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We investigate quantum state tomography (QST) for pure states and quantum process tomography (QPT) for unitary channels via
adaptive measurements. For a quantum system with ad-dimensional Hilbert space, we first propose an adaptive protocol where
only 2d − 1 measurement outcomes are used to accomplish the QST forall pure states. This idea is then extended to study QPT for
unitary channels, where an adaptive unitary process tomography (AUPT) protocol ofd2+d−1 measurement outcomes is constructed
for any unitary channel. We experimentally implement the AUPT protocol in a 2-qubit nuclear magnetic resonance system.We
examine the performance of the AUPT protocol when applied toHadamard gate,T gate (π/8 phase gate), and controlled-NOT gate,
respectively, as these gates form the universal gate set forquantum information processing purpose. As a comparison, standard
QPT is also implemented for each gate. Our experimental results show that the AUPT protocol that reconstructing unitarychannels
via adaptive measurements significantly reduce the number of experiments required by standard QPT without considerable loss of
fidelity.
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1 Introduction

The problem of how many measurements are needed to de-
termine a wave function of a quantum system is a nontrivial

*Corresponding authors (Bei Zeng, email: zengb@uoguelph.ca;
XinHua Peng, email: xhpeng@ustc.edu.cn)

task even in principle, and has attracted considerable atten-
tion over the history of the subject. Originally raised by
Pauli [1] in 1933, the problem was framed as whether the
probability distribution of position and momentum is enough
to determine the wave function. Subsequently, various ver-
sions of the problem and many different approaches have
been explored [2,3].
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For a system of finite dimensiond with Hilbert spaceHd,
a normalized pure state|ψd〉 ∈ Hd is specified by 2d − 2 real
parameters. To measure any observableA on the ensemble
of identical copies of the states|ψd〉 ∈ Hd, the expectation
〈ψ|A|ψ〉 is returned. In order to determine an arbitrary|ψ〉, at
least 2d − 2 such observables need to be measured.

The development of quantum information science has shed
new light on the problem [4-16], which can be rephrased
by quantum state tomography (QST) for pure states in the
language of quantum information. In particular, the precise
meaning of the word ‘determine’ is clarified, where two im-
portant scenarios are considered [11]. The first scenario is
whether the measurement results uniquely determine the pure
state among all pure states (UDP, i.e. no other pure states
can give the same measurement result) or among all states
(UDA, i.e. no other states, pure or mixed, can give the same
measurement result). The latter is an arguably stronger re-
quirement and gaps are found between the number of mea-
surements needed for UDP and UDA. The second scenario is
whether the measurement results determine (UDP or UDA)
all pure states (i.e. any state can be reconstructed unambigu-
ously) or just generic pure states (i.e. almost all pure states
are determined except a set of states that are of measure zero).
The former is an arguably stronger requirement and gaps are
found between the number of measurements needed for all
pure states and generic pure states [11]. In columns 2 and 3
of Table 1, we summarize the best known number of mea-
surements needed for UDP/UDA for all states in the row of
starting with “All” and for generic states in the row of starting
with “Generic”.

Now we naturally extend the above problem of QST for
pure states to quantum process tomography (QPT) for unitary
channels. QPT for unitary channels has the goal of determin-
ing an unknown unitary operation. Ad × d unitary operation
hasd2 − 1 real parameters, compared to a general quantum
channel on ad-dimensional system that haved4 − d2 real pa-
rameters. In ref. [17], it is shown that 4d2 − 2d − 4 measure-
ments are sufficient to identify a unitary channel amongall
unitary channels, non-adaptively. Their method is based on
the state tomography of the corresponding Choi matrix of the
unitary channel. Ref. [18] provides a nonadaptive method of
unitary tomography usingd2 + d − 1 measurements, whereas
it does not works for all unitary channels but for almost all
unitary channels (i.e. works for ‘generic channels’). Their
method is based on the fact that each column of the unitary
matrix U can be determined by QST for an input state that
is a computational basis state, and the relative phases be-
tween any two columns ofU can be further determined by
QST for some input states that are superpositions of computa-
tional basis states. We summarize these results in column 4 of
Table 1.

All the above-mentioned protocols for either QST or QPT
are non-adaptive, that is, the observables to be measured are
fixed once chosen. One can also consideradaptive measure-
ment by allowing measurements that are determined by the

Table 1 Comparison of the needed measurements for different method.
Columns 2 and 3: A summary of the best known number of measurements
needed for UDP/UDA all states in the row of starting with “All” and for
generic states in the row of starting with “Generic”, by nonadaptive mea-
surements. The number of measurements needed for UDP/UDA all states
by adaptive measurements, based on the results obtained in this work, is in
the last row starting with “All (Adaptive)”. Column 4: A summary of the
best known number of measurements for unitary process tomography (UPT)
for all unitary channels in the row starting with “All” and for generic unitary
channels in the row starting with “Generic”, for nonadaptive measurements.
The number of measurements to determine all unitary channels by adaptive
measurements, based on the results in this work, is in the last row starting
with “All (Adaptive)”

UDP UDA UPT

All (nonadaptive) 4d − 5 [10] 5d − 7 [11] 4d2 − 2d − 4 [17]

Generic (nonadaptive) 2d − 1 [6] 2d − 1 [12] d2 + d − 1 [18]

All (adaptive) 2d − 1 2d − 1 d2 + d − 1

results of the previous measurements. There has been such
trials along this direction, and a 5d measurements protocol
via adaptive measurements are discussed in ref. [19], for
UDA all pure states. One important open question is what
are the minimum number of measurements needed for QST
of all pure states, and for QPT ofall unitary channels.

In this work, we study QST for pure states and QPT for
unitary channels, using adaptive measurements. For QST, we
show that 2d − 1 measurements are enough to UDA (hence
UDP) all pure states, by adaptive measurements. This is a
significant improvement over the 4d−5 lower bound for UDP
using non-adaptive measurements [10]. We then further ap-
ply our protocol to study QPT of unitary channels, and show
thatd2 + d − 1 measurements are sufficient to reconstructall
unitary channels when adaptive scheme is allowed.

We organize our paper as follows: in sect. 2, we discuss an
adaptive protocol that UDA (hence UDP) forall pure states
with measuring 2d − 1 observables; we then apply this pro-
tocol on QPT of unitary channels by measuringd2 + d − 1
observables. In sect. 3, we discuss an adaptive experimen-
tal protocol of QPT for two-qubit unitary channels. In sect.4,
we implement the experimental protocol in a two-qubit NMR
system. Our experimental results are discussed in sect. 5, fol-
lowed by a brief conclusion in sect. 6.

2 Adaptive protocols for quantum state and
process tomography

In this section, we discuss adaptive protocols for QST and
QPT. We start from the case of QST for pure states in
sect. 2.1, then further extend it to QPT for unitary channels
in sect. 2.2.

2.1 Adaptive pure state tomography

In this subsection, we propose an adaptive pure state tomog-
raphy (APST) protocol ford-dimensional pure states using at
most 2d − 1 observables.
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The state space we considered is spanned by orthogonal
basis{|i〉 : 0 6 i 6 d − 1}. Suppose the quantum state is

|ψ〉 =
d−1
∑

n=0

αn|n〉. (1)

The goal of tomography is to obtain allαn’s for 0 6 n 6 d−1,
and the APST protocol is given as follows.

Step 1 Measure|ψ〉 using measurementsE0, E1, · · · se-
quentially until tr(|ψ〉〈ψ|Ek) is non-zero, whereEk = |k〉〈k|.
The goal is to find the smallestk such thatαk , 0. Hence this
step costsk + 1 measurements, and the state becomes

|ψ〉 =
d−1
∑

n=k

αn|n〉, (2)

where the summation starts fromn = k now. Without loss of
generality, we assume thatαk =

√

tr(|ψ〉〈ψ|Ek) is real since
the global phase of a quantum state is ignorable.

Step 2 Measure|ψ〉 using measurementsFn,Gn, · · · for
all k < n < d with HermitianFn + Gn = |n〉〈k| + |k〉〈n| and
Fn −Gn = i( |n〉〈k| − |k〉〈n|). The goal of this step is to obtain
αn for all n > k by employing the coherence between|k〉 and
|n〉. This step costs 2(d − k − 1) measurements.

In total, the number of measurements is 2d−k−1 which is
no more than 2d − 1, depending on when we have measured
the non-zeroαk for the first time. In terms of density matrix,
our protocol actually provides the (k + 1)-th row of |ψ〉〈ψ|.

In the following, we analyze this protocol and show that it
indeed accomplishes the task of QST for pure states. In other
words, one can compute eachαn according to the outcomes
of this protocol.

We first show that it is UDP. After step 1, we know that
|ψ〉 = ∑d−1

n=k αn|n〉. After step 2, we have

〈ψ|(Fn +Gn)|ψ〉 = αkαn + αkᾱn,

〈ψ|(Fn −Gn)|ψ〉 = i(αkαn − αkᾱn).
(3)

As we have assumed thatαk is real in step 1, it is obvious
that ᾱkαn = αkαn for all n > k. Therefore, we can calcu-
late the exact value ofαn since we know the non-zeroαk and
αkαn from our measurements. It means we have the complete
information of|ψ〉 if we know it is pure.

Next we prove that this APST protocol is not only UDP,
but also UDA. To see this, we need to show that if another
quantum stateρ which gives the same results as|ψ〉, ρ can
only be|ψ〉〈ψ|.

Assume there exists another quantum stateρ that has the
same measurement results compared to|ψ〉. So forn < k, we
have

tr(ρ|n〉〈n|) = tr(|ψ〉〈ψ||n〉〈n|) = 0, (4)

tr(ρ|k〉〈k|) = tr(|ψ〉〈ψ||k〉〈k|) = α2
k . (5)

For k 6 n 6 d − 1, we have

tr(ρ|k〉〈n|) = tr(|ψ〉〈ψ||k〉〈n|) = αkαn. (6)

In other words, our protocol actually outputs the first non-
zero row ofρ, which is the (k + 1)-th row. This row ofρ
equals to the (k + 1)-th row of |ψ〉〈ψ|.

As ρ is semi-definite positive, we can suppose

ρ =

d−1
∑

j=0

|φ j〉〈φ j|

with unnormalized|φ j〉 = (β0, j, · · · , βd−1, j)T. According to
eq. (4) and the semi-definite positive property ofρ, we know
that the firstk rows ofρ are all zero, namely,βr, j = 0 for all
r < k.

Without loss of generality, we can assume thatβk,0 , 0
andβk, j = 0 for all j > 0. This property helps us to show
|ψ〉〈ψ| = |φ0〉〈φ0|. To achieve such a decomposition, we first
observe that

|ϕ1〉〈ϕ1| + |ϕ2〉〈ϕ2| = |ς1〉〈ς1| + |ς2〉〈ς2|,

where

|ς1〉 = u|ϕ1〉 + v|ϕ2〉,
|ς2〉 = v̄|ϕ1〉 − ū|ϕ2〉,

with |u|2 + |v|2 = 1.
Apply this on|φ0〉〈φ0|+ |φ1〉〈φ1| by choosingu, v appropri-

ately, we can always achieveβk,1 = 0. Employing this argu-
ment recursively on|φ0〉〈φ0| + |φ j〉〈φ j|, we can similarly have
βk, j = 0 for all j > 0. Then, the (k+1)-th row of

∑d−1
j=1 |φ j〉〈φ j|

are all zero.
According toρ =

∑d−1
j=0 |φ j〉〈φ j|, we observe that the (k+1)-

th row of ρ equals to the (k + 1)-th row of |φ0〉〈φ0|. Thus,
the (k + 1)-th row of |φ0〉〈φ0| equals to the (k + 1)-th row of
|ψ〉〈ψ|. Therefore,|φ0〉 equals to|ψ〉 up to a global phase,
which means|φ0〉〈φ0| = |ψ〉〈ψ|. Thus,

tr(σ) = tr(ρ) − tr(|ψ0〉〈ψ0|) = 0,

where

σ = ρ − |ψ0〉〈ψ0| =
d−1
∑

i=1

|φi〉〈φi|.

That isσ = 0, and

ρ = |ψ0〉〈ψ0| = |ψ〉〈ψ|.

This verifies our claim that our APST protocol is UDA and
uses only 2d − 1 measurements.

2.2 Adaptive unitary process tomography

In this subsection, the idea of APST is generalized to deal
with the adaptive unitary process tomography (AUPT). We
notice that the unitary mapU can be written as a transforma-
tion from the orthonormal basis{|n〉} to its image basis{|un〉},

U =
d−1
∑

n=0

|un〉〈n|. (7)
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The task of QPT for a unitary map is to fully characterize the
basis{|un〉} and the relative phases{|un〉〈n|}, and our AUPT
protocol consists ofd steps as follows.

Step 1 Implement QST for|u0〉 = U |0〉. We use the APST
protocol in the previous subsection to characterize|u0〉〈u0|.
This step costs at most 2d − 1 measurements.

Step 2 Implement QST for

U |+〉 = U(|0〉 + |1〉)/
√

2 = (|u0〉 + |u1〉)/
√

2.

The goal of this step is to tomography|u1〉 and to obtain the
relative phase between|u0〉 and|u1〉 simultaneously. This can
be done by obtaining

U |+〉〈+|U† = |ϕ〉〈ϕ|

using our APST protocol, so that we can construct|u1〉. To
see this, we notice that (|u0〉+ |u1〉)/

√
2 = eiγ|ϕ〉. Observe that

the inner product of (|u0〉 + |u1〉)/
√

2 and|u0〉 is 1/
√

2. This
indicates that the phase information ofγ is obtained. Then,
the information of|u1〉 is obtained.

Moreover, we observe that

|u0 + u1〉〈u0 + u1| = |u0 + eiθu1〉〈u0 + eiθu1|

has the only solution that eiθ = 1. That implies that the infor-
mation of the relative phase between|u0〉 and|u1〉 is obtained
completely. We choose a basis

{|v0,n〉〈n| + |n〉〈v0,n|, i( |v0,n〉〈n| − |n〉〈v0,n|), 0 6 n 6 d − 1}

with |v0,0〉 = |u0〉. and then apply this basis using step 2 in the
APST protocol to obtain|u1〉.

This step costs 2d−2 measurements since we already know
the amplitude of|u0〉 is 1/

√
2.

Step j Implement QST for

U(|0〉 + | j − 1〉)/
√

2 = (|u0〉 + |u j−1〉)/
√

2.

The goal of this step is to tomography|u j−1〉 and obtain the
relative phase between|u0〉 and |u j−1〉 simultaneously. The
procedure to obtain|u j−1〉 is similar to step 2 by choosing a
basis

{|v1,n〉〈n| + |n〉〈v1,n|, i( |v1,n〉〈n| − |n〉〈v1,n|), 0 6 n 6 d − 1}

with |v1,r〉 = |ur〉 for all r 6 j−2, and applying it on the APST
protocol.

This step costs 2(d − j + 1) measurements, since we al-
ready know the amplitude of|u0〉 is 1/

√
2 for state (|u0〉 +

|u j−1〉)/
√

2, and the amplitudes of|u1〉, · · · , |u j−2〉 are all zero.
The above steps keep going until stepd, in which two mea-

surements are required and the complete information ofU is
obtained from the outcomes of thed steps. This AUPT pro-
tocol thus uses 2d − 1 +

∑d
j=2 2(d − j + 1) = d2 + d − 1

measurements.

3 Experimental protocol

In this section, we show how to apply our AUPT protocol to
characterize unitary channels (as discussed in sect. 2.2) in a
2-qubit NMR system, and its complexity, i.e. the number of
measurements in terms of Pauli operators. As a comparison,
we also briefly review how to implement a standard QPT and
the complexity. The extension of our protocol to arbitrary
sizes is straightforward.

3.1 Standard QPT

First let us recall the procedure of a 2-qubit standard QPT.
SupposeU is the 2-qubit unitary gate that we want to imple-
ment in practice. Due to the inevitable experiment errors, the
real quantum channel in the laboratory is no longer unitary,
but still some completely positive trace-preserving (CPTP)
operation, denoted byΛ. In NMR and most of ensemble sys-
tems, it is convenient to prepare and measure Pauli observ-
ables, hence we use the representation of Pauli observables
to describe such a 2-qubit channelΛ. Note that this descrip-
tion is equivalent to the Choi matrix representation and they
can be easily transformed to each other [20].

Therefore,Λ can be written in the way of mapping Pauli
group to Pauli group so that

Λ























XX
XY
...
II























=



























p1
1 p2

1 ... p15
1 p16

1
p1

2 p2
2 ... p15

2 p16
2

... ... ... ... ...

p1
16 p2

16 ... p15
16 p16

16

















































XX
XY
...
II























, (8)

where all elementspi
j (1 6 i, j 6 16) are real. To reconstruct

Λ in NMR, we firstly prepare the initial state asXX, and then
applyΛ on it. The output state is thusp1

1XX + p1
2XY + ... +

p1
16II. By doing a full state tomography in 15 experiments,

i.e. measuring eachp1
j (1 6 j 6 15, sincep1

16 can only be
computed via the normalization condition), we can obtain the
first column ofΛ. To fully characterizeΛ, the above proce-
dure needs to be repeated by 16 times, with each time prepar-
ing a distinct Pauli input state out of{XX, XY, ..., II}. So the
total number of experiments to reconstruct a 2-qubit channel
Λ is 16× 15= 240.

3.2 AUPT

If we assumeU is still unitary when applied in practice,
the total number of experiments can be reduced significantly.
Due to the experiment errors, let us denoteV as the real chan-
nel, which is still unitary but deviates from the desiredU. As
unitary operators do not change the purities when applied on
quantum states, it is convenient to consider the map from pure
states to pure states. Explicitly, the map ofV can be written
as:

V























|00〉
|01〉
|10〉
|11〉























=























α1 β1 γ1 δ1
α2 β2 γ2 δ2
α3 β3 γ3 δ3
α4 β4 γ4 δ4













































|00〉
|01〉
|10〉
|11〉























, (9)
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where the elements inV are all complex numbers. Similarly
to standard QPT, in experiment we firstly prepare|00〉 and
then applyV. The output quantum state is still pure since

V |00〉 = α1 |00〉 + α2 |01〉 + α3 |10〉 + α4 |11〉 . (10)

Now the problem of characterizing a unitary channel converts
to the QST of a pure state. First, we can use three measure-
ments of the diagonal elements combined with the normaliza-
tion condition to get|α1| , |α2| , |α3| and|α4|. Then we need to
measure the relative phase between all theα’s. Specifically,
we pick out the maximal|αi| and set its phase as zero. With-
out loss of generality, assume|α1| is the largest one and set
it as reference. To measure, for instance, the relative phase
θα2 betweenα1 andα2, is equivalent to extracting the phase
between|00〉 and|01〉 in experiment, which requires two mea-
surements ofX andY on the second qubit. Analogously, the
relative phaseθα3 andθα4 can be measured with four more
experiments. Therefore, the total number of experiments to
extract the values ofα in the first column is nine, with three
for moduli and six for relative phases. AsV contains four
columns, this procedure is repeated by four times that neces-
sitates 36 experiments, by preparing the input state as|00〉,
|01〉, |10〉 and|11〉, respectively.

However, the above procedure cannot provide the infor-
mation of the relative phases between columns, as we have
set the phase of the maximal element in each column as zero,
but quantum mechanics merely allows one ignorable global
phase. So the next step is to determine these relative phases
between columns. Without loss of generality, assumeα1 is
real. To measure the relative phaseθαβ between theα col-
umn andβ column, one can adopt the idea of interferometers.
Explicitly, prepare the superposition(|00〉 + |01〉)

/√
2 as the

input state and applyV, so that

V (|00〉 + |01〉) /
√

2

= (α1 |00〉 + α2 |01〉 + α3 |10〉 + α4 |11〉) /
√

2

+ eiθαβ (β1 |00〉 + β2 |01〉 + β3 |10〉 + β4 |11〉) /
√

2

=
[(

α1 + eiθαββ1

)

|00〉 +
(

α2 + eiθαββ2

)

|01〉

+
(

α3 + eiθαββ3

)

|10〉 +
(

α4 + eiθαββ4

)

|11〉
]

/
√

2. (11)

In practice, we can measure the relative phaseθexp between
|00〉 and|01〉 via two experiments, and the desiredθαβ can be
obtained by solving the following equation:

phase
(

α1 + eiθαββ1, α2 + eiθαββ2

)

= θexp, (12)

where phase(A, B) means the relative phase between two
complex numbersA andB, and allα andβ values have been
obtained in the last step. Similarly, the relative phasesθαγ

andθαδ can be obtained through preparing (|00〉 + |10〉)/
√

2
and (|00〉 + |11〉)/

√
2, applyingV, and measuring the corre-

sponding phases. This step thus consists of six experiments
to acquire three relative phases between columns inV.

In total, we need 36+ 6 = 42 experiments to characterize
a 2-qubit unitary processV via the AUPT protocol, signifi-
cantly less than the standard QPT which requires 210 experi-
ments.

4 Experimental implementation in NMR

Now we turn to the experimental demonstration of the AUPT
protocol for 2-qubit unitary gates in the NMR system. Five
elementary gatesH1 = H ⊗ I, H2 = I ⊗ H, T1 = T ⊗ I,
T2 = I ⊗ T and CNOT12 are chosen due to the fact that any
2-qubit quantum circuit can be decomposed into these five
gates in arbitrary accuracy [21].I is the identity operator,
and the Hadamard gateH, π/8 gateT and controlled-not gate
CNOT12 are

H =
1
√

2

(

1 1
1 −1

)

, T =
( 1 0

0 e−iπ/4

)

, (13)

CNOT12 =























1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0























. (14)

The experiments are carried out at room temperature on a
Bruker AV-400 spectrometer (9.4 T). The physical system is
carbon-13 enriched chloroform (CHCL3) dissolved in deuter-
ated acetone. One1H nucleus and one13C nucleus of spin-1/2
are encoded as qubit 1 and qubit 2, respectively. The molec-
ular structure and relevant parameters are shown in Figure 1.
In the rotating frame, the internal Hamiltonian of the system
can be written as:

Hint =
πJ
2
σ1

zσ
2
z , (15)

whereJ = 214.6 Hz is the scalar coupling strength between
the two nuclei.

In NMR system, the thermal equilibrium state is a mixed
stateρ = (1− ε)/4I+ερ∆, whereI is the 4×4 identity matrix,
ε ∼ 10−5 is the polarization, andρ∆ = 4σ1

z + σ
2
z + 1/4I is

the deviation density matrix. The coefficients ofσ1
z andσ2

z

come from the fact that the gyromagnetic ratio of1H is four
times larger than13C. Note that the dominant identity part is
invariant under unital propagators, so we only consider the
deviation partρ∆ in experiment.

1H 13C T1 (s)  T2 (s)

1H          400 M            −           10.9         3.3

13C          214.6         100 M      18.8         0.35

Figure 1 (Color online) Molecular structure of the 2-qubit sample13C-
labeled Chloroform.1H and 13C are encoded as qubit 1 and qubit 2, re-
spectively. The table on the right summarizes the Hamiltonian parameters at
room temperature, including the Larmor frequencies (diagonal, in hertz), the
J-coupling strength (off-diagonal, in hertz) and the relaxation time scalesT1

andT2.
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As reference, we firstly implement the standard QPT in
experiment. The creation of all 16 Pauli input states are re-
alized by single-qubit rotations, free evolutions under the in-
ternal Hamiltonian, andz-gradient field pulses (to crush the
unwanted non-zeroth coherence which is necessary in creat-
ing II) from the thermal equilibrium state. Then we apply the
five gates to these Pauli input states via the following pulse
sequences (pulses applied from right to left):

H1 = R1
x (π) R1

y

(

π

2

)

,

H2 = R2
x (π) R2

y

(

π

2

)

,

T1 = R1
z

(

π

4

)

,

T2 = R2
z

(

π

4

)

,

CNOT12 = R1
z

(

π

2

)

R2
z

(

−π

2

)

R2
x

(

π

2

)

U
(

1
2J

)

R2
y

(

π

2

)

.

(16)

The notationRi
n̂ (θ) represents a single-qubit rotation on qubit

i along the ˆn-axis with the rotating angleθ, andU(t) repre-
sents the free evolution under the internal Hamiltonian in eq.
(15) with time t. The z-rotations inT1 and T2 can be de-
composed by the formulaRz (θ) = Rx (π/2) Ry (θ) Rx (−π/2).
Note thatz-rotations in NMR can also be realized more pre-
cisely by virtually varying the reference frame [22], but this
approach is not used in this experiment as it is better to apply
imperfect pulses in order to address the stability of the AUPT
protocol. Finally, by doing full QST, we reconstruct each gate
in terms of an imperfect quantum channelΛ as described in
eq. (8).

For the AUPT protocol, starting from the thermal equilib-
rium state, we firstly create the pseudo-pure state (PPS)

ρ00 =
1− ǫ

4
I + ǫ|00〉〈00| (17)

using the spatial average technique [23, 24]. The other states
|01〉, |10〉 and|11〉 are created from|00〉 by π rotations. After
applying one of the five gates, we measure the module of each
element inV in eq. (11) by standard tomography of diagonal
elements in NMR. The relative phases within a given column
correspond to the phases of single coherent terms, which is
straightforward to read out in NMR as the spectrometer uses
quadrature detection. In fact, all relative phases within one
column for all five gates can be obtained in this way.

Next we need the relative phases between columns for
each gate. We initialize (|00〉+

√
3 |01〉)/2, (|00〉+

√
3 |10〉)/2

and (|10〉 +
√

3 |11〉)/2 as the input states by applyingπ/3
rotations on the PPS state, which enables the reconstruction
of all relative phases between columns forH1, H2, T1 and
T2. However, CNOT12 is an exception. The application
of CNOT12 to |00〉 + |10〉 generates double quantum coher-
ence|00〉 + |11〉 which cannot be directly read out in NMR.
The solution is to apply another CNOT12 gate before detec-
tion to evolve double coherence back to single coherence,
which may roughly double the error in CNOT12. Till now,
we have successfully implemented the AUPT protocol for all
five gates, and characterized eachV in eq. (9) individually.

5 Results and discussion

The reconstructions of each gateH1, H2, T1, T2 and CNOT12

via the standard QPT and AUPT protocols, as well as the
theoretical results, are all shown in Figure 2. The five rows
show the five gates, and the left, middle and right column
are the theoretical, standard QPT, and AUPT results, respec-
tively. Each subfigure shows the complete information of the
target channel in the Pauli representation, as shown by the 16-
by-16 matrix in eq. (8). Note that the AUPT results (the right
column) are initially obtained via eq. (11) which is 4-by-4,
and then converted to their equivalent 16-by-16 matrices in
eq. (8) for fair comparisons with the other results. In each
subfigure, they-axis describes the input state in eq. (8), and
x-axis describes the output state in the Pauli basis after ap-
plying the current channel. For example, the first column in
each subfigure shows that when applying the channel to the
input stateXX, what the coefficients of the output state in
Pauli basis are. From Figure 2, we see that the standard QPT
results are closer to the theoretical predictions than the AUPT
results.

To describe how closely that the practical channelΛ ap-
proximates the theoretical channelU which is unitary in our
case, one can use the value of diamond norm [25] or aver-
age fidelity. Here we use the average fidelity between two
channels, which is defined as:

F̄(Λ,U) =
∫

〈ψ|U†Λ(|ψ〉〈ψ|)U|ψ〉dµ(ψ), (18)

where dµ(ψ) is the unitarily invariant distribution of pure
states known as Fubini-Study measure [26]. For simplic-
ity, we randomly sample 1000|ψ〉’s from the 2-qubit pure
state space, and replace the integral in eq. (18) by the sum
(with some normalization). The calculated average fidelities
of the standard QPT protocol̄F(Λ,U) and AUPT protocol
F̄(V,U), both compared with the theoretical resultsU, are
shown in Table 2 for all the five gates. To get each average
fidelity and its uncertainty, we randomly sample 1000 2-qubit
pure states to get one value via eq. (18) and repeat this proce-
dure for 100 times. The average fidelity and uncertainty are
defined as the mean and standard deviation of the 100 rep-
etitions. The uncertainty for each gate is very small, which
means 1000 samples are sufficient to estimate the average fi-
delity with a high precision.

Now let us discuss the error sources in two aspects. First
of all, both of the standard QPT and AUPT results suffer the
decoherence effect, imperfection of pulses, and state prepara-
tion and measurement (SPAM) errors. The decoherence is al-
most ignorable, as the gate implementation time is less than3
ms, much shorter than the relaxation time scales which are at
least 350 ms as shown in Figure 1. The imperfection of pulses
such as over-rotation and under-rotation induce the SPAM er-
rors, as well as the target gate infidelity. Just to clarify, it is
hard for either the standard QPT or the AUPT protocol to
distinguish the wanted gate error from the SPAM errors, but
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Table 2 Average fidelities of the standard QPT and AUPT protocol compared to the theoretical gate, respectively. By randomly sampling 1000 input state in
the 2-qubit pure state space for a given gate, we get one fidelity via eq. (18). This procedure is repeated by 100 times, and the mean and standard deviation are
used as the average fidelity and uncertainty in the table

Average fidelity H1 H2 T1 T2 CNOT12

QPT: F̄(Λ,U) 0.9903± 0.0005 0.9850± 0.0008 0.9855± 0.0007 0.9937± 0.0003 0.9861± 0.0006

AUPT: F̄(V,U) 0.9826± 0.0010 0.9863± 0.0008 0.9619± 0.0023 0.9495± 0.0018 0.9350± 0.0033

Figure 2 (Color online) Experimental results of the five gatesH1, H2, T1, T2 and CNOT12 via the standard QPT (middle column) and AUPT protocols (right
column), as well as the theoretical results (left column). The five rows correspond to the five gates, respectively. In each subfigure, they-axis describes the
input state in eq. (8), andx-axis describes the output state in the Pauli basis after applying the current channel.z-axis shows the values of the coefficients of the
output state in Pauli basis.
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these two protocols both provide complete information of
an unknown quantum channel. In contrast, the randomized
benchmarking protocol [27] enables the separation of the gate
error rate from the SPAM errors, but fruitless in fully charac-
terizing the quantum channel.

Secondly, in Table 2 the AUPT results are worse than the
standard QPT results (exceptH2, for which we think the fluc-
tuations in the SPAM error dominate the infidelity, and make
it singular). The reason can be attributed to two factors. On
one hand, the AUPT protocol is adaptive, that the next mea-
surement relies on the previous one. It enables the propaga-
tion and amplification of the error to the latter experiments
from the earlier experiments. On the other hand, to measure
the relative phase via eq. (12), we need to know the mod-
ules for each element and choose the single coherence—the
only term that can be observed directly in NMR. An extreme
case is the CNOT12 gate, that we have to apply it twice in
order to evolve double coherence back to single coherence
and observe the relative phase. That is why the AUPT result
of CNOT12 is much worse than the case of standard QPT.
Therefore, we conclude that AUPT indeed improves the ef-
ficiency significantly in characterizing an unknown quantum
channel experimentally by assuming it is unitary, whereas it
does have some drawbacks such as the two issues mentioned
above.

6 Conclusion

In summary, we studied the quantum state tomography and
unitary channel tomography via adaptive measurements. We
showed that adaptive measurements can reduce the number
of measurements when compared to non-adaptive measure-
ments. In particular, we proved that pure state tomography
can be accomplished using 2d − 1 measurements. By em-
ploying this idea, we demonstrated thatd2 + d − 1 measure-
ments are sufficient to reconstruct a unitary process when the
adaptive scheme is allowed.

Additionally, we implement our AUPT protocol for the
universal gate set of quantum computing in a 2-qubit NMR
system. Our results show that for local gates such as
Hadamard andT (π/8 phase) gates, high fidelities can be
achieved using the AUPT protocol. For two-body gate such
as the CNOT gate, the fidelity drops by some amount due to
the accumulation of the errors in adaptively measuring the
relative phases. Nevertheless, the AUPT protocol is still a
useful tool in characterizing the unitary channels as it allows
a significant reduction in terms of the required experiments,
in particular for the local unitary channels.
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