer and the other is an adaptive one. Then, based on the obtained
observer, H∞ control design is investigated for generalized Hamiltonian systems, and an
observer-based control design method is proposed. Finally, as an application to power sys-
tems, an observer and an observer-based H∞ control law are designed for single-machine
infinite-bus systems[18]. Simulations show that both the observer and controller obtained
in this paper work very well.

2 Observer design

This section is to investigate observer design for PCH systems. We will provide a new
design method called Augment Plus Feedback and design two observers for the systems.

Consider a PCH system with unknown structure parameter perturbations[10]:










ẋ = [J(x, p) − R(x, p)]
∂H(x, p)

∂x
+ g(x)u,

y = gT (x)
∂H(x, 0)

∂x
,

(1)

where x ∈ Rn, u ∈ Rm, p stands for the parametric perturbation, JT (x, p) = −J(x, p) ∈

Rn×n, R(x, p) ∈ Rn×n is positive semi-definite, and H(x, p) is the Hamiltonian func-
tion, which has a minimum at x0 when p = 0. Suppose that the states of system (1) are
unmeasurable. We design observers for system (1) for the following two cases: p = 0 and
p 6= 0.

2.1 Constant p = 0

In this case, the observer is designed under the following realistic assumptions:
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S1: ∇H(x, 0) 6= 0 (x 6= x0), and system (1) is zero-state detectable[19] with
respect to y1 := R

1

2 (x, 0)∇H(x, 0) and u, that is, y1 ≡ 0, u ≡ 0 ⇒ x → x0 (t → ∞),
where R

1

2 (x, 0) is defined as R(x, 0) = [R
1

2 (x, 0)]2 and ∇H := ∂H(x,0)

∂x
.

S2: There are non-zero matrices K(x), K1(x) ∈ Rm×n such that

W (x) := R(x, 0) + [g(x)K(x) + KT (x)gT (x)] > 0, (2)

K(x) = K1(x)W (x) and

ẋ = [J(x, 0) − W (x)]∇H(x, 0) (3)

is zero-state detectable with respect to y2 := W
1

2 (x)∇H(x, 0).

Remark 1. Since R(x, 0) > 0, there must exist K(x) such that (2) holds. After
K(x) is obtained, one can find K1(x) from K(x) = K1(x)W (x).

From Assumptions S1 and S2, we design an observer as follows:

˙̂x = [J(x̂, 0) − R(x̂, 0)]
∂H(x̂, 0)

∂x̂
+ g(x̂)u + KT (x̂)[y − gT (x̂)

∂H(x̂, 0)

∂x̂
]. (4)

Unlike the traditional approach, we will combine (1) and (4) to obtain an augmented
system first, and then design a feedback law only based on the observer state x̂ to make
the augmented system be a PCH one with dissipation, from which we will show that
system (4) can serve as an observer for system (1). The above method can be described as
Augment Plus Feedback.

With (1) and (4), we have

Ẋ = [J̄1(X) − R̄1(X)]
∂H̄(X)

∂X
+ ḡ(X)u, (5)

where

J̄1(X) =





J(x, 0) 0

0 J(x̂, 0)



 ,

R̄1(X) =





R(x, 0) 0

−KT (x̂)gT (x) R(x̂, 0) + KT (x̂)gT (x̂)



 ,

X = (xT , x̂T )T , H̄(X) = H(x, 0) + H(x̂, 0),

∂H̄(X)

∂X
=





∂H(x,0)

∂x
∂H(x̂,0)

∂x̂



 , ḡ(X) =





g(x)

g(x̂)



 .

Since R̄1(X) is not symmetric, we design a control law only based on x̂ as

u = −K(x̂)
∂H(x̂, 0)

∂x̂
+ v. (6)

Substituting (6) into (5) yields

Ẋ = [J̄(X) − R̄(X)]
∂H̄(X)

∂X
+ ḡ(X)v, (7)
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where

J̄(X) =





J(x, 0) −g(x)K(x̂)

KT (x̂)gT (x) J(x̂, 0)



 ,

R̄(X) =





R(x, 0) 0

0 R(x̂, 0) + g(x̂)K(x̂) + KT (x̂)gT (x̂)



 .

System (7) is a dissipative PCH system[7].

Theorem 1. Assume that S1 and S2 hold, and p = 0. Under the control (6), system
(4) is a globally asymptotical observer for system (1).

Proof. Consider the energy flow of system (7). When v = 0, we obtain

˙̄H(X) = −
∂H̄T

∂X
R̄(X)

∂H̄

∂X

= −∇T H(x, 0)R(x, 0)∇H(x, 0) −∇T H(x̂, 0)W (x̂)∇H(x̂, 0) 6 0, (8)

from which system (7) is stable. Furthermore, system (7) converges to the largest invariant
set contained in

S =

{

X :
dH̄

dt
= 0

}

=
{

(x, x̂) :R
1

2 (x, 0)∇H(x, 0) = 0, W
1

2 (x̂)∇H(x̂, 0) = 0
}

.

(9)

Since S1 and S2 hold, W
1

2 (x̂)∇H(x̂, 0) = 0 ⇒ K(x̂)∇H(x̂, 0) = 0. Thus, when
v = 0 and W

1

2 (x̂)∇H(x̂, 0) = 0, system (7) can be expressed as

{

ẋ = [J(x, 0) − R(x, 0)]∇H(x, 0),

˙̂x = [J(x̂, 0) − W (x̂)]∇H(x̂, 0) + KT (x̂)gT (x)∇H(x, 0).
(10)

Because system (1) is zero-state detectable with respect to y1, y1 = 0 ⇒ x → x0 (t →

∞), and moreover, ∇H(x, 0) → 0. Then, the second part of system (10) becomes

˙̂x = [J(x̂, 0) − W (x̂)]∇H(x̂, 0). (11)

On the other hand, system (3) is zero-state detectable with respect to y2. From y2 =

W
1

2 (x̂)∇H(x̂, 0) ≡ 0, we have x̂ → x0. Therefore, the above largest invariant set
contains only one point, i.e. (xT

0 , xT
0 )T . From the LaSalle invariant principle[20], system

(7) is asymptotically stable and ||x−x̂|| = ||x−x0+x0−x̂|| 6 ||x−x0||+||x̂−x0|| −→

0 (t → ∞).

Remark 2. As the control (6) is only a function of x̂, the above observer can be
realized in practice as shown in fig. 1.
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Fig. 1. Sketched drawing of realization.
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Remark 3. Since x̂ is obtained under the control law (6), x̂ seems not the estimate
of the true state. In fact, it is not the case. When t → ∞, ∇H(x̂, 0) → 0, and as a
consequence, the controller (6) → 0, as t → ∞ (v = 0). Thus, when t is sufficiently
large, the controller (6) does not affect the estimate of the true state. In practical control
designs, one only needs to design v = v(x̂) (the reference input) according to the need,
and then add it to the control law (6) to obtain the complete controller. Obviously, the
complete controller can ensure that: (i) x̂ → x; (ii) it meets the designed control demand
(see section 3).

In section 4, we will use Theorem 1 to solve a practical problem.

2.2 Constant p 6= 0

When p 6= 0, in order to obtain the estimate of the states of system (1), we have to
design an adaptive observer for system (1), that is, to design an observer of the following
form

{ ˙̂x = α(x̂, θ̂, y, u),

˙̂
θ = β(x̂, θ̂, y, u),

(12)

such that ||x − x̂|| → 0 (t → ∞), where θ̂ is the estimate of θ, and θ = θ(p) is an
unknown vector.

In this case, the observer is designed under the following realistic assumpotions:

S1′: ∇H(x, 0) 6= 0 (x 6= x0), and the system is zero-state detectable with respect
to y1 := R

1

2 (x, p)∇H(x, 0) and u;

S2′: There exist non-zero matrices L(x), L1(x) ∈ Rn×m such that

W (x) := R(x, 0) + [g(x)LT (x) + L(x)gT (x)] > 0,

LT (x) = LT
1 (x)W (x) and the following system

ẋ = [J(x, 0) − W (x)]∇H(x, 0)

is zero-state detectable with respect to y2 := W
1

2 (x)∇H(x, 0).
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S3: There exists a constant matrix Φ ∈ Rl×m such that
[J(x, p) − R(x, p)]∆H(x, p) = g(x)ΦT θ, (13)

where ∆H(x, p) = ∂H(x,p)

∂x
− ∂H(x,0)

∂x
and θ ∈ Rl is an unknown vector only about p.

From (13), system (1) can be rewritten as










ẋ = [J(x, p) − R(x, p)]
∂H(x, 0)

∂x
+ g(x)ΦT θ + g(x)u,

y = gT (x)
∂H(x, 0)

∂x
,

(14)

from which we design an observer of the form:














˙̂x=[J(x̂, 0)−R(x̂, 0)]
∂H(x̂, 0)

∂x̂
+g(x̂)ΦT θ̂+g(x̂)u+L(x̂)

[

y−gT (x̂)
∂H(x̂, 0)

∂x̂

]

,

˙̂
θ=QΦy,

(15)

where Q ∈ Rl×l is a constant positive definite matrix, called the adaptation gain.

With (14) and (15), we obtain








ẋ

˙̂x
˙̂
θ









=









J(x, p) − R(x, p) 0

L(x̂)gT (x) J(x̂, 0) − R(x̂, 0) − L(x̂)gT (x̂)

QΦgT (x) 0













∇H(x, 0)

∇H(x̂, 0)





+









g(x)ΦT θ

g(x̂)ΦT θ̂

0









+









g(x)

g(x̂)

0









u. (16)

To make (16) a dissipative PCH system, we design a feedback law only based on x̂

and θ̂ as follows:
u = −LT (x̂)∇H(x̂, 0) − ΦT θ̂ + v. (17)

Substituting it into (16) yields

Ẋ = [J̄(X, p) − R̄(X, p)]
∂H̄(X)

∂X
+ ḡ(X)v, (18)

where X = (xT , x̂T , θ̂T )T , H̄(X) = H(x, 0) + H(x̂, 0) + 1
2
(θ − θ̂)T Q−1(θ − θ̂),

J̄(X, p) =









J(x, p) −g(x)LT (x̂) −g(x)ΦT Q

L(x̂)gT (x) J(x̂, 0) 0

QΦgT (x) 0 0









,

R̄(X, p) =









R(x, p) 0 0

0 W (x̂) 0

0 0 0









,

∂H̄(X)

∂X
=









∇H(x, 0)

∇H(x̂, 0)
∂H̄(X)

∂θ̂









, ḡ(X) =









g(x)

g(x̂)

0









.
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Obviously, system (18) is a dissipative PCH one under Assumption S2′.

Theorem 2. Assume that S1′, S2′ and S3 hold. With the control (17), system (15)
is an adaptive observer for system (1).

Proof. From the properties of dissipative Hamiltonian systems[14], system (18) is
stable when v = 0. Assume that X0 = (xT

0 , x̂T
0 , θ̂T

0 )T is the system’s equilibrium, then
∇H(x0, 0) = ∇H(x̂0, 0) = 0. From S1′, x̂0 = x0. Now consider the system’s energy
flow. When v = 0, we have

˙̄H(X) = −
∂H̄T

∂X
R̄(X, p)

∂H̄

∂X
= −∇T H(x, 0)R(x, p)∇H(x, 0)

−∇T H(x̂, 0)W (x̂)∇H(x̂, 0) 6 0, (19)
from which we know that system (18) converges to the largest invariant set contained in

S =

{

X :
dH̄

dt
= 0

}

=
{

X : R
1

2 (x, p)∇H(x, 0) ≡ 0, W
1

2 (x̂)∇H(x̂, 0) ≡ 0
}

.

(20)

Similar to the proof of Theorem 1, by using the zero-state detectability, we can show
that: R

1

2 (x, p)∇H(x, 0) ≡ 0, W
1

2 (x̂)∇H(x̂, 0) ≡ 0 ⇒ x → x0, x̂ → x̂0 (t → ∞).
Therefore, ||x− x̂|| = ||x− x0 + x0 − x̂|| 6 ||x− x0||+ ||x̂− x0|| −→ 0 (t −→ ∞).

Remark 4. Since the control (17) is a function of x̂ and θ̂, the above adaptive
observer can be realized.

Example 1. Consider system






ẋ = [J(x, p) − R(x, p)]
∂H(x, p)

∂x
+ g(x)u,

y = gT (x)∇H(x, 0),
(21)

where H(x, p) = 1
2
x2

1 + 1
2
x2

2 + 1
2
(1 + p)x2

3,

J(x, p) =









0 1 0

−1 0 0

0 0 0









, R(x, p) =









1 0 0

0 1 0

0 0 1 + p









, g(x) =









0

0

x3









,

and p is a parametric perturbation satisfying |p| < 1.

Now we design an adaptive observer for system (21). Because R(x, p) > 0, y1 =

R
1

2 (x, p)∇H(x, 0) ≡ 0 ⇒ ∇H(x, 0) ≡ 0, from which we can obtain x → 0 (t → ∞).
Thus, S1′ holds. Choosing L(x) = (0, 0, 1

2
x3)

T , L1 = (0, 0, x3

2(1+x2

3
)
)T , we have

W (x) = R(x, 0) + [g(x)LT (x) + L(x)gT (x)] =









1 0 0

0 1 0

0 0 1 + x2
3









> 0,

and LT (x) = LT
1 (x)W (x). This means that S2′ holds, too. Next, we check S3. A

straightforward computation shows that ∆H(x, p) = ∂H(x,p)

∂x
− ∂H(x,0)

∂x
= (0, 0, px3)

T .
Let θ = (1 + p)p, then

[J(x, p) − R(x, p)]∆H(x, p) = g(x)ΦT θ
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holds, where Φ = 1. Therefore, S3 holds. From Theorem 2,


























































˙̂x =

















0 1 0

−1 0 0

0 0 0









−









1 0 0

0 1 0

0 0 1

















∂H(x̂, 0)

∂x̂

+









0

0

x̂3









θ̂ +









0

0

x̂3









u +
1

2









0

0

x̂3









[y − x̂2
3],

˙̂
θ = ly

(22)

is an adaptive observer for system (21), where u = −LT (x̂)∇H(x̂, 0) − ΦT θ̂ + v =

− 1
2
x̂2

3 − θ̂ + v, θ̂ is the estimate of θ, and l > 0 is the gain constant.

3 Observer-based H
∞

control

This section is to use the observer proposed in subsection 2.1 to study observer-based
H∞ control of PCH systems and propose a new control design method.

In this section, we only consider the unperturbed case, that is, p = 0 in system (1).
For clarity, we will drop p in the following.

Consider a disturbed PCH system:










ẋ = [J(x) − R(x)]∇H(x) + g1(x)u + g2(x)w,

y = gT
1 (x)∇H(x),

z = ρgT
2 (x)∇H(x),

(23)

where x ∈ Rn, u ∈ Rm, y ∈ Rm are the system’s state, input and output, respectively;
JT (x) = −J(x); R(x) > 0; H(x) is the Hamiltonian function, which has a minimum
at x0; z ∈ Rl is the penalty signal; ρ > 0 is a weighting coefficient; and w ∈ Rl is the
disturbance.

The observer-based H∞ control problem of system (23) can be described as: Given a
disturbance attenuation level γ > 0, based on the system’s observer, design a control law
u = α(x̂, y) such that the closed-loop system’s L2 gain (from w to z) is bounded by γ,
and meanwhile, the closed-loop system is asymptotically stable when w = 0.

Lemma 1[19]. Consider an affine system
{

ẋ = f(x) + g(x)w, f(x0) = 0,

z = h(x),
(24)

where x ∈ Rn, w ∈ Rs is the disturbance, and z ∈ Rq is the penalty signal. If there
exists a function V (x) > 0 (V (x0) = 0) such that Hamilton-Jacobian inequality

(∂V

∂x

)T

f(x) +
1

2γ2

(∂V

∂x

)T

ggT ∂V

∂x
+

1

2
hT h 6 0 (25)

holds, then the L2 gain (from w to z) of system (24) is bounded by γ, i.e.
∫ T

0

||z(t)||2dt 6 γ2

∫ T

0

||w(t)||2dt, ∀w ∈ L2[0, T ]
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holds, where γ is a positive number.

Assume that system (23) satisfies S1 and S2. From Theorem 1,
˙̂x = [J(x̂) − R(x̂)]∇H(x̂) + g1(x̂)u + KT (x̂)[y − gT

1 (x̂)∇H(x̂)], (26)

is an observer for system (23), where
u = −K(x̂)∇H(x̂) + v. (27)

Set Λ = ρ2

2
+ 1

2γ2
, and still let W (x) := R(x) + [g1(x)K(x) + KT (x)gT

1 (x)].
Then, we have the following result.

Theorem 3. Assume that system (23) satisfies Assumptions S1 and S2. For the
given γ > 0, if

R(x) + Λ[g1(x)gT
1 (x) − g2(x)gT

2 (x)] > 0, W (x) − Λg1(x)gT
1 (x) > 0 (28)

hold, then based on the observer (26) an H∞ control law of system (23) can be designed
as

v = −Λ
[

y − gT
1 (x̂)∇H(x̂)

]

. (29)

Proof. Let X = (xT , x̂T )T , H̄ = H(x) + H(x̂). With (23), (26) and (27), we
obtain





ẋ

˙̂x



 =









J(x) −g1(x)K(x̂)

KT (x̂)gT
1 (x) J(x̂)



 −





R(x) 0

0 W (x̂)









∂H̄

∂X

+





g1(x)

g1(x̂)



 v +





g2(x)

0



 w.

Substituting (29) into the above yields
Ẋ = [J̄(X) − R̄(X)]∇H̄(X) + ḡ2w := f(X) + ḡ2w, (30)

where ḡ2 = (gT
2 (x), 0)T ,

J̄(X) =





J(x) −g1(x)K(x̂) + Λg1(x)gT
1 (x̂)

KT (x̂)gT
1 (x) − Λg1(x̂)gT

1 (x) J(x̂)



 ,

R̄(X) =





R(x) + Λg1(x)gT
1 (x) 0

0 W (x̂) − Λg1(x̂)gT
1 (x̂)



 .

Set V (X) = H̄(X) + c, where c is a constant such that V (X) > 0, V (X0) = 0

(X0 = (xT
0 , xT

0 )T ). From (28),

∂V T

∂X
f(X) +

1

2γ2

∂V T

∂X
ḡ2ḡ

T
2

∂V

∂X
+

1

2
zT z

= −∇T H̄(X)R̄(X)∇H̄(X) +
1

2γ2
∇T H(x)g2(x)gT

2 (x)∇H(x)

+
ρ2

2
∇T H(x)g2(x)gT

2 (x)∇H(x)

= −∇T H(x){R(x) + Λ[g1(x)gT
1 (x) − g2(x)gT

2 (x)]}∇H(x)

−∇T H(x̂)[W (x̂) − Λg1(x̂)gT
1 (x̂)]∇H(x̂) 6 0.
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From Lemma 1, the closed-loop system’s L2 gain is bounded by γ.

Next, we compute the energy flow of system (30). When w = 0, from (28) we have
˙̄H = −∇T H(x)[R(x) + Λg1(x)gT

1 (x)]∇H(x) −∇T H(x̂)[W (x̂)

− Λg1(x̂)gT
1 (x̂)]∇H(x̂) 6 0,

which means that system (30) is stable. Since x̂ is the asymptotical estimate of x, as
t → ∞ the above can be rewritten as

˙̄H = −∇T H(x)R(x)∇H(x) −∇T H(x̂)W (x̂)∇H(x̂) 6 0.

Therefore, as t → ∞, system (30) converges to the largest invariant set contained in

S =

{

X :
dH̄

dt
= 0

}

=
{

(x, x̂) : R
1

2 (x)∇H(x) = 0, W
1

2 (x̂)∇H(x̂) = 0
}

.

(31)

On the other hand, when t → ∞ and w = 0, system (30) can be expressed as
{

ẋ = [J(x) − R(x)]∇H(x) − g1(x)K(x̂)∇H(x̂),

˙̂x = [J(x̂) − W (x̂)]∇H(x̂) + KT (x̂)gT (x)∇H(x).
(32)

Since S2 holds, W
1

2 (x̂)∇H(x̂) = 0 ⇒ K(x̂)∇H(x̂) = 0. Similar to the proof of
Theorem 1, from the system’s zero-state detectability, we can show that system is asymp-
totically stable.

Remark 5. The controller proposed in Theorem 3 is developed by using the struc-
ture properties of PCH systems, and not the one obtained from the existing state feedback
controllers simply by replacing x with x̂.

From (27) and (29), we obtain

u = −K(x̂)∇H(x̂) − Λ[y − gT
1 (x̂)∇H(x̂)], (33)

which is the complete controller. It can be shown that (33) can guarantee the following:
(i) ||x̂ − x|| → 0 (t → ∞); (ii) meeting the demand of performances of the H∞ control.

4 Observer-based H
∞

controller of single-machine power systems

As an application to power systems, this section designs an observer and an observer-
based H∞ controller for single-machine infinite-bus systems, respectively.

4.1 Observer for single-machine infinite-bus systems

Consider the 3rd-order model[18]


























δ̇ = ω − ω0,

ω̇ = ω0
M

Pm −
D

M
(ω − ω0) −

ω0E
′

qVs

Mx′

dΣ

sin δ,

Ė′

q = − 1
T ′

d

E′

q +
1

Tdo

xd − x′

d

x′

dΣ

Vs cos δ +
1

Td0

uf ,

(34)

where δ is the power angle, in radian; ω the rotor speed, in rad/s, ω0 = 2πf0; E′

q the
q-axis internal transient voltage, in per unit; xd the d-axis reactance, in per unit; x′

d the
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d-axis transient reactance, in per unit; uf the excitation voltage, the control input, in per
unit; M the inertia coefficient, in seconds; D the damping constant, in per unit; Td0, T ′

d

are time constants, in seconds; Pm the mechanical power, assumed to be constant, in per
unit; Vs infinite-bus voltage, in per unit; x′

dΣ = x′

d + 1
2
xL + xT .

Let x1 = δ, x2 = ω − ω0, x3 = E′

q, a = ω0

M
Pm, b = D

M
, c = ω0Vs

Mx′

dΣ

, d = 1
T ′

d

,

e = 1
Tdo

xd−x′

d

x′

dΣ

Vs, h = 1
Tdo

,

H(x) = −cx3 cosx1 − ax1 +
cd

2e
x2

3 +
1

2
x2

2, (35)

and set y = −c cos x1 + cd
e
x3, then system (34) can be expressed as

{

ẋ = [J(x) − R(x)]∇H(x) + g1(x)u,

y = gT
1 (x)∇H(x),

(36)

where x = (x1, x2, x3)
T , u = huf ,

J(x) =









0 1 0

−1 0 0

0 0 0









, R(x) =









0 0 0

0 b 0

0 0 e

c









, g1 =









0

0

1









.

Now, we use Theorem 1 to design an observer for the system. First, we check As-
sumption S1 and S2 (Note: H(x, 0), J(x, 0) and R(x, 0) in both S1 and S2 should be
replaced by H(x), J(x) and R(x), respectively). Let y1 = R

1

2 (x)∇H(x) ≡ 0, u ≡ 0,
then we obtain that ∂H

∂x2

= x2 ≡ 0, ∂H
∂x3

= −c cos x1 + cd
e
x3 ≡ 0. From x2 ≡ 0 and the

form of system (36), it is easy to know that a − cx3 sinx1 = 0. Thus, we have














x2 = 0,

a − cx3 sinx1 = 0,

−c cos x1 +
cd

e
x3 = 0,

(37)

which is just the condition that the equilibrium satisfies. Therefore, system (36) is zero-
state detectable with respect to y1 and u, which means that S1 holds.

Next, choose K(x) = (0, 0, 1), K1(x) = (0, 0, c
e+2c

). It can be seen that W (x) =

R(x)+g1(x)K(x)+KT (x)gT
1 (x) = Diag{0, b, e

c
+2} > 0 and K(x) = K1(x)W (x).

Consider system

ẋ =

















0 1 0

−1 0 0

0 0 0









−









0 0 0

0 b 0

0 0 e
c

+ 2

















∇H(x). (38)

Similarly, we can show that system (38) is zero-state detectable with respect to y2 =

W
1

2 (x)∇H(x). Thus, S2 is satisfied, too.

From Theorem 1,

˙̂x =

















0 1 0

−1 0 0

0 0 0









−









0 0 0

0 b 0

0 0 e
c

















∇H(x̂)
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+









0

0

1









u +









0

0

1









[

y + c cos x̂1 −
cd

e
x̂3

]

(39)

is an asymptotical observer for system (34), where

u = −K(x̂)∇H(x̂) + v = c cos x̂1 −
cd

e
x̂3 + v. (40)

Digital simulations have been conducted to demonstrate the effectiveness of the ob-
server (39). Choose a set of parameters: {ω0, M,Pm, D, Vs, xd, x

′

d, x
′

dΣ, Tdo, T
′

d} =

{1, 7.6, 1, 3, 1.5, 0.9, 0.36, 0.36, 5, 5}[12] . The simulation results are shown in figs. 2 and
3, from which it can be seen that the observer (39) is very effective.

Fig. 2. Fig. 3.

4.2 Observer-based H∞ control law

Consider system (34) affected by disturbances:


















δ̇ = ω − ω0,

ω̇ = ω0

M
Pm − D

M
(ω − ω0) −

ω0E′

qVs

Mx′

dΣ

sin δ + w1,

Ė′

q = − 1
T ′

d

E′

q + 1
Tdo

xd−x′

d

x′

dΣ

Vs cos δ + 1
Td0

uf + w2,

(41)

where w1, w2 are disturbances. In this case, system (41) can be expressed as










ẋ = [J(x) − R(x)]∇H(x) + g1(x)u + g2w,

y = gT
1 (x)∇H(x),

z = ρgT
2 ∇H(x),

(42)

where gT
2 =





0 1 0

0 0 1



 , w = (w1, w2)
T , z is the chosen penalty signal, ρ > 0 is

the weighting constant, and others are the same as in subsection 4.1.

Now we use Theorem 3 to design an observer-based H∞ controller for system (41).
Choose

ρ < ρ∗ := min







√

2D

M
,

√

2M(xd − x′

d)

ω0Tdo

+ 4







,
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let the disturbance attenuation level γ>0 be given. When γ> γ∗ := max
{√

M
2D−ρ2M

,
√

ω0Tdo

2M(xd−x′

d
)+ω0Tdo(4−ρ2)

}

, we can show that

R(x) + Λ[g1(x)gT
1 (x) − g2(x)gT

2 (x)] =











0 0 0

0 b − Λ 0

0 0
e

c











> 0,

W (x) − Λg1(x)gT
1 (x) =











0 0 0

0 b 0

0 0
e

c
+ 2 − Λ











> 0,

where Λ = ρ2

2
+ 1

2γ2
. On the other hand, the system satisfies S1 and S2 (see subsection

4.1). Thus, all the conditions of Theorem 3 are satisfied. From Theorem 3, based on (39),
an observer-based H∞ control law of system (42) can be given by

v = −Λ

[

y + c cos x̂1 −
cd

e
x̂3

]

. (43)

Substituting it into (40) yields

uf =
1

h
u =

1 − Λ

h

[

c cos x̂1 −
cd

e
x̂3

]

−
Λ

h
y. (44)

Theorem 4. Given a disturbance attenuation level γ > 0, if γ > γ∗, then based on
(39) an observer-based H∞ control law of system (41) can be given by (44).

To test the effectiveness of the controller (44), some simulations have been conducted.
Choose the same set of parameters as in subsection 4.1. A straightforward computation
shows that ρ∗ = 0.8885, γ∗ = 1.1551. In simulating, we choose ρ = 0.2, γ = 1.2, and
assume that a symmetrical three-phase short-circuit fault occurs near the bus during the
time period 0.1s—0.25s. The simulation results are shown in figs. 4 and 5.

Figs. 4 and 5 indicate that the closed-loop system is asymptotically stable, and the
disturbance caused by the fault is attenuated out in a very short time. Simulation results
show that the controller (44) works very well.

Fig. 4. Swing curve of z. Fig. 5. Swing curve of E′

q
.
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5 Conclusion

This paper has investigated observer and observer-based H∞ control design for PCH
systems. Based on the systems’ structural properties, this paper has provided a new ob-
server design method called Augment Plus Feedback and obtained two kinds of observers:
non-adaptive and adaptive ones. Using the obtained observer, this paper has dealt with
the H∞ control design for PCH systems, and proposed an observer-based control de-
sign method. As an application to power systems, we have designed an observer and
an observer-based H∞ control law for single-machine infinite-bus systems. Simulations
show that both the observer and controller obtained in this paper are very effective.
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