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Abstract The dimension reduction is helpful and often necessary in exploring the nonparametric

regression structure. In this area, Sliced inverse regression (SIR) is a promising tool to estimate the

central dimension reduction (CDR) space. To estimate the kernel matrix of the SIR, we herein suggest

the spline approximation using the least squares regression. The heteroscedasticity can be incorporated

well by introducing an appropriate weight function. The root-n asymptotic normality can be achieved

for a wide range choice of knots. This is essentially analogous to the kernel estimation. Moreover,

we also propose a modified Bayes information criterion (BIC) based on the eigenvalues of the SIR

matrix. This modified BIC can be applied to any form of the SIR and other related methods. The

methodology and some of the practical issues are illustrated through the horse mussel data. Empirical

studies evidence the performance of our proposed spline approximation by comparison of the existing

estimators.
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1 Introduction

Consider a regression problem with a response Y and a p-dimensional predictor vector X =

(X1, . . . , Xp)
T. A high dimensional predictor vector often makes the statistical analysis difficult.

To tackle this problem, we consider a sub-dimensional model proposed in [1, 2] such that

Y ⊥⊥X |BTX, (1.1)

where ⊥⊥ stands for independence. This means that BTX is a sufficient statistic for the regres-

sion of Y on X . Note that the model specification (1.1) does not uniquely determine the p×K

matrix B. To address this, Cook[2] defined the central dimension reduction subspace (CDR),

indicated with SY |x, which is the intersection of all dimension reduction subspaces satisfying

(1.1). The existence of the CDR space has been investigated in [3]. In this article, we assume

the existence of the CDR space so K is the smallest of all possible integer for (1.1) to hold.

Sliced inverse regression (SIR, see [1]) is a promising tool for identifying and estimating CDR
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subspace by using the conditional mean of X given Y . Let Λ = Cov(E(X |Y )). Under the

linearity condition, that is,

E(X |PSY |x
X) = PSY |x

X, (1.2)

where P(·) stands for the projection operator in the standard inner product (see [2]). It can be

shown that Span(Λ) ⊆ SY |x in [1, 2] where Span(Λ) denotes the space spanned by the column

vectors of Λ. Extension of SIR and a review of other inference techniques are given in [2].

Several methods have been proposed in the literature to estimate Λ based on the local

averages or the local covariances computed from the points with neighboring Y . The so-

called “slicing” estimator proposed in [1] is a very simple and useful estimation scheme which

has become one of the standard estimations in this area. For the consistency of the slicing

estimation, Hsing and Carroll[4] and Zhu and Ng[5] proved the asymptotic normality of the SIR

matrix estimator. Note that the local smoothing methods are also applicable. Therefore, Zhu

and Fang[6] established the asymptotical normality for the kernel estimation of the SIR. When

the bandwidth is confined in a range from a rate n−1/2 to n−1/(2m), the asymptotic normality

holds true, where m > 2 presents the degree of smoothness of the inverse regression functions.

Fung, He and Liu, et al.[7] considered using the canonical variables from the design space whose

correlations with a spline basis in the response space are significant. This could be viewed as a

variant of SIR. The idea of using the splines to estimate the SIR was mentioned briefly in the

discussion of Li[1] by Kent[8]. The relationship between the SIR and the canonical correlation

was also explored by Chen and Li[9].

However, the aforementioned estimation procedures might lose efficiency in the heteroscedas-

tic models. To circumvent this issue, we suggest the least square spline approximation with

the implement of the weight function. Much research work has been devoted to choosing an

appropriate weight function in literature. Among these, see, Cook and Weisberg[10]. The root-n

asymptotic normality of the spline approximation of the SIR matrix can be achieved for a wide

range choice of knots in this article. This phenomenon is essentially the same as the kernel

estimation in [6].

The second part of the paper is to consider a criterion to determine the dimensionality K that

is asymptotically valid for rather general predictors. In practice, the estimation of the matrix

B is independent of the structural dimension K. However, the determination of an available

dimension is also crucial to achieve the goal of reducing the dimensionality. For SIR, Li[1]

suggested a sequential chi-squared test procedure to determine the dimension, that is, evaluating

K by successively testing the nullity of the p − k smallest eigenvalues, starting by k = 0. He

proposed a chi-square test under the normal distribution assumption. Schott[11] considered

using both the first and second moments of the conditional distribution of X given Y , and

developed a chi-square test which is valid for any elliptically symmetric predictor distribution.

Velilla[12] and Fung, He and Liu, et al.[7] also considered a sequential test. Bura and Cook[13]

suggested a general weighted chi-squared sequential test that does not require the normality

of covariates. Ferré[14] proposed a new approach for the SIR and the pHd to determine the

dimension of B. He suggested that the determination of the structural dimension is measured

by the squared trace correlation between the subspaces of the CDR space and their estimates.

However, the sequential test might be inefficient because the significant levels at each step do not
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determine the significant level of the entire procedure, which remains unknown. Furthermore,

the retained dimension depends on the choice of the significant level.

An alternative approach to the problem of choosing K is by studying the quality of estimation

through a convenient discrepancy measure. This is the case in model or variable selection in

linear regression, where numerous criteria have been proposed, including Mallows’s Cp (see

[15]), the Akaike information criterion (AIC, see [16]), the Bayes information criterion (BIC, see

[17]). In this dimension reduction sense where the link function may be nonlinear and unknown,

Zhu, Miao and Peng[18] suggested a new procedure of the BIC type for the determination of

dimensions. This is a general method which can be applied to many dimension reduction tools.

However, in their criterion, the choice of the penalty function Cn is difficult to choose in practice.

Therefore, Zhu and Zhu[19] proposed to choose Cn = ln(n). It works efficiently in most cases.

This methodology has some merits: only convergence of the estimator of the relevant matrix

is needed and the estimator of the dimension is consistent. Borrowing the idea of the BIC, we

propose another modified BIC based on the eigenvalues of the SIR matrix whose performance

will be illustrated by simulations.

The rest of this paper is organized as follows. In the next section, the asymptotical normal-

ity for SIR matrix in two cases, the homoscedastic model and the heteroscedastic model, are

achieved at the root-n rate. So are the non-zeros eigenvalues and their corresponding eigenvec-

tors. We introduce our motivation of proposing the BIC method in sec. 3. The consistency

of the determination of the structural dimension is also discussed. Some illustrative examples

by simulation and real data application are reported in sec. 4 to show the performance of the

spline estimation and to compare with the existing methods. The tedious proofs are delayed in

the Appendix.

2 Spline approximation

2.1 Asymptotic properties of SIR matrix

In this section, we will establish the asymptotical normality for the spline approximation of the

SIR matrix. Firstly, we introduce some notations. Denote by Q(y), the distribution function

of Y . Its corresponding density function of Y is q(y). Let X and its independent copies xj be

X = (X1, . . . , Xp)
T, xj = (x1j , . . . , xpj)

T, j = 1, . . . , n.

Without loss of generality, we assume that Q(y) has a support on [0,1] and X is standardized,

that is, E(X) = 0 and Cov(X) = Ip. This is due to the fact that the CDR subspace based on

the standardized variable can be easily back transformed to that based on the original predictor

vector X (see [2]). Then the SIR matrix is defined as follows:

Λ = Cov(E(X |Y )) = E(E(X |Y )E(XT|Y )).

Our objective is then to estimate, based on (xj , yj)’s, the SIR matrix Λ, its eigenvalues and the

corresponding eigenvectors.

2.1.1 Homoscedastic model case

For simplicity, we first consider the homoscedastic model. To estimate the SIR matrix, we

herein suggest the spline approximation. There are a large amount of papers on regression

splines. Among these, Agarwal and Studden[20] and Huang and Studden[21] considered the
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rates of convergence and the connection between splines and kernels in the univariate case.

More recently, Zhou, Shen and Wolfe[22] studied the asymptotic distribution of the regression

spline.

Specifically, a spline is defined as a piecewise polynomial that is smoothly connected at its

knots. More specifically, for any fixed integer m > 1, denote S(m, t) to be the set of spline

functions with knots t = {0 = t0 < t1 < · · · < tk0+1 = 1}. Then for m > 2, S(m, t) =

{s ∈ Cm−2[0, 1] : s(y) is a polynomial degree (m − 1) on each subinterval [ti, ti+1]}. Here k0

is referred to as the number of internal knots. The common choices of m are 2 for linear

splines, 3 for quadratic splines and 4 for cubic splines. In this paper, we use ti as uniform

partitions of [0, 1] or as the (i/k0)-th quantile of the observed y values so they are uniform in

percentile ranks. The former is used in all of our empirical investigations reported in sec. 4. The

minimum size of partition k0 should be chosen such that k0 + m > K, where K is the number

of effective dimensions being sought. Here we do not need the exact value K, but a reasonable

upper bound will also be helpful. Consider the spline estimation of the condition expectation,

f(y) =: E(X |Y = y) based on the sample. The j-th element E(Xj |Y = y) is denoted by fj(y)

throughout the paper. To estimate fj(y), we use the least squares criterion. For each 1 6 j 6 p,

the estimator of order m for fj(y) is defined to be the least squares minimizer f̂j(y) ∈ S(m, t)

corresponding to
n∑

i=1

(xji − f̂j(yi))
2 = min

sj(y)∈S(m,t)

n∑

i=1

(xji − sj(yi))
2.

It is convenient to express the elements in S(m, t) in terms of B-splines. For any fixed m and

t, let

Ni,m(y) = (ti − ti−m)[ti−m, . . . , ti](t − y)m−1
+ , i = 1, . . . , J = k0 + m,

where [ti−m, . . . , ti]g denotes the mth-order divided difference of the function g and ti =

tmin(max(i,0),k0+1) for any i = 1 − m, . . . , J. Then {Ni,m(·)}J
i=1 forms a basis for S(m, t) (see

[23, p. 124]); that is, for any s(y) ∈ S(m, t), there exists an α such that s(y) = α′Nm(y),

where Nm(y) = (N1,m(y), . . . , NJ,m(y))T. For notational convenience, in the sequel, Nm(·)
will be abbreviated as N(·). Write GJ,n = 1

n

∑n
j=1 N(yj)N

T(yj) and its expectation G(q) =

E(N(Y )NT(Y )).

The kl-th element of Λ can be written as λkl = E(E(Xk|Y )E(Xl|Y )), 1 6 k, l 6 p. Its

corresponding element λn,kl is defined as, by replacing the unknowns by their estimators,

λn,kl =
1

n

n∑

j=1

f̂k(yj)f̂l(yj) =
1

n

n∑

j=1

Ê(Xl|yj)Ê(Xk|yj)

=
1

n

n∑

j=1

( n∑

i=1

NT(yj)G
−1
J,nN(yi)xli

)( n∑

i1=1

NT(yj)G
−1
J,nN(yi1)xki1

)
.

To present our main results, we adopt the vectorization of a matrix. For a symmetric (p× p)

matrix C = (ckl)p×p, let Vech(C) = (c11, . . . , cp1, c22, . . . , cp2, . . . , cpp) be a p(p + 1)/2 dimen-

sional vector.

We are now in the position to introduce the theoretical results. Define the kl-th element of

matrix H(X, Y ) as

Hkl(X, Y ) = fl(Y )Xk + fk(Y )Xl + fk(Y )fl(Y ) − 3E(fk(Y )fl(Y ))
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and for any λ ∈ R
p(p+1)/2, σ2

λ(Λ) = λTCov(Vech(H(X, Y )))λ. The asymptotic normality is

stated in the following theorem.

Theorem 1. In addition to (1.2), assume that the conditions (i)–(v) in the following Subsec-

tion 5.1 hold. Then as n → ∞, we have

√
n(Λn − Λ) → H, in distribution, (2.1)

where λTVech(H) is distributed as N(0, σ2
λ) for any λ 6= 0.

2.1.2 Heteroscedastic model case

In many situations, the inverse error e = X − E(X |Y ) is not homoscedastic, that is, ei =

Xi − E(X |Y = yi) are uncorrelated with mean 0 and Var(ei) = w(yi)σ
2, where w(.) is a

positive continuous weight function on [0,1]. In such settings, it is more appropriate to consider

a weighted sum of squares criterion, such as

n∑

i=1

w−1
j (yi)(xji − sj(yi))

2.

Recall the definition of H in Theorem 1. Similarly, we can obtain the following theorem.

Theorem 2. In addition to (1.2), assume that the conditions (i)–(v) in the following Sub-

section 5.1 hold. Then as n → ∞, we have

√
n(Λwn − Λ) → H, in distribution, (2.2)

where λTVech(H) is distributed as N(0, σ2
λ) for any λ 6= 0.

Compared with the result in Theorem 1, an interesting finding is that both converge to the

same form of the random matrix H .

2.2 Asymptotic properties of eigenvalues and of eigenvectors

From Theorem 1 (Theorem 2), we can derive the asymptotic normality of the eigenvalues and

of the corresponding eigenvectors by using the standard perturbation theory. The following

result is parallel to that of the SIR presented by Zhu and Fang[6]. We omit the detail of the

proof in this article.

Let λ1(A) > λ2(A) > · · · > λp(A) > 0 and bi(A) = (b1i(A), . . . , bpi(A))T, i = 1, . . . , p, denote,

respectively, the eigenvalues and their corresponding eigenvectors of a p × p matrix A.

Theorem 3. In addition to the conditions of Theorem 1 (Theorem 2), assume that the

nonzero λl(Λ)’s are distinct. Then for each nonzero eigenvalue λi(Λ) and the corresponding

eigenvector bi(Λ), we have

√
n(λi(Λn) − λi(Λ)) =

√
nbi(Λ)T(Λn − Λ)bi(Λ) + op(

√
n‖Λn − Λ‖) = bi(Λ)THbi(Λ) + Op(1)

and

√
n(bi(Λn) − bi(Λ)) =

√
n

p∑

l=1,l 6=i

bi(Λ)bi(Λ)T(Λn − Λ)bi(Λ)

λj(Λ) − λl(Λ)
+ op(

√
n‖Λn − Λ‖)

=

p∑

l=1,l 6=i

bi(Λ)bi(Λ)THbi(Λ)

λj(Λ) − λl(Λ)
+ Op(1),
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where ‖Λn−Λ‖ =
∑

16i,j6p |aij |, and H is given in Theorem 1 (or Hw is given in Theorem 2).

It is important to note that the asymptotic normality holds when λi(Λ) > 0. Otherwise,

λi(Λ) converges to 0 faster than the root-n rate by the direct application of Theorem 3.1 in [24,

p. 264]). The same phenomenon holds for Li[1], Zhu and Ng[5] and Fung, He and Liu, et al.[7]

3 Estimating the structural dimensionality

The determination of the dimension of Sy|x is another important issue in this area. In this

section, we aim at determining the structural dimensionality. To overcome the shortcomings of

the sequential tests, Zhu, Miao and Peng[18] and Zhu and Zhu[19] suggested a new procedure of

BIC (see [17]) type for determining the dimension. In this paper, we suggest another modified

version of BIC.

Note that the determination of the dimension of SY |x is equivalent to the estimation of K,

the number of the eigenvalues of Λ being greater than 0. Recall the definition of λi(A). Define

G(k) = n

∑k
i=1 λi(Λn)2∑p
i=1 λi(Λn)2

− 2ln(n)
k

p
. (3.1)

The second term of G(k) is a penalty function and k equals the number of nonzeros eigenvalues

λi(Λ) needed to estimate. Similar to Schwarz[17], we choose ln(n) in the penalty. Then the

estimator of K is defined as the maximizer K̂ of G(k) over k ∈ {1, . . . , p}, that is,

G(K̂) = max
16k6p

G(k). (3.2)

Theorem 4. Under the conditions of Theorem 1, K̂ converges to K in probability.

4 Illustrative examples

4.1 Simulations

In this subsection, we conduct a small simulation study to evidence the finite-sample perfor-

mance of our proposed BIC and to compare it with the existing methods. Three models are

selected here with p = 5 and n = 100 or 500. These models were also considered in [1] to show

that the efficiency of the slicing estimator of SIR is insensitive to the number of slices. To study

its performance in the highly skewed or heavy tailed case, Fung, He and Liu et al.[7] also varied

the predictor distributions. We will adopt the models used in their paper.

The one-dimension model considered here is

y = x1 + x2 + e, (4.1)

and the two-dimensional models take one of the forms

y = x1(1 + x1 + x2) + e, (4.2)

y = x1/(1 + x1 + x2) + 0.5e, (4.3)

where xi, i = 1, . . . , 5 is distributed as Fi but e comes from some distribution G. A total of

seven cases are reported in Table 1.

Columns 2–6 of Table 1 specify the distribution of Fi and G, where Z stands for the standard

normal, B for Bernoulli, C for χ2
1 − 1, L for lognormal, and tv for the student’s distribution
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Table 1. Specification of Cases 1–7

Case F1 F2 F3 F4 F5 G Model K (1.2)

Case 1 Z Z Z Z Z t5 (4.1) 1 Yes

Case 2 Z B B Z L 0.05Z (4.2) 2 Yes

Case 3 C C C C C Z (4.1) 1 No

Case 4 C C C C C C (4.2) 2 Yes

Case 5 t3 t3 t3 t3 t3 t3 (4.1) 1 Yes

Case 6 Z Z Z Z Z Z (4.3) 2 Yes

Case 7 Z Z Z Z ∗ Z (4.1) 1 Yes

with v-degrees of freedom. All the xi and ei are independent of one another with the exception

∗ in the table for F5 of Case 7. In this case, x5 is taken from the distribution N(x1 +x2, 10−6).

This indicates that a strong collinearity among predictors exists. Column 8 specifies the form

of the model used in the corresponding case. Column 9 gives the structural dimensionality

of each case, and Column 10 indicates whether the linear condition (1.2) holds or not. The

central space exists in all the above cases, although the linearity condition fails in Case 3,

and the linear dependence among predictors is present in Case 7. Fung, He and Liu et al.[7]

made this simulation by drawing 300 samples of size n = 100 and 300 samples of size n = 500.

Their simulation results are cited here to compare BIC with three sequential tests called CHSQ,

ASNM and RANK. One can refer to Fung, He and Liu et al.[7] for details about CHSQ, ASNM

and RANK tests. The results are reported in Table 2–Table 8 for each case.

Table 2. Frequencies of selected model dimensions with Case 1

Test n K=0 K=1 K=2 K=3 K=4

BIC 100 0 265 32 3 0

500 0 300 0 0 0

CHSQ 100 0 292 8 0 0

500 0 284 15 0 0

ASNM 100 0 249 50 1 0

500 0 232 64 4 0

RANK 100 21 279 0 0 0

500 0 300 0 0 0

Table 3. Frequencies of selected model dimensions with Case 2

Test n K=0 K=1 K=2 K=3 K=4

BIC 100 0 16 261 23 0

500 0 1 295 4 0

CHSQ 100 0 47 246 7 0

500 0 0 289 12 0

ASNM 100 78 156 54 10 2

500 0 55 212 32 1

RANK 100 104 80 93 22 1

500 0 28 254 18 0
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Table 4. Frequencies of selected model dimensions with Case 3

Test n K=0 K=1 K=2 K=3 K=4

BIC 100 0 0 291 9 0

500 0 0 298 2 0

CHSQ 100 0 1 280 18 1

500 0 0 279 21 0

ASNM 100 36 31 197 35 1

500 0 0 248 52 0

RANK 100 0 77 187 36 0

500 0 0 300 0 0

Table 5. Frequencies of selected model dimensions with Case 4

Test n K=0 K=1 K=2 K=3 K=4

BIC 100 0 36 222 42 0

500 0 46 251 3 0

CHSQ 100 0 2 270 27 1

500 0 0 280 20 0

ASNM 100 53 36 175 36 0

500 0 0 246 52 2

RANK 100 101 150 49 0 0

500 0 3 297 10 0

Fung, He and Liu et al.[7] claimed that CHSQ test proposed by Li[1] is a simple and reliable

choice except when the variables are highly skewed or heavy tailed, the RANK test is more

robust but tends to be conservative for small to modest sample sizes, and the ASNM test is

less predictable. Our proposed BIC behaves similar as the CHSQ and RANK tests.

In particular, Table 2 with all normal predictors implies that all tests perform well while

Table 3 with all chi-square predictors indicates that all tests tend to point to 2 dimensions

although the first SIR direction is close to (1, 1, 0, 0, 0). Table 4 and Table 7 report that BIC

work is much better than other criteria in the small sample size. For the large sample size, BIC

also works as RANK. Table 5 shows that BIC performs well in the small sample size.

Table 6. Frequencies of selected model dimensions with Case 5

Test n K=0 K=1 K=2 K=3 K=4

BIC 100 0 98 200 2 0

500 0 108 190 2 0

CHSQ 100 0 181 112 7 0

500 0 106 192 2 0

ASNM 100 58 190 49 3 0

500 22 254 21 3 0

RANK 100 66 233 1 0 0

500 9 290 1 0 0
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Table 7. Frequencies of selected model dimensions with Case 6

Test n K=0 K=1 K=2 K=3 K=4

BIC 100 0 7 230 62 1

500 0 0 299 1 0

CHSQ 100 0 101 191 8 0

500 0 0 291 8 1

ASNM 100 1 58 187 54 0

500 0 0 231 69 0

RANK 100 86 188 26 0 0

500 0 0 300 0 0

Table 8. Frequencies of selected model dimensions with Case 7

Test n K=0 K=1 K=2 K=3 K=4

BIC 100 0 254 46 0 0

500 0 298 2 0 0

CHSQ 100 0 289 11 0 0

500 0 286 12 2 0

ASNM 100 0 287 13 0 0

500 0 282 18 0 0

RANK 100 0 300 0 0 0

500 0 300 0 0 0

However, in Case 5, CHSQ and BIC often pick some extra dimensions even when the right

direction has already been well estimated. There is severe collinearity in Case 7. All tests are

hardly affected by collinearity, even though the estimated direction is unable to choose between

(1, 1, 0, 0, 0) and (0, 0, 0, 0, 1).

Conclusively, as a non-sequential test with an easy computation, our BIC is a competitive

approach to determining the dimensionality.

4.2 Real-data application: horse mussel data

Theoretically, the spline approximation can handle the heteroscedastic model. However, its

efficiency might depend on the choice of the weight function. Usually we need to estimate the

variance function in practice. In this subsection, we will illustrate this issue by the horse mussel

data.

The sample of 201 horse mussels was collected at 5 sites in the Malborough Sounds at the

Northeast of New Zealand’s South Island (see [25]). The response variable is muscle mass Y ,

the edible portion of the mussel, in grams. The quantitative predictors are all the related

characteristics of mussel shells: shell length L, shell width W , shell height H, each in mm,

and shell mass S in grams. Indicator predictors for site may be relevant when the variation in

muscle mass from site to site is of interest. See also the data description in [2].

For simplicity, we only consider the regression problem with the response Y and predictors

(L, W, S). Cook [2] suggested that the predictors be transformed to XT = (L, W 0.36, S0.11) =:
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(X1, X2, X3) to comply with the linearity requirement. They claimed that the data can be

possibly heteroscedastic. This can also be viewed via the scatter plots given in Figure 1. It

indicates that the variance of X1 fluctuates a little bit whereas the variances of X2 and of X3

tend to be smaller with the increase of Y .

Figure 1. The scatter plots of X versus Y for the horse mussel data. The left plot Y against X1;

the middle plot Y against X2; the right plot scatters Y against X3

Specifically, we use the spline estimation to estimate the variance function. Write E(·|Y = y) =

E(·|y), then we have V̂ar(X |y) = Ê(X2|y) − Ê2(X |y). In our study, the cubic spline function

is used. The data-driven method, the well-known generalized cross validation (GCV), is used

here to select the optimal bandwidth. This estimation procedure should be consistent. See, for

instance, [26] and [27] and the references therein. The spline estimation of the variance function

reported in Figure 2 verifies the heteroscedasticity. Hence, the weight functions can be chosen

as wi(y) = Var(Xi|y), i = 1, 2, 3. Figure 3 shows that scatter plots of yj versus the adjusted

predictors xij/

√
V̂ar(xi|yj). It should be viewed as homoscedasticity now. The data analysis

can proceed based on the adjusted data.

5 Appendix

5.1 Some Assumptions

(i) f(y) = E(X |Y = y) ∈ Cm[0, 1];

(ii) E‖Xl‖4 < ∞ for all l = 1, . . . , p;

(iii) the B-Spline function N(·) satisfies: max16i6k0
|hi+1−hi| = o(k−1

0 ) and h/min16i6k0
hi 6

M where hi = ti − ti−1, h = max16i6k0
hi and M > 0 is a predetermined constant;

(iv) as n → ∞, h ∼ n−c1 with positive numbers c1 satisfying 1
2m < c1 < 1

2 , and the notation

“ ∼ ” means that the two quantities have the same convergence order;

Figure 2. The estimated variance functions. The left plot Y againstdVar(X1|Y ); the middle plot Y

againstdVar(X2|Y ); the right plot Y againstdVar(X3|Y )
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Figure 3. The scatter plots of the adjusted predictors X versus Y . The left plot Y against X1;

the middle plot Y against X2; the right plot Y against X3

(v) the marginal density of Y is bounded away from 0 and infinity on [0,1].

Remark 5.1. Condition (i) is concerned with the smoothness of the inverse regression curve

E(X |Y = y). Condition (ii) is necessary for the asymptotic normality of Λn. Condition (iii) is

usually used in the spline approximation. Such an assumption assures that M−1 < k0h < M ,

which is necessary for numerical computations. These conditions are also commonly used. The

number of knots plays a similar role as the number of slices for SIR or the bandwidth of its

kernel estimation in [6]. Condition (iv) shows the range of knots for asymptotic normality.

Clearly, it is fairly wide, but an undersmoothing is needed because the optimal number of knots

O(n
1

2m+1 ) is not in this range. This phenomenon is essentially the same as the kernel estimation

in [6]. Condition (v) may appear to be stringent requirement on the distribution of Y , but note

that in sense of (1.1) we will have an invariant property with a monotone transformation on

the Y response so Condition (v) always holds if an appropriate transformation is used.

5.2 Proofs of theorems

Proof of Theorem 1. The final proof of Theorem 1 can be easily derived from Lemma 5.1

and the standard U -statistic theory. Without loss of generality, we assume that E(X) = 0. By

invoking Lemma 5.1, this theorem will hold if we write 1√
n

∑n
i=1 f̂k(yi)fl(yi) into

1√
n

n∑

i=1

(E(NT(Y )fl(Y ))G−1(q)N(yj)xkj + NT(yj)G
−1(q)E(N(Y )Xk)fl(yj))

− E(fk(Y )fl(Y )) + Op(
√

nhm). (5.1)

Firstly, we write the term 1√
n

∑n
i=1 f̂k(yi)fl(yi) as a U -statistic Un.

1√
n

n∑

i=1

f̂k(yi)fl(yi) =
1√
nn

n∑

i=1

n∑

j=1

NT(yi)G
−1
J,nN(yj)xkjfl(yi)

=

√
n

C2
n

∑

i<j

NT(yi)G
−1
J,nN(yj)xkjfl(yi) + NT(yj)G

−1
J,nN(yi)xkifl(yj)

2
+ op(1)

=

√
n

C2
n

∑

i<j

NT(yi)G
−1(q)N(yj)xkjfl(yi) + NT(yj)G

−1(q)N(yi)xkifl(yj)

2
+ op(1)

=:

√
n

C2
n

∑

i<j

u(xi, yi, xj , yj) + op(1) =:
√

nUn + op(1). (5.2)

The first equality holds because the sum of all terms with i = j is op(1). Write ∆ = GJ,n−G(q).
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Lemma 6.4 in [22] proved that ‖∆‖ = o(h). Hence, the second equality holds by invoking the

relationship G−1
J,n = G−1(q) − G−1(q)∆(I + G−1(q)∆)−1G−1(q).

To prove this theorem, we need to show that Un can be approximated by its projection,

Ûn =
∑n

j=1 E(Un|xkj , yj) − (n − 1)Eu(Xk1, Y1, Xk2, Y2), where u(·) is the kernel of the U -

statistic Un. In what follows we will verify that Un can be approximated by its projection Ûn

at a rate 1√
n
h, that is

√
n(Ûn − Un) = Op

(
1√
n

h

)
. (5.3)

Similar to the proof of Lemma 5.3 of Zhu and Zhu [19], we only need to show E(u(Xk1, Y1, Xk2,

Y2))
2 = O(1/h2) where u(·) is defined in (5.2). Clearly,

E(u(Xk1, Y1, Xk2, Y2))
2

6 2E((NT(Y1)G
−1(q)N(Y2)Xk2f(Y1))

2 + (NT(Y2)G
−1(q)N(Y1)Xk1f(Y2))

2).

These two terms are symmetric, so we only need to deal with the first term. Noting that

NT(Y )G−1(q)N(Y ) = OP (J), we have

E(NT(Y1)G
−1(q)N(Y2)Xk2fl(Y1))

2

= E((fl(Y1)N
T(Y1)G

−1(q)N(Y2))
2E(X2

k2|Y2))

= E(NT(Y1)fl(Y1)G
−1(q)N(Y2)E(X2

k2|Y2)N
T(Y2)G

−1(q)fl(Y1)N(Y1))

= trace(E(E(X2
k2|Y2)N(Y2)N

T(Y2)G
−1(q))E(f2

l (Y1)N(Y1)N
T(Y1)G

−1(q)))

6 trace(E(E(X2
k2|Y2)N(Y2)N

T(Y2)G
−1(q))E(E(X2

l1|Y1)N(Y1)N
T(Y1)G

−1(q)))

6 trace(E‖X4
2‖E(N(Y2)N

T(Y2)G
−1(q))2) = O(J2) = O(1/h2),

where the operator trace(A) is the sum of the diagonal elements of matrix A. Therefore, (5.3)

holds. It means that
√

nUn and
√

nÛn are asymptotically equivalent. We are now in the

position to express the projection Ûn into sum of i.i.d random variables. The procedure is the

same as in the proof of Lemma 5.3 in [19]. We have

E(NT(yi)G
−1(q)N(yj)xkjfl(yi)|xkj , yj) = E(NT(Y )fl(Y ))G−1(q)N(yj)xkj = fl(yj)xkj ,

and E(NT(yi)G
−1(q)N(yj)xkjfl(yi)|xki, yi) = fl(yi)xki. Moreover, by invoking (2.7) of Barrow

and Smith[28], we can easily obtain the expectation of the above two equations. Both equal

E(fk(Y )fl(Y )) + O(hm).

After some basic calculations, the centered projection Ûn −E(Ûn) of Un can be written into

a sum of i.i.d random variables, (5.1) holds.

Proof of Theorem 2. The proof is almost identical to that of Theorem 1, the details are

omitted.

Proof of Theorem 3. This result is parallel to that of the SIR presented by Zhu and Fang[6],

hence we skip the details.

Proof of Theorem 4. Let K be the true value of the dimension of B. As stated in

Theorem 3, we have λk(Λn) − λk(Λ) = Op(1/
√

n). Therefore, if K > k,

G(K) − G(k) =

(
n

∑K
i=1 λi

2(Λn)∑p
i=1 λi

2(Λn)
− 2ln(n)

K

p

)
−

(
n

∑k
i=1 λi

2(Λn)∑p
i=1 λi

2(Λn)
− 2ln(n)

k

p

)
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= n

∑K
i=k+1 λi

2(Λn)∑p
i=1 λ2

i (Λn)
+ 2ln(n)

k − K

p

→ n

∑K
i=k+1 λi

2(Λ)
∑K

i=1 λ2
i (Λ)

+ 2ln(n)
k − K

p
> 0. (5.4)

If K < k,

G(K) − G(k) =

(
n

∑K
i=1 λi

2(Λn)∑p
i=1 λi

2(Λn)
− 2ln(n)

K

p

)
−

(
n

∑k
i=1 λi

2(Λn)∑p
i=1 λi

2(Λn)
− 2ln(n)

k

p

)

= − n

∑k
i=K+1 λi

2(Λn)
∑p

i=1 λi
2(Λn)

+ 2ln(n)
k − K

p

→ ln(n)
k − K

p
> 0. (5.5)

It follows from (5.4) and (5.5) that K̂ → K in probability.

5.3 A useful lemma

Lemma 5.1. Under Assumptions (i), (ii), (iv) and (v) illustrated in Subsection 5.1,

1√
n

n∑

i=1

(f̂l(yj) − fl(yj))
2 = op(1). (5.6)

Proof of Lemma 5.1. To prove this lemma, we only need to show the expectation is o(1).

Express the LHS into three terms:

1√
n

n∑

j=1

(f̂l(yj) − fl(yj))
2 =

1√
n

n∑

j=1

f̂2
l (yj) − 2

1√
n

n∑

j=1

f̂l(yj)fl(yj) +
1√
n

n∑

j=1

f2
l (yj). (5.7)

First, we write the first term in a U -statistic first.

1√
n

n∑

j=1

f̂2
l (yj) =

1√
nn2

n∑

j=1

n∑

i=1

n∑

k=1

N(xj)G
−1
J,nN(xli)yiN(xlj)G

−1
J,nN(xlk)yk

=
1√
nn2

n∑

j=1

n∑

i=1

n∑

k=1

N(xlj)G
−1(q)N(xli)yiN(xlj)G

−1(q)N(xlk)yk + op(1)

=

√
n

C3
n

∑

i<j<k

u1(xli, yi, xlj , yj , xlk, yk) + op(1) =:
√

nU1 + op(1).

The expectation of this U -statistic can be obtained as follows.

E(U1) = Eu1(Xl1, Y1, Xl2, Y2, Xl3, Y3)

= E(NT(Xl2)G
−1(q)N(Xl1)Y1N

T(Xl2)G
−1(q)N(Xl3)Y3)

= E(Y1N
T(Xl1)G

−1(q)N(Xl2)N
T(Xl2)G

−1(q)N(Xl3)Y3)

= E(Y1N
T(X1))E(G−1(q)N(Xl2)N

T(Xl2))E(G−1(q)N(Xl3)Y3)

= E(f2
l (X)) + O(hm).

The computation of the expectation of the second term in (5.7) is essentially the same. That

is, E(f̂l(yj)fl(yj)) = E(f2
l (Y )) + O(hm). This completes the proof of Lemma 5.1.
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