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We investigate quantum state tomography (QST) for puresttd quantum process tomography (QPT) for unitary chenrel
adaptive measurements. For a quantum system withdimensional Hilbert space, we first propose an adaptiveopob where
only 2d — 1 measurement outcomes are used to accomplish the Q&IT farre states. This idea is then extended to study QPT for
unitary channels, where an adaptive unitary process toapbgr(AUPT) protocol ofl?+d-1 measurement outcomes is constructed
for any unitary channel. We experimentally implement thePAUprotocol in a 2-qubit nuclear magnetic resonance sysi&f.
examine the performance of the AUPT protocol when appliddadamard gatd; gate (t/8 phase gate), and controlled-NOT gate,
respectively, as these gates form the universal gate seuortum information processing purpose. As a comparigandard
QPT is also implemented for each gate. Our experimentaltseshiow that the AUPT protocol that reconstructing uni@rmgnnels

via adaptive measurements significantly reduce the nunfleqperiments required by standard QPT without considerkiss of
fidelity.
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1 Introduction task even in principle, and has attracted considerable-atte
tion over the history of the subject. Originally raised by

The problem of how many measurements are needed to dé2auli [1] in 1933, the problem was framed as whether the
termine a wave function of a quantum system is a nontrivialProbability distribution of position and momentum is enbug
to determine the wave function. Subsequently, various ver-
sions of the problem and manyfidirent approaches have
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For a system of finite dimensiahwith Hilbert space/Hy, Table 1  Comparison of the needed measurements fiierdint method.
a normalized pure statgq) € Hy is specified by @ — 2 real Columns 2 and 3: A summary of the best known number of measaresm

t T b ablen th bl needed for UDRJDA all states in the row of starting with “All” and for
parameters. 10 measure any observavien the ensemble generic states in the row of starting with “Generic”, by ndagtive mea-

of identical copies of the statégy) € Hqy, the expectation  surements. The number of measurements needed foyWDPall states
(W|Alyy is returned. In order to determine an arbitrary, at by adaptive measurements, based on the results obtainkis iwdrk, is in

least 21 — 2 such observables need to be measured. the last row starting with "All (Adaptive)”. Column 4: A sumary of the
The development of quantum information science has SheaeSt known number of measurements for unitary process tapbyg (UPT)

. . or all unitary channels in the row starting with “All” andfgeneric unitary
new |Ight on the prObIem [4'16]1 which can be rephrasedchannels in the row starting with “Generic”, for nonadaptmeasurements.

by quantum state tomography (QST) for pure states in therhe number of measurements to determine all unitary charinyehdaptive
language of quantum information. In particular, the precis measurements, based on the results in this work, is in thedesstarting
meaning of the word ‘determine’ is clarified, where two im- Wwith "All (Adaptive)”

portant scenarios are considered [11]. The first scenario is UDP UDA OPT
whether the measurementresults un_lquely determine tkee pur—,, (nonadaptive)  d-5[10] 50— 7[11] 4P —2d—4[17]
state among all pure states (UDP, i.e. no other pure states 5. eric (nonadaptive) @-1[6] 2d-1[12] +d—1[18]
can give the same measurement re_sult) or among all states (adaptive) 21 -1 Prdo1
(UDA, i.e. no other states, pure or mixed, can give the same
measurement result). The latter is an arguably stronger re-
guirement and gaps are found between the number of mea-

surements needed for UDP and UDA. The second scenario iresults of the previous measurements. There has been such
| Fials along this direction, and adSmeasurements protocol

whether the m rement resul rmin DP or UDA) . . ) .
ether the easureme t results dete e (Ubporu . )\/la adaptive measurements are discussed in ref. [19], for
all pure states (i.e. any state can be reconstructed unumblgUDA all pure states. One important open question is what

I j i i.e. al I .
ously) or Ju.St generic pure states (i.e. almost all pureestat are the minimum number of measurements needed for QST
are determined except a set of states that are of measuje zero .
of all pure states, and for QPT afil unitary channels.

The former is an arguably stronger requirement and gaps are In this work, we study QST for pure states and QPT for

found between the number of measurements needed for all . . )
) gmtary channels, using adaptive measurements. For QST, we
pure states and generic pure states [11]. In columns 2 and

of Table 1, we summarize the best known number of mea-ShOW that 2 — 1 measurements are enough to UDA (hence

surements needed for UDFDA for all states in the row of L‘!DF?). all pure states, by adaptive measurements. This is a
: TR . . significantimprovement over thel4 5 lower bound for UDP

starting with “All” and for generic states in the row of siag . .

with “Generic” using non-adaptive measurements [10]. We then further ap-

I I PT of uni h I h
Now we naturally extend the above problem of QST for ply our protocol to study QPT of unitary channels, and show

. thatd? + d — 1 measurements arefgient to reconstrudil|
pure states to quantum process tomography (QPT) for un'ta%nitary channels when adaptive scheme is allowed.

channels. QPT for unitary channels has the goal of determin- We organize our paper as follows: in sect. 2, we discuss an

LESZQ unlk?g;\lmp;?;r?ggfser?g;r;)'aer‘; ddtgr;tgreync:;rzt&c;r; wu n?daptive protocol that UDA (hence UDP) fall pure states
~ . : ' with measuring @ — 1 observables; we then apply this pro-
channel on @-dimensional system that hadé — d? real pa- 9 PPl b

o tocol PT of unit h Is b i d-1
rameters. In ref. [17], it is shown that4— 2d — 4 measure- ocol on QPT of unitary channels by measurafig+

ments are siicient to identify a unitary channel amoadj observables. In sect. 3, we d.iscu_ss an adaptive experimen-
unitary channels, non-adaptively. Their method is based orJ1[al protocol of QPT fort\/\_/o—qubltunltary c_hannels. n .Sebt'
the state tomogre;phy of the corre.sponding Choi matrix of theWe Implement the (_axperlmental protocql na tWO_.qult NMR
unitary channel. Ref. [18] provides a nonadaptive method ofSyStem' Our gxperlmentgl rgsults are discussed in secl-5, f
. AN lowed by a brief conclusion in sect. 6.

unitary tomography usind- + d — 1 measurements, whereas

it does not works for all unitary channels but for almost all
unitary channels (i.e. works for ‘generic channels’). Thei

method is based on the fact that each column of the unitar
matrix U can be determined by QST for an input state that, g section, we discuss adaptive protocols for QST and

is a computational basis state, and the relative phases b?}PT. We start from the case of QST for pure states in

tween any two columns df can be further determined by goct 5 1 then further extend it to QPT for unitary channels
QST for some input states that are superpositions of computg,, cact. 2.2

tional basis states. We summarize these results in colurhin 4 o
Table 1.

All the above-mentioned protocols for either QST or QPT
are non-adaptive, that is, the observables to be measwred aln this subsection, we propose an adaptive pure state tomog-
fixed once chosen. One can also consatiptive measure-  raphy (APST) protocol fod-dimensional pure states using at
ment by allowing measurements that are determined by thenost 21 — 1 observables.

2 Adaptive protocols for quantum state and
)processtomography

2.1 Adaptive pure state tomography
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The state space we considered is spanned by orthogonéh other words, our protocol actually outputs the first non-

basis{|i) : 0 < i < d - 1}. Suppose the quantum state is

d-1
) = anln), (1)
n=0

The goal of tomography s to obtain all’'s for0 < n < d-1,
and the APST protocol is given as follows.

Step 1 Measurely) using measurementy, Ej, - -+ se-
quentially until tr(4){|Ex) is non-zero, wherd&, = [K)(k.
The goal is to find the smallektsuch thaty # 0. Hence this
step cost& + 1 measurements, and the state becomes

d-1
) = anln), 2)
n=k

where the summation starts fram= k now. Without loss of
generality, we assume that = +/tr(Ju){(¥|Ey) is real since
the global phase of a quantum state is ignorable.

Step 2 Measurely) using measurements,, Gy, - -- for
all k < n < d with HermitianF, + G, = |n){k| + |k){n| and

Fn — Gn = i(Jn){kl — |k)(n[). The goal of this step is to obtain

an, for all n > k by employing the coherence betwdknand
[n). This step costs A(— k — 1) measurements.
In total, the number of measurementsis-k — 1 which is

zero row ofp, which is the k + 1)-th row. This row ofp
equals to thek(+ 1)-th row of [y){y|.
As p is semi-definite positive, we can suppose

o
=

p=, ¢l

J

Il
o

with unnormalized¢;) = (Bo," - .Bd-1j)". According to
eg. (4) and the semi-definite positive propertypive know
that the firstk rows ofp are all zero, namely; ; = 0O for all
r <k

Without loss of generality, we can assume tfas # O
andgx; = Oforall j > 0. This property helps us to show
[l = |po){do|- TO achieve such a decomposition, we first
observe that

lo1){@1l + lp2X{@2l = Is1){s1] + |$2){s2l,
where

Is1) = Ulp1) + Viga),

ls2) = Vip1) — Ulgpa),

with |u]? + [v2 = 1.
Apply this on|go){#ol + |¢1){#1] by choosingl, v appropri-

no more than @ — 1, depending on when we have measuredatew' we can always achieye, = 0. Employing this argu-

the non-zeray for the first time. In terms of density matrix,

our protocol actually provides thé& ¢ 1)-th row of [y/)(y|.

ment recursively ofpo){¢ol + |¢;){¢;|, we can similarly have
Bij = Oforall j > 0. Then, theK+1)-th row of £ [ (o]

In the following, we analyze this protocol and show that it 5.6 5/| zero.
indeed accomplishes the task of QST for pure states. In other according top = 292 16;)(¢;l, we observe that théc 1)-
J 1

words, one can compute each according to the outcomes row of p equals to thek + 1)-th row of |go)(¢ol. Thus,

of this protocol.

We first show that it is UDP. After step 1, we know that

lyy = 9L aln). After step 2, we have

WI(Fn + Gn)ly) = akan + axan,

WI(Fn— Go)l) = i(axan - adr). ®)

As we have assumed that is real in step 1, it is obvious
that axen = axan for all n > k. Therefore, we can calcu-

late the exact value af,, since we know the non-zerg and

the k + 1)-th row of|¢o){¢o| equals to thek + 1)-th row of
)| Therefore,|¢o) equals toly) up to a global phase,
which meansgo){(¢ol = l){¥]. Thus,

tr(o) = tr(p) — tr(lo){¥ol) = O,

where
d-1

o =p =Yool = ) 161)Xdil.
i=1

akap from our measurements. It means we have the complete

information of|y) if we know it is pure.

Thatiso = 0, and

Next we prove that this APST protocol is not only UDP,  _ o) (Wol = 1)
but also UDA. To see this, we need to show that if anotherp Wolol = Wt

guantum state which gives the same results @8, p can
only bely)yl.

Assume there exists another quantum statieat has the
same measurement results comparggtoSo forn < k, we
have

tr(oln)(nl) = tr(ly)wlin)nl) = O, (4)
tr(plk)(KJ) = tr(y)wllk)(k) = of. (5)
Fork<n<d-1, we have

tr(plky(nf) = tr(l)wlIky(nl) = axan. (6)

This verifies our claim that our APST protocol is UDA and
uses only & — 1 measurements.

2.2 Adaptiveunitary processtomography

In this subsection, the idea of APST is generalized to deal
with the adaptive unitary process tomography (AUPT). We
notice that the unitary mag can be written as a transforma-
tion from the orthonormal basi#)} to its image basigu,)},

d-1
U= Z [Un){n. (7)
n=0
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The task of QPT for a unitary map is to fully characterize the
basis{|uy)} and the relative phasdhi,)(n|}, and our AUPT
protocol consists ofl steps as follows.

Step 1 Implement QST fotug) = U|0). We use the APST
protocol in the previous subsection to charactefig® U|.
This step costs at mosti2- 1 measurements.

Step 2 Implement QST for

Ul+) = U(I0) + 1))/ V2 = (lug) + lup))/ V2.

The goal of this step is to tomography) and to obtain the
relative phase betweéuy) and|u;) simultaneously. This can
be done by obtaining

Ul+X+UT = |o)el

using our APST protocol, so that we can constiugt. To
see this, we notice that) +|u1))/ V2 = €”|¢). Observe that
the inner product of|(o) + |u1))/ V2 and|uo) is 1/ V2. This
indicates that the phase informationyofs obtained. Then,
the information ofu;) is obtained.

Moreover, we observe that

i i0
[Up + uz)(Ug + Us| = |ug + €“ug){Ug + €]

has the only solution that’e= 1. That implies that the infor-
mation of the relative phase betwdeg) and|u;) is obtained
completely. We choose a basis

{IVon){nl + IN){Vanl, i(IVon){nl = IN)Vonl),0 < n<d -1}

with |Vg0) = |Up). and then apply this basis using step 2 in the
APST protocol to obtaifus).

This step costs@®-2 measurements since we already know
the amplitude ofug) is 1/ V2.

Step j Implement QST for

U(I0) +1j — 1))/ V2 = (Juo) + Iuj_1))/ V2.

The goal of this step is to tomography-;) and obtain the

relative phase betwedng) and|uj_1) simultaneously. The

procedure to obtaituj_1) is similar to step 2 by choosing a
basis

{Ivn) (Nl + I}V nl, (v n)(nl = INvanl), 0 < n<d - 1)

with [v,) = |uy) forallr < j—2, and applying it on the APST
protocol.

This step costs #(— j + 1) measurements, since we al-
ready know the amplitude diip) is 1/ V2 for state fug) +
luj-1))/ V2, and the amplitudes ¢dy), - - - , uj_2) are all zero.

The above steps keep going until stejin which two mea-
surements are required and the complete informatids isf
obtained from the outcomes of tldesteps. This AUPT pro-
tocol thus uses@- 1+ 3%,2d-j+1) = d®+d -1
measurements.

October (2016) Vol.59 No. 10 100313-4

3 Experimental protocol

In this section, we show how to apply our AUPT protocol to
characterize unitary channels (as discussed in sect.ri2&) i
2-qubit NMR system, and its complexity, i.e. the number of
measurements in terms of Pauli operators. As a comparison,
we also briefly review how to implement a standard QPT and
the complexity. The extension of our protocol to arbitrary
sizes is straightforward.

3.1 Standard QPT

First let us recall the procedure of a 2-qubit standard QPT.
Supposel{ is the 2-qubit unitary gate that we want to imple-
ment in practice. Due to the inevitable experiment errdwes, t
real quantum channel in the laboratory is no longer unitary,
but still some completely positive trace-preserving (CPTP
operation, denoted by. In NMR and most of ensemble sys-
tems, it is convenient to prepare and measure Pauli observ-
ables, hence we use the representation of Pauli observables
to describe such a 2-qubit chanmel Note that this descrip-
tion is equivalent to the Choi matrix representation ang the
can be easily transformed to each other [20].

Therefore, A can be written in the way of mapping Pauli
group to Pauli group so that

XX pi pi pf pf XX
Al XY (2] P2 P P> Pl || XY )

1l T2 15 16 1"
Pis Pie Pis P

(8)

where all elementgsij (1 <1i,j < 16) are real. To reconstruct
A in NMR, we firstly prepare the initial state ¥, and then
apply A on it. The output state is thystXX + p;XY + ... +

piGI |. By doing a full state tomography in 15 experiments,
i.e. measuring eacpjl (1 < j < 15, sincep;, can only be
computed via the normalization condition), we can obtaén th
first column ofA. To fully characterizeA, the above proce-
dure needs to be repeated by 16 times, with each time prepar-
ing a distinct Pauli input state out ¢KX, XY, ..., I1}. So the
total number of experiments to reconstruct a 2-qubit chinne
Ais 16x 15 = 240.

3.2 AUPT

If we assumel{ is still unitary when applied in practice,
the total number of experiments can be reduced significantly
Due to the experimenterrors, let us dendtas the real chan-
nel, which is still unitary but deviates from the desifdd As
unitary operators do not change the purities when applied on
quantum states, it is convenientto consider the map from pur
states to pure states. Explicitly, the map®fcan be written

as:

B (2878 R

_ a2 2 V2 2

VI 110 [=] ez Bs s 6s || 110 | ©)
[11) as Pa ya 04 )\ |1D)
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where the elements ¥ are all complex numbers. Similarly In total, we need 36 6 = 42 experiments to characterize

to standard QPT, in experiment we firstly prepf® and  a 2-qubit unitary proces¥ via the AUPT protocol, signifi-

then applyV. The output quantum state is still pure since  cantly less than the standard QPT which requires 210 experi-
ments.

V|00) = @1100) + @2 |01) + a3]10) + a4|11). (10)

. _ Experimental implementation in NMR
Now the problem of characterizing a unitary channel corsvert

to the QST of a pure state. First, we can use three measuroy we turn to the experimental demonstration of the AUPT
ments of the diagonal elements combined with the normahza—protocm for 2-qubit unitary gates in the NMR system. Five
tion condition to gefas|, |az|, |as| and|as). Then we need to elementary gatebl; = H® |, H, = @ H, Ty = T® |,
measure the relative phase between alldglse Specifically, T, = | ® T and CNOT; are chosen due to the fact that any
we pick out the maximabi| and set its phase as zero. With- 5_qypit quantum circuit can be decomposed into these five
out loss of generality, assune,| is the largest one and set gates in arbitrary accuracy [21]. is the identity operator,

it as reference. To measure, for instance, the relativeephas, g the Hadamard gakk, 71/8 gateT and controlled-not gate
6., betweem; anday, is equivalent to extracting the phase CNOT, are

between00) and|01) in experiment, which requires two mea-

surements oK andY on the second qubit. Analogously, the |, i( 1 1 ) T _( 1 0 ) (13)
relative phas#,, and6,, can be measured with four more =~~~ 5\ 1 -1 /-7 ~{0 gt )

experiments. Therefore, the total number of experiments to

extract the values af in the first column is nine, with three 1 0 00

for moduli and six for relative phases. Ag contains four  CNOT, = 8 % 8 2 . (14)
columns, this procedure is repeated by four times that reces 00 1 0

sitates 36 experiments, by preparing the input stat@@s

|01), |10y and|11), respectively. The experiments are carried out at room temperature on a

However, the above procedure cannot provide the infor-Bruker AV-400 spectrometer (9.4 T). The physical system is
mation of the relative phases between columns, as we havearbon-13 enriched chloroform (CHg)dissolved in deuter-
set the phase of the maximal element in each column as zergted acetone. Orféd nucleus and on€C nucleus of spin-2
but quantum mechanics merely allows one ignorable globafe €ncoded as qubit 1 and qubit 2, respectively. The molec-
phase. So the next step is to determine these relative phastr structure and relevant parameters are shown in Figure 1

real. To measure the relative phakg between they col- ~ €an be written as:
umn angs column, one can adopt the idea of interferometers. J
. . o1 2
Explicitly, prepare the superpositif00) + [01))/ V2 as the ~ Hint = 0707, (15)

input state and apply/, so that
whereJ = 2146 Hz is the scalar coupling strength between
V(100 +10D) / V2 the two nuclei.
= (@1]00) + a2 |01) + 3 |10) + a4 [11) / V2 In NMR system, the thermal _eqwllbrlum stat_e isa r_mxed
" statep = (1 — &)/4L+ gpa, wWherel is the 4x 4 identity matrix,
+ €% (81100) +52101) + 3110) + B4 [1D)) / V2 & ~ 1075 is the polarization, ang, = 40} + 02 + 1/4Lis
= (a1 + €%41) 100) + (a2 + €%4B2)01) the deviation density matrix. The dfieients ofct and o2
i6, i, come from the fact that the gyromagnetic ratio‘'bffis four
* (a3 te ﬁﬁ?‘) 10 + (a“ +e ﬁﬁ“) |11>] /N2 1D fimes larger thaR®C. Note that the dominant identity part is
invariant under unital propagators, so we only consider the

In practice, we can measure the relative between . . .
P phase deviation parp, in experiment.

|00) and|01) via two experiments, and the desirgg can be
obtained by solving the following equation:

II \‘1H
<

H 8C Ti(s) T,(s)

phasdas + €%/, a2 + €%f2) = fexp (12) H o 400M - 109 33

7
where phasé(, B) means the relative phase between two 13C -
complex number# andB, and alle andg values have been

obtained in the last Step_ S|m||ar|y’ the relative phé@gs Figure1l (Color online) Molecular structure of the 2-qubit samﬂﬁ“é:-

. . labeled Chloroform.*H and13C are encoded as qubit 1 and qubit 2, re-
andé,; can be obtained through preparingd + [10)/ V2 spectively. The table on the right summarizes the Hamitomiarameters at

and (OQ +11)/ V2, qpplying(v, and m?asuring the COITe- room temperature, including the Larmor frequencies (diafidn hertz), the
sponding phases. This step thus consists of six experimentscoupling strength (&-diagonal, in hertz) and the relaxation time scales
to acquire three relative phases between columrs.in andT,.
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As reference, we firstly implement the standard QPT in5 Resultsand discussion
experiment. The creation of all 16 Pauli input states are re-
alized by single-qubit rotations, free evolutions underith ~ The reconstructions of each gade, Hz, T1, T> and CNOT
ternal Hamiltonian, and-gradient field pulses (to crush the Via the standard QPT and AUPT protocols, as well as the
unwanted non-zeroth coherence which is necessary in creatheoretical results, are all shown in Figure 2. The five rows
ing 11) from the thermal equilibrium state. Then we apply the show the five gates, and the left, middle and right column

five gates to these Pauli input states via the following pulseare the theoretical, standard QPT, and AUPT results, respec
sequences (pulses applied from right to left): tively. Each subfigure shows the complete information of the

target channel in the Pauli representation, as shown bygthe 1
by-16 matrix in eq. (8). Note that the AUPT results (the right
column) are initially obtained via eq. (11) which is 4-by-4,
and then converted to their equivalent 16-by-16 matrices in
eq. (8) for fair comparisons with the other results. In each
subfigure, the/-axis describes the input state in eq. (8), and
x-axis describes the output state in the Pauli basis after ap-
plying the current channel. For example, the first column in
each subfigure shows that when applying the channel to the
input stateXX, what the co#ficients of the output state in
Pauli basis are. From Figure 2, we see that the standard QPT
results are closer to the theoretical predictions than the A

Hy = Ri(ﬂ)R%(%;,
Hz = R>2<(7T)R5(7—2T
Ti=Ri(%).

T, = R(%).
CNOTy, = R (3)R2(-%)

)

(16)

R(3)VU(5)R(3)-

The notatiorR‘ﬁ (0) represents a single-qubit rotation on qubit
i along then“axis with the rotating anglé, andU (t) repre-
sents the free evolution under the internal Hamiltoniarngn e
(15) with timet. The zrotations inT; and T, can be de-
composed by the formulg; (6) = Ry (7/2) R, (6) Ry (-7/2). results.
Note thatz-rotations in NMR can also be realized more pre-  To describe how closely that the practical chantedp-
cisely by virtually varying the reference frame [22], buisth  proximates the theoretical chaniiélwhich is unitary in our
approach is not used in this experiment as it is better toyappl case, one can use the value of diamond norm [25] or aver-
imperfect pulses in order to address the stability of the AUP age fidelity. Here we use the average fidelity between two
protocol. Finally, by doing full QST, we reconstructeaclega channels, which is defined as:
in terms of an imperfect quantum chanmehls described in
eg. (8).

For the AUPT protocol, starting from the thermal equilib-
rium state, we firstly create the pseudo-pure state (PPS)

FA 20 = [ @it AU UNI), (18)
where di(y) is the unitarily invariant distribution of pure
states known as Fubini-Study measure [26]. For simplic-
ity, we randomly sample 100f)’s from the 2-qubit pure
state space, and replace the integral in eq. (18) by the sum
using the spatial average technique [23, 24]. The othegsstat (with some normalization). The calculated average fiditi
[01), |10y and|11) are created fronf00) by 7t rotations. After  of the standard QPT protoc&i(A, ¢) and AUPT protocol
applying one of the five gates, we measure the module of eack(V, U), both compared with the theoretical resuiis are
elementinV in eq. (11) by standard tomography of diagonal shown in Table 2 for all the five gates. To get each average
elements in NMR. The relative phases within a given columnfidelity and its uncertainty, we randomly sample 1000 2-tjubi
correspond to the phases of single coherent terms, which ipure states to get one value via eq. (18) and repeat thisproce
straightforward to read out in NMR as the spectrometer useslure for 100 times. The average fidelity and uncertainty are
quadrature detection. In fact, all relative phases witme o defined as the mean and standard deviation of the 100 rep-

1 —
poo = =1+ €00)(00 (17)

column for all five gates can be obtained in this way.

etitions. The uncertainty for each gate is very small, which

Next we need the relative phases between columns fomeans 1000 samples ardfstient to estimate the average fi-

each gate. We initialize@q0) + V3/01))/2, (00)+ V3|10))/2
and (10) + V3|11))/2 as the input states by applying3

delity with a high precision.
Now let us discuss the error sources in two aspects. First

rotations on the PPS state, which enables the reconstnuctioof all, both of the standard QPT and AUPT resultfesuthe

of all relative phases between columns féy, Ho, T1 and
T,. However, CNOT, is an exception. The application
of CNOTy, to |00) + |10y generates double quantum coher-
encel00) + |11) which cannot be directly read out in NMR.
The solution is to apply another CN@Jgate before detec-

decoherenceftect, imperfection of pulses, and state prepara-
tion and measurement (SPAM) errors. The decoherence is al-
most ignorable, as the gate implementation time is less3han
ms, much shorter than the relaxation time scales which are at
least 350 ms as shown in Figure 1. The imperfection of pulses

tion to evolve double coherence back to single coherencesuch as over-rotation and under-rotation induce the SPAM er

which may roughly double the error in CN@I Till now,

rors, as well as the target gate infidelity. Just to clarifysi

we have successfully implemented the AUPT protocol for allhard for either the standard QPT or the AUPT protocol to

five gates, and characterized eakhn eq. (9) individually.

distinguish the wanted gate error from the SPAM errors, but



H.Y.Wangetal. Sci. China-Phys. Mech. Astron.  October (2016) Vol. 59 No. 10 100313-7

Table2 Average fidelities of the standard QPT and AUPT protocol careg to the theoretical gate, respectively. By randomlypsizugn 1000 input state in
the 2-qubit pure state space for a given gate, we get onetyid@ieq. (18). This procedure is repeated by 100 times, laadntean and standard deviation are
used as the average fidelity and uncertainty in the table

Average fidelity Hy Ho Ty T, CNOTy2
QPT: I;(A, Uu) 0.9903+ 0.0005 09850+ 0.0008 09855+ 0.0007 09937+ 0.0003 09861+ 0.0006
AUPT: E(V, U) 0.9826+ 0.0010 09863+ 0.0008 09619+ 0.0023 09495+ 0.0018 09350+ 0.0033
(a) H1: theory (b) H1: standard QPT (c) H1: AUPT

Jqf»*e”qeﬁ

=

(h) T1: standard QPT

P

ne?
oA
P ﬂb»,ﬁfk N
et

(m) CNOT: theory

S
S
PRy »‘?F’q

=

%
Preicd

*—P‘ﬁ?—b +++;'t5b
Figure2 (Color online) Experimental results of the five gakég Hy, T1, T2 and CNOT» via the standard QPT (middle column) and AUPT protocolshfrig
column), as well as the theoretical results (left columnie Tive rows correspond to the five gates, respectively. |h sabfigure, thg-axis describes the
input state in eq. (8), anttaxis describes the output state in the Pauli basis aftdyiagithe current channek-axis shows the values of the dbeients of the
output state in Pauli basis.
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these two protocols both provide complete information of 11175094, 91221205, 11375167, 11227901 and 91021005), the National
an unknown quantum channel. In contrast, the randomize@asic Research Program of China (Grant No. 2015CB921002), the Na-
benchmarking protocol [27] enables the separation of the ga tional Key Basic Research Program (NKBRP) (Grant Nos. 2013CB921800
error rate from the SPAM errors, but fruitless in fully chara  and 2014CB848700) and the National Science Fund for Distinguished Young

terizing the quantum channel.
Secondly, in Table 2 the AUPT results are worse than the
standard QPT results (excdih, for which we think the fluc-
tuations in the SPAM error dominate the infidelity, and make
it singular). The reason can be attributed to two factors. On
one hand, the AUPT protocol is adaptive, that the next mea- 5
surement relies on the previous one. It enables the propaga-4
tion and amplification of the error to the latter experiments
from the earlier experiments. On the other hand, to measure 5
the relative phase via eq. (12), we need to know the mod-
ules for each element and choose the single coherence—thé®
only term that can be observed directly in NMR. An extreme
case is the CNO, gate, that we have to apply it twice in
order to evolve double coherence back to single coherence
and observe the relative phase. That is why the AUPT result g
of CNOT;, is much worse than the case of standard QPT.
Therefore, we conclude that AUPT indeed improves the ef-
ficiency significantly in characterizing an unknown quantum 10
channel experimentally by assuming it is unitary, whereas i 1
does have some drawbacks such as the two issues mentione&
above. 12

8

6 Conclusion 13
In summary, we studied the quantum state tomography and*
unitary channel tomography via adaptive measurements. We
showed that adaptive measurements can reduce the numbgg
of measurements when compared to non-adaptive measure-
ments. In particular, we proved that pure state tomographyie
can be accomplished usingl 2 1 measurements. By em-
ploying this idea, we demonstrated tlit+ d — 1 measure- 17
ments are sfticient to reconstruct a unitary process when the 18
adaptive scheme is allowed.

Additionally, we implement our AUPT protocol for the
universal gate set of quantum computing in a 2-qubit NMR 5
system. Our results show that for local gates such as
Hadamard and (7t/8 phase) gates, high fidelities can be
achieved using the AUPT protocol. For two-body gate such 21
as the CNOT gate, the fidelity drops by some amount due to
the accumulation of the errors in adaptively measuring the %
relative phases. Nevertheless, the AUPT protocol is still a,,
useful tool in characterizing the unitary channels as dvedl
a significant reduction in terms of the required experiments 24

in particular for the local unitary channels.
25
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