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Abstract | et O C R” be a bounded convex domain with C? boundary. For 0 < p,q < oo
and a normal weight ¢, the mixed norm space H;'?¥(Q) consists of all polyharmonic functions
f of order k for which the mixed norm || - ||p,q,» < c0. In this paper, we prove that the Gleason's
problem (Q,a, HY""?) is always solvable for any reference point a € Q. Also, the Gleason's
problem for the polyharmonic ¢-Bloch (little p-Bloch) space is solvable. The parallel results for
the hyperbolic harmonic mixed norm space are obtained.

Keywords: Gleason’s problem, mixed norm space, Bloch-type space.

1 Introduction

Let Q C R™ be a bounded domain with C? boundary and A(z) be a defining function
of Q. That is, A is a C? real valued function and Q = {z € R" : A\(z) < 0} is bounded,
[VA(z)] # 0 on the boundary 9 of Q (see ref. [1]). Here V = (8%’ 8%’ e %)
For r > 0 small enough, let Q, = {z € R" : \(z) < —r}, Q, is also a C? domain
with the defining function A\(z) + r and 99, = {x € R : A(z) = —r}. We denote by
do, the induced surface measure on 0€),.. Of course, there are infinitely many defining
functions of Q and two different defining functions yield two different systems of {9, }
and {do,}.

A positive continuous function ¢ on the interval (0,¢] is called normal if there exist

two positive constants 0 < a < b such that

#lr) is increasing and lim e (r) =0, (1)
re r—+0 7r¢

plr) y o e(r)

ol decreasing and rlgilo b = 0 (2)

Throughout this paper, ¢ will always be normal on (0,¢] and k will be a fixed positive
integer. We denote by Hp(€2) the family of all polyharmonic functions of order k
on . That is, Hy(Q) = {f € C=(Q) : Akf = 0}, where A* is the k-th power

of the Laplacian. Then, H;(Q2) is the class of all harmonic functions on €. For a
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multi-index « = (a1, a2, +,Qn), x = (x1,22, -, x,) € Q and f € C*°(Q), we write
lel
lof = a1 +ag + -+ 4+ o, and D f(z) = WB‘ZQW. For m = 0,1,2,---, let

V™ f = (Df)|aj=m be the m-th gradient of f with [V™ f(2)| = }_,,_,,, [D*f(z)].

Given a defining function A, 0 < p < oo and r small enough, for f € C(Q2) we write
My(f,r,A) = {/ §IPdor (€ } 0 <p <oo; Mx(f,r,A)= sup [f(§)I-
GQT £€0,.
For ¢ > 0 small and fixed, 0 < p,q < oo and ¢ normal on (0,¢|, the mixed norm
| fllp.g.one for f e C(Q) is defined as

. () |
I fllp,a.0ne = M (f,r A dre , 0<gq<oc;

r
I fllp,00pne = sup Mp(f, 7, A)p(r).
o<r<e

We will simply write || f|.4.¢ for || f[lp.q.0.x.c and My (f,7) for My (f, 7, A) if no confusion
occurs. Then, the polyharmonic mixed norm space HY'"? () is defined to be

HPP2(Q) = {f € He(Q) : | fllp,g.0 < 00}

In the case 0 < p = ¢ < oo, we will see that this space is just the polyharmonic

Bergman space.

For € > 0 small and fixed, ¢ normal on (0,¢] and f € C1(f), set

1fllse) = sup  o(d(z))|Vf(z)l,

z€Q,d(x)<e

where d(x) is the Euclidean distance from x to 9. The polyharmonic p-Bloch space
B(p, k) and the polyharmonic little ¢-Bloch space By(p, k) are defined respectively by

Blw, k) = {f € Hi(®) : | o) < o0}
Bol,k) = {f € Hi() : lim o(d(@)| V()] =0},

Give any fixed point a € €, set || f|| = |f(a)| + [|f][B(p)- It is easy to check that || - ||
is a norm on both B(p, k) and Bo(p, k). The p-Bloch space B(yp, k) is a Banach space
and By(p, k) is a closed subspace of B(yp, k) under the norm || - ||.

These spaces are originally studied in the complex variable setting, see refs. [2-5] for
reference. In the real variable case, the harmonic Bergman space and harmonic mixed
norm space were discussed in refs. [6-8]. Pavlovi¢ and Stevié¢ respectively studied the

polyharmonic functions on the unit ball of R™, see refs. [9, 10].

Let X be a space consisting of some functions in the domain € and a € € fixed. The
Gleason’s problem for X with the reference point a, denoted by (£2, a, X), is as follows.
If f € X with f(a) =0, do there exist functions g1, g2, -, g, € X such that

fl@) = (zx — ar)gn(z) (3)
k=1
forallz € Q7
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Whether the Gleason’s problem is solvable depends on 2 and the function space
X. In the holomorphic functions setting, Gleason originally asked the problem for
Q=B cCC" a=0, and X = A(B), the ball algebra. This problem was solved by
Leibenson, see ref. [11]. Subsequently, many authors studied the Gleason’s problem for
various function spaces in B, see refs. [5,11-13]. In smoothly strongly pseudoconvex
domain 2, Kerzman-Nagel, Ahern-Schneider discussed the problem in Lipschitz space
and C* space, see refs. [14,15]. In ref. [16], Ren and Shi investigated the Gleason’s
problem for weighted Bergman space in the egg domain. The Gleason’s problem for
the harmonic Bergman space and Bloch space in the unit ball of R™ was considered in
ref. [7] and ref. [17]. In ref. [8], the Gleason’s problem (2, a,b}), (Q,a,B(p,1)) and
(2, a, Bo(p, 1)) were solved, where bY, is the harmonic Bergman-Sobolev space of order
k, 1 < p < oo and € is a star-shaped domain with a strong reference point a € €.
And also, Ren and Kahler studied the Gleason’s problem for the hyperbolic harmonic
weighted Bergman space in the unit ball of R™ in ref. [18]. But in these references
people can find that: (i) The domain  has a certain nice geometrical property, which
is either smoothly strongly pseudoconvex or symmetric in some sense with the point
0 € Q. (ii) The main tool used in these mentioned work is the Forelli-Rudin type
projection introduced in ref. [19]. (iii) In refs. [5,7,13,16], only the very special point

a =0 is considered in (9, a, X).

The purpose of this paper is to solve the Gleason’s problem (Q,a, Hy'"?), (2, q,
B(p, k) and (2, a, Bo(p, k)) for any reference point a €  and all possible 0 < p, ¢ < oo,
where 2 is the bounded convex domain with C2 boundary. And also we will discuss the
Gleason’s problem for the hyperbolic harmonic mixed norm space. As an application
of our approach, the analogous problems for the holomorphic functions will be studied.
Our work will extend those results in refs. [7,8,13,16-18,20].

In what follows, C' will stand for positive constants whose value may change from

line to line but not depend on the functions being considered.

2 Some preliminary results

2.1 Independence on \ and €

For a € R™ and r > 0, set B(a,r) = {x € R" : |x —a| < r}. Let dm be the Lebesgue

volume measure on R™.

Theorem 2.1. Let X be a space of certain continuous functions on 2 C R"

satisfying

(I) For 0 < p < oo, there exists a positive constant A; such that for all f € X and
B(a,r) C Q,

F@P < A / (@) Pdm(z).

B(a,r)

(IT) For any compact set K and open set G, K C G C €, there is a positive constant
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As such that for all f € X
sup [f(z)] < A2 sup |[f(x)].

zeK T€G\K
Then the mixed norm || - ||p4,, on X is independent of the defining function A and
the parameter €. That is, for any two defining functions A1, A2 and any two positive
parameters €1, €9, there exist some positive constants C; and Cs such that for each
feX,

Cl”f”p,q,so,)\l,m < ||f||p,q,s0,>\2,62 < C2||f||p,q,<p,>\1,61-

Proof. First, we prove that || - ||5.4,, is independent of . It is sufficient to prove
that, given 0 < p,g < 0o and 0 < €1 < €2 < ¢, there exists a constant C' such that for
all fe X,

q
EQH%%}éEM {/ MJ(f,t dt} . (4)
To prove (4), we fix @ and 3, e1 < o < 8 < €2. By (II) we have some z( such that
=03 < Mzo) € —a and maxe,<r<e Moo (f,7) < Asz|f(x0)]. As in ref. [21] (or directly

by ref. [1]), we have some s > 0,

B(Z‘Q,S) - 5(81,82) = {u cR": —e9 < /\(u) < —81}.

ol < {5 [ 1rwpine) |

<of [ . @l an) |
< c{ / Mg(f,t)dt};. (5)

max My (f,r) <C sup My(f,t).

e2<T<e e1<t<e2

By (I), we get

=

It gives

This is (4) in the case ¢ = o0 and 0 < p < oo. For p < ¢ < o0, applying Holder

inequality to (5), we obtain

max ML (f,r) {/ ME(f,t dt} C/ MJ(f,t)
ea<r<e
For 0 < ¢ < p < o0, by the inequality My (f,r) < CM,(f,r), we have

max MZL(f,r) C’/qu,dt C’/qu,

ea<r<e

Thus, the inequality (4) follows.

Given two defining functions A; and A of Q and e small enough, keeping the estimates
(I) and (IT) in mind and with the same approach as that of Lemma 3 in ref. [6], we

can prove, if ¢ < oo, there are two positive constants ¢; and co such that

MI(f,r\) / MO(f 1, \)d (6)
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forall 0 < r < eand f € X. Since ¢ is normal, for the above constants ¢; and ¢z, there

are two positive constants C7 and Cy such that, for 0 < r,t < ¢ satisfying ¢; < % < cg,

< Co. (7)

Then

/EMmﬁnhW””m
0
rl]_go
<C/O : U MI(f,t, )\)dt}dr

€ c1 q
= C{/ Mg(f,t,/\)dt/L wr(;)dfi(i;lg_glf(x)lq}

{/ MA(f,t,)) ()dt+ sup |f($)|q}

Az)<—¢

<0/AQMaM%@w ®)
0
Thus, together with (4), we get

/qu,ml O/M‘If,, () . )

Now for ¢ = 00, if 0 < r <min{Z, 6}, by (6) and (7) again, we obtaln that

My (fr M) < CE [ 10, Ny

c1r
car

<cort My(f,t, Ng(t)dt
G sup  My(f,t, A)e(t)

cir<t<Lesr

< C sup Mp(fv ta )\)QD(t) (10)

0<t<e

N

This and (9) gives || f]

have the domination in the other direction. The proof is completed.

o < Cllfllp.g,0,n- Changing the positions of A and A;, we

2.2  Some norm estimates of the gradient

Theorem 2.2. Let X be a space of some C'! functions on Q C R" satisfying (I),
(IT) and

(III) For 0 < p < oo, there is a positive constant Ag such that for all f € X
VI@P <A [ |f@)Pdm).
B(a,r)
Then there exists a constant C' such that for all f € X,

IV fllpare < Cllfllp.ae- (11)

Proof. We have a positive constant ¢ > 0 such that B(z,cr) C Q. for any x € 09,
and 0 < r < e. By (ITI),

1
VI < A [ I,
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For0<p<oo,0<g<ooand0<r< e, blmllar to (6), we have ¢; and ¢y such that

MIVE) S / MI(f, 1)
Therefore, similar to (8), apply T heorem 2.1 and (7 ) to get

7 (r
/ MI(V f,r) C’/ d / MA(f,t)
(t)
< C/o MI(f, t)Tdt. (12)
For ¢ = oo, just doing the implication as (10), we have
IV £llp,c0.re < Cllfllp,oo,e-
This and (12) imply the estimate (11). The proof is completed.

For any f € Hp(Q2) and any multi-index o, D®f is still a polyharmonic function of
order k on Q. And furthermore, {D*f: f € Hp(Q),|a| < m} satisfy the conditions
(I), (ITI) and (IITI), see refs. [9] and footnote 1). Therefore, from Theorem 2.1 and
Theorem 2.2 we have the following corollaries.

Corollary 2.1.  The spaces Hy'*¥(Q2) and B(g, k), Bo(p, k) are independent of
the defining function A and the parameter e.

Corollary 2.2. For 0 < p = ¢ < oo, the mixed norm spaces are exactly the

Bergman spaces. More precisely,

@) = {1 e m@y { [ 1o <x>}%<oo}.

Corollary 2.3. Let Q C R" be a bounded domain with C2 boundary, 0 < p, ¢ <
and let m be a positive integer. Then there is a constant C such that for any f € Hy (),

vapr,q,rmcp < C”f”p,q,cp-

Corollary 2.4. Let Q C R" be a bounded domain with C2 boundary, 0 < p, q < oo
and let m be a positive integer. Then there is a constant C such that for any f € Hy (),

||me||oo,oo,r"”*1<p < CHf”B(gD)

Proof.  Since V™ f(z)| =3, =, [D”f(z)], take p = g = oo in Corollary 2.3, we
obtain

19" flloo,om-1 < C ) Haxal- - Ozpn
la|=m

ces|%Lo__,
<O sup  @(d(@)|Vf(x)] = Cllfllse)

0<—A(z)<e

’oo,oo,rm_lcp

SOV flloo,00.6

The proof is completed.

1) Hu Z J, Pavlovi¢ M, Zhang X J. The mixed norm spaces of polyharmonic functions to appear.



1134 Science in China Series A: Mathematics

2.8 The behavior of an integral operator

From now on, we suppose further that € is convex. Given a € (), we define an

integral operator S on C(Q

/fa—|—ta:—a))dt, feC(Q) and z €.

Our interest is to understand the behavior of this operator. For this purpose we need

some more lemmas.

First, we adopt a special defining function p of Q as in ref. [20]. Given a € Q, set
U= {xER":x:a+(1—t)(§—a),tE (—%,%),5689}.

For z = a+ (1 —t)({ — a) € U, define the special defining function p(z) on U just as

play=—t, if z=a+(1-1t)(—a)ecU. (13)
By ref. [20], pis of C% and Vp # 0 on 95). Therefore, as on Page 292 of ref. [21], we can
extend p to whole R™ to be a C? defining function of Q. Then for each € € sufficiently
near 092, saying 0 < —p(z) < &, we have unique £ € 9Q and r = —p(x) € (0,¢] such
that

z=a+ (1-71)(&—a)e€dN,.

Now for f continuous on Q, we set f* to be

fra+@=r)(—a)= Sup [fa+ (1 =1)(§—a))l

S<tESr

Lemma 2.1. Let X be a space of some continuous functions on €2 satisfying
conditions (I) and (IT). Then there exists a constant C' such that for all f € X,

1 llp.ae < Cllfllpa.e-

Proof. Without loss of generality, we may assume a = 0. From (I), there exists a
constant C such that for all % <t<r,re(0,¢]and f € X,

C C
1-t)HP < — w)Pdm(u) < — w)[Pdm(u).
fa-nor < [ iwpame < pdn)
So
FHa—nop< & () Pdm). (14)

S B((1-r)&,2r)

From this, as in the proof of Lemma 3 in ref. [6], we get
C car
gt < S [ s
cr

for all 0 < p < o0 and 0 < ¢ < 0o, where ¢1, ¢ are positive constants not depending
on f. Thus, similar to (8) and (10), we get

1F llpae < Clifllpae When 0<p<oo, 0<g< oo
The proof is completed.

Lemma 2.2. Let ¢ be normal on (0,¢] and s > 0. Then there exists some constant

) @dr} . (15)

C such that for all nonnegative continuous function g on (0, €],

/:gw)“”ff")dr<c{£i§2€gs<r>+/j o(5) ~ o0
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The proof goes as that of Lemma 7 in ref. [9]. Without loss of generality,

Proof.
we may assume that ¢ is bounded on (0, ¢]. Note that

I = /06 gs(r)@dr < 0.

By (1) we get o(5) < (%)aw(r). Then

e [ o

[ [
) (%) Voegs(g)w( )dr+C’;§Esg (r )] (16)

1, then by the Minkowski’s inequality we have

Ifs>
S rNew T [ (T cer) | / N GOIAE
S B A < ) = RANPS .
{/0 g (2) r dr} b {/0 g(2) 9(r) T dry 0 g°(r) r dr
Thus,
1 r) g 1
Iy < g dr| +Cs sup g(r)
0 S<r<e
{If + f) —g(r)| #(r) dr] C+CF oswp 9(7‘)}
2 r s<r<e
This implies
1 1)% e s o(r g 1
e () o 200 ot s gy (7
1—(3)° 0 I"\2 r §<r<e
If 0 < s < 1, based on the inequality (a + b)® < a® +b°(a,b > 0), from (16) we get

) ()dr+Il+C’ _sup g()}

ORTRIORT
This yields
e ([ W) o s g0}

Hence (17) and (18) give the estimate (15). The proof is completed
Let ¢ be normal on (0,¢] and s > 0. Then there exists some constant

Ssom} S (19)

Lemma 2.3.
C such that for all nonnegative continuous functions g on (0, €]

{ sup ¢°(r) + sup g(g) —g(r)

s<r<e 0<r<e
Similar to Lemma 2.2, we can assume that g is bounded on (0, ¢]

sup g°(r)p(r) <C
o<r<e

. We

Proof.
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consider the case that s = 1 first. Then

sup g(r)e(r)
0<r<e

= o o (3)e(3)
g o (5)e(5)+ s 0(3) 0 ()
(%)a {031:269 (g) e(r)+C %iglieg(r)w(r)}
9(5) — 9] ¢(r) + sup_g(r)e(r) +C sup g<r>}.

1 a
<—> sup
2 0<r<e 2 o<r<e s<r<e

This gives the estimate (19) for s = 1. The general case that 0 < s < oo still holds

N

N

N

because the weight 30% is still normal. The proof is completed.
Theorem 2.3. Let X be a space of some continuous functions on Q2 satisfying
conditions (I) and (II). Then there exists a constant C' such that for any f € X,
15 llp.a.0 < Cllfllp.gre-
Proof. We may assume that a = 0 and prove the above estimate with the special

defining function p as (13). Then Sf(z) = fol f(tx)dt. For & = (1—r)§ € 0Q,, 1 € (0,¢],

we have

1
19F(x)] < / | (t)dt

e—r

< c{Moou, o+ [T Ira-o0- r)f)dt}

< c{Mmu, 9+ [ 1@ —u)&)du}.
Writing
hz) = / (1 — we)|du, (20)

we only need to prove that
Allp.q.e < Cllfllp.gre-

First, we claim that, for 0 < p, ¢ < oo,

[[hllp,g.0 < C {|f+||p,q,w + 2811125 Mp(h,r)} . (21)
In fact, by (20)
n((1-5)€) -na-ne = [ 17 - we)ldu. (22)

If 0 < p < 1, then by (22)
w (1= 1) €) - = { - u>s>|du}

< (3)" su 7@ =Wl (23)

2 5 <usr
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Note [fT((1 —7)¢)| = supz <y [f((1 = w)§)|. Denoting by do the surface measure on
0f) and integrating both sides of (23) on 0f2, we obtain

Lo (1= 5)edete)— [ waa-rgiote

<ar [ I =noras©. (24)
Setting g(r) = [,o hWP((1 —7)€)do () and applying Lemma 2.2 with s = %, we get
/0 9°(r) —quy) dr

< C{/OE [g (g) —g(r)r G )dr+ ebﬁgsg °(r )}

<C {/0 Uaﬂ |FH(( - r)€)|pda(€)} S Mdr + %igzegs(r)} :

Because (2 is of C?, we have two positive constants C; and Cs such that for all contin-
uous functions F on {z € Q:0 < —p(z) < ¢},

e [ 1r@lin < [ 1 -nglie <o [P @, @)

r

Hence,

12llp.q. < {IIf*IIp,q,mﬂL sup My(h, 7‘)} (26)

2 <r<e

This is (21) for 0 < p < 1 and 0 < ¢ < co. For 1 < p < oo, applying Minkowski’s
inequality to (22), we have

{[ ma-pewe} - mhp((l—r)f)da(g)};

s { /{m {/: (1= “)5)|du} pdg(f)}%

2

1
P

<s{ L1 -norae}” (27)
Applying Lemma 2.2 to g(r) = { [, h?((1 — r)f)da(g)}% with s = ¢ > 0, we have

g

[ o0& <cf / L= neraso)| g0}

From this and (25), the estimate (21) holds for 1 < p < oo and 0 < ¢ < oo. Now for
the case that ¢ = oo, instead of using Lemma 2.2 we apply Lemma 2.3 on (24) and
(27) respectively to get (21). From Lemma 2.1, there is a constant C such that for
each f € X,

1/ llpgre < ClIfMpag,re-
Meanwhile, by the proof of Theorem 2.1 we obtain
sup My(h,r) <C  sup |f(2)| < CIIf

$<r<e $<—p(a)<e

|P7‘LT’§0'

This and (26) imply the conclusion of the theorem. The proof is completed.
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3 The Gleason’s problem

In this section, we will study the Gleason’s problem.
8.1 The case of polyharmonic function spaces

Notice that Hy () satisfies the conditions (I), (IT) and (IIT). Hence, Theorem 2.2
and Theorem 2.3 hold for f € Hy ().

Theorem 3.1. Let O C R" be a bounded convex domain with C? boundary.
Suppose ¢ is normal and 0 < p, ¢ < oo, then the Gleason’s problem (Q, a, HY'*?) can
be solved. More precisely, for any a € Q and integer m > 1, there exist bounded
linear operators A, on Hy "% (Q), |a| = m, such that if f € Hy'"¥(Q) with D f(a) =
0 (o] < m — 1), then

f@)= " (z—a)*Auf(@). (28)

|a]=m
Proof. Without loss of generality, we may assume a = 0. For j = 1,2,---,n,
define the operator A; on Hy(Q2) as
1 8f
Ai(f)(x) = ——(tz)dt for fe Hp(Q).
o Oz;

Then A;(f) € Hi(?). And for f € Hy(Q?) with f(0) = 0, we have
fz) = Z%Aj(f)(x)- (29)

To prove (28), we suppose m = 1 first. By Theorem 2.2, each operator f —— E?Tf,- is
bounded from H} % (Q) to H*""#(Q2). Then, Theorem 2.3 implies that the operator
f— Ai(f) = S(;—i) is bounded on HP'??(Q2). This yields the conclusion (28) for
m = 1. The equalify (28) for m > 2 can be proved by induction. The proof is

completed.

Theorem 3.2. Let O C R" be a bounded convex domain with C? boundary.
Suppose ¢ is normal and a € Q. Then for any integer m > 1 there exist bounded
linear operators A, on B(y, k) (or on By(yp, k)), |a| = m, such that if f € B(p, k) (or
f € Bo(p, k)) with D¥f(a) =0 (Ja| < m — 1), then

fla)= ) (v—a)*Aaf(2). (30)
|a]=m

Proof. Similarly, we may assume ¢ = 0 € Q. And we need only to prove, for
integer m > 1, there exist bounded linear operators A, on B(p, k) (and on By(p, k)),
|a| = m, such that if f € B(p, k) (or f € Bo(p,k)) with D*f(0) =0 (|a] < m — 1),
then

fla)= ) a"Aaf(x).
|a]=m

For this purpose, we consider the case m =1 first. By Theorem 2.3,

15 fllo0,00,6 < Cllflo0,00,m0-
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From Theorem 2.3, Corollary 2.4 and the fact that

) ATt
g (43 @) =5 ( 5 )@,

we get

A;(Nlsey = sup o(d())[VA;(f) ()]

z€Q,d(x)<e

(axjaxk) Hoo’oo’@

&rjaxk 00,00,7p

\C||f||B@- (31)
If f e Bo(p, k), we claim that A;(f) € Bo(p, k). In fact, for any ¢ > 0, we have some
6 > 0 such that for 0 < r < 6,

n

2

((1 — r){)‘ < €. (32)

Because |Vp(x)| # 0 on 052, we have some positive constant ¢ such that
B((1=r)§ cr) CQz \ Qo when 0<r<e, £€0f.
Then from the condition (III),
of

| 0%f 1
@-n9| <o | o
; O ;0w 7 Jp(a-rger) 1075

where the constant C' is independent of r and £. From (1), (2) and (32), we get some
61 > 0 such that for 0 < r < 61

(y>\ am(y),

n

sup rp(r Z

£€on

8xj8xk r){)‘ <e. (33)

‘We know that
01
|Sf(z / |f(tz)|dt < C{Mm(f751)+/ If((l—u)é)ldu}-

By (33),

o[22 1 - )

— o5 (524 ) (-9

92 o1 92
< Colr) {Moo (geaed) + [ (0 ) (=00 du}
o (o) | Pf
{ ) Moo (8;6]83% ) " /T, u® (8;@83%) (A —w)8)
P o [0 1
C{QD axjaxk (5 ) +er /7: Wdu}
f
{e (570 ) + <}

o}

<C
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The constant C' in the above inequalities are also independent of r and £. Therefore,

‘ QA f
sup, o(r) . (1 =7)¢)

if r is sufficiently small. That means A;(f) € Bo(y, k). Furthermore, combining (29),

<e, (34)

(31) and (34) we conclude the proof for m = 1. The general case can also be proved

by induction. The proof is completed.

Remark 3.1. Inref. [7], the authors have considered the Gleason’s problem for
the harmonic weighted Bergman space bP with 1 < p < oo and harmonic Bloch space
with ¢(r) = r in the unit ball B of R™. In ref. [17], Ren and Kahler have solved
the Gleason’s problem (B, a,B?®), where B* is the harmonic Bloch-type space with
o(r) =r® and 0 < s < co. Our Theorem 3.1 and 3.2 generalize those in refs. [7,17].

8.2  The case of hyperbolic harmonic function spaces
Denote by I,, the identity matrix. The Poincaré metric on B = {z € R" : |z| < 1}
deduced from the positive-definite matrix (g;;) = (1 — |z[?) 2L, is ds = ldz] - And

1—[z|>"

the corresponding Laplace-Beltrami operator is given by
" 0
Ay = (1 —z)*)?A +2(n —2)(1 — |z|? .
= el PAT 2= Do) Y a5

Originally, the hyperbolic harmonic functions f are only defined on B for which Ay f =
0. So, the hyperbolic harmonic functions are closely connected with the Poincaré metric
and the Lorenz group SO(n,1) on B, see refs. [18,22] for a small part of references.
Similar to the fact that people are often interested in harmonic functions in a domain €2
in R™, although the Laplacian A is for the Riemannian manifold R™ with the Euclidean
metric, we are going to be interested in those functions f € C2(2) with Ay, f(z) = 0 for
x € . These functions f are real analytic at any = € '\ 0B by the regular theorem
of elliptic PDE, see ref. [23]. On the other hand, the C? function f defined by
z|? — 25 —4log |zl | >1,
fiay | 1 P~ 41og a

0, x| <1
satisfies A, f = 0 on R*, but f is not infinitely differentiable at any 2 € OB. Therefore,
it is natural to define the set h(Q2) of all hyperbolic harmonic functions on €2, provided
Q CR™\ 9B, to be

h(Q)={f€ C*(Q): Apf(z) =0, z € 0} ;
and define the hyperbolic harmonic mixed norm space h?'%% () to be
hP02(Q) = {f € h(Q) : || fllp.q.p < 00}

The hyperbolic harmonic Bergman space can be defined in the usual way and it coin-
cides with h?P?(Q).

To study the Gleason’s problem on some hyperbolic harmonic function spaces, one
could not hope that the function g in (3) is still hyperbolic harmonic as pointed out
in ref. [18]. We adopt the adjustment for this problem as Ren and Kahler, which is as

follows.
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Let X be a space of some hyperbolic harmonic functions in the domain 2 C R™\ 0B
and denote by Y a certain function space associated to X without the condition of

hyperbolic harmonicity. The Gleason’s problem could be turned out in this way:

ifae Qand f € X with f(a) =0, do there exist functions g1, g2, -+, gn € Y such

that .
r) =) (wr — ar)gi(x)

k=1
for all z € Q7

Before formulating our solution to the Gleason’s problem for the hyperbolic harmonic

mixed norm space, we need some more lemmas.

Lemma 3.1. Let Q C R\ 0B be a domain. Then for any compact subset K C (2,
multi-index o and f € h(Q),

sup |[D®f(z)| = sup |D®f(z)].
rzeK r€0K

Proof. By ref. [23], the function f € h(Q2) has the maximal property. That is, for
each compact subset K C €,

sup |f(z)] < sup [f(x)].

€K €K
Because h(f) is linear, with the above estimate and the definition of partial derivatives,

af af
ol ol

This implies the conclusion for || = 1. The general case can also be proved by

we obtain

< su
€K

sup ) ]:Lan

zeEK

induction. The proof is completed.

Lemma 3.2. Let Q@ CR"™\ 0B be a domain. Then for 0 < p < oo, there exists a
constant C' such that for each f € h(Q2) and B(a,r) C £,

F@)] + V@)1 Y 1D {wm/ )Pdm( )} e
la|=2 B(a,r)

Proof. For z € Q, recall that d(z) is the distance from x to Q. Clearly, d(z) <
|1 — |z|| since 2 C R™\ 0B. For each f € h(Q), f is a solution of the equation

2(n—2) " of
L pel ;xja—%_o. (36)

Applying Proposition 13.3 on Page 225 of ref. [23], for f € h(Q2) and B(a,r) C 9,
0 < p < 00, we have

sup <Gy / )|Pdm . 37
ETCIE {|BM| @) (37)
And applying Theorem 6.2 in ref. [24] to (36)

V(@) +7* Y |D*f(a sup | f(x), (38)

la|=2 a:EB(a,E)

S
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where Cy and Cy are both independent of f and a,r. Now, the estimate (35) follows
from (37) and (38). The proof is ended.

By Theorem 2.1, we have the following two corollaries.

Corollary 3.1. Let Q C R™\ dB be a bounded convex domain with C? boundary,
and ¢ be normal, 0 < p,¢ < co. Then the spaces h??¥(Q) are independent of the

defining function A and the parameter ¢.

Corollary 3.2. If 0 < p = ¢ < oo, then h???(Q2) = a?¥(Q)), where a?¥ is the
p-th Bergman space

o= {rton {[por e} <=}

Now we are ready to state our solution to (2, a, h??%(Q)).

Theorem 3.3. Let 2 C R™\ 9B be a bounded convex domain with C? boundary.
Suppose that ¢ is normal and 0 < p,q < oo, then for any a € €, there exist bounded
linear operators A; from h?%¥(Q) to X = {f € C(Q) : || f|
such that if f € 9% (Q) with f(a) =0, then

= (z;—a;)A; f(x).

Jj=1

pae <00F J=1,2,---.n

Proof. We may also assume a = 0. Similar to the proof of Theorem 3.1, for
f € h(Q) with f(a) =0, we have

x) = 2": z;A
j=1

where A;(f)(x) = 01 (%f:(tx)dt. By Lemma 3.2 and Theorem 2.2, for f € h(Q)
k=

By Lemma 3.2, similar to (14), we have
|f (w)[Pdm(w).

af>+ X :
=) (1=
(8xj (=) B((1-r)€,37)

Then as the proof of Lemma 2.1, for 0 < p,q < oo we obtain

S Cllflp.g.e-

p,q,Tp

rntp

9 +
’(8—f) < Ol (39)
J
p,q;re
For x = (1 —r)€ € 9Q,, 7 € (0,¢], set
of
h@y_l 5 (01— e pu

As (21) we get, for 0 < p,q < oo,

+ sup Mp(h,r)

=
s<r<e

1Pllp.ae < C ’

p,q,Tp
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Then, Lemma 3.2 and (39) give

o +
as <O NEE) | + 1ol { <O lbar (40)
J
p,q;rp
It is trivial that of
0@l < (5 e) +ho). (a1)

Now the estimate ||A;(f)|lp,q,0 < Cllfllp.q,o comes from (40) and (41) and Lemma 3.2.
The proof is finished.

Remark 3.2. For = B, 0 < p = ¢ < o0 and p(r) = r*°, the conclusion of
Theorem 3.3 is the main result in ref. [18], where the approach is strongly based on

the symmetry of B.

4 Final remarks

As in ref. [8], a domain 2 C R™ is called star-shaped with a strong reference point

a € Qif Q is star-shaped with a and there exists an angle 6y € [0, 5 ) such that
E—a
€ —al

for all £ € 09, where ™ denotes the unit outward normal vector filed on 9. It is

- (€) = cosfp > 0

trivial that a bounded convex C? domain must be star-shaped with any point a € Q,
and furthermore, any a € Q is a strong reference point. In ref. [8], the authors
solved the Gleason’s problem (2, a,b}), (,a,B(p,1)) and (2, a, Bo(¢, 1)), where b} is
the harmonic Bergman-Sobolev space of order k, 1 < p < oo and € is a star-shaped

domain with a strong reference point a € Q.

A careful check of our results in sec. 2 and Theorem 3.1, Theorems 3.2 and 3.3
shows that the conclusions (28) and (30) remain valid if Q is a star-shaped bounded
C? domain with the strong reference point a € €. Therefore, our theorems also extend
ref. [8]. To short the length, here we only exhibit it as Theorem 3.4.

Theorem 3.4. Let Q C R” be a star-shaped bounded C? domain with a strong
reference point a € €. Suppose that ¢ is normal and 0 < p, ¢ < oo, then for any integer
m > 1, there exist bounded linear operators A, on Hp"?(Q2), |a| = m, such that if
f e Hy"?(Q) with D*f(a) =0 (Ja| < m — 1), then

fla)y= ) (x—a)*4af(x).
|a]=m

We now go back to the complex variables. Let 2 C C" = R2" be a star-shaped
bounded C? domain with a strong reference point a € Q. Denote H(Q) the family
of all holomorphic functions on €. The holomorphic mixed norm space Hy, 4 () is
defined as

Hy 0.0 (Q) = {f € H(Q); || fllp,q.0 < o0}
And the holomorphic ¢-Bloch (little ¢-Bloch) space B(y) (Bo(p)) is defined in the

same way.
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It is well known that the holomorphic functions still satisfy the conditions (I), (II)
and (IIT), and so these corresponding results in sec. 2 still hold for the function
f € H(Q). Therefore, with our approach in sec. 2 and subsec. 3.1, we can solve
the Gleason’s problem in the holomorphic function setting. We have the following

theorems.

Theorem 3.5. Let Q C C™ be a star-shaped bounded C? domain with a strong
reference point a € ). Suppose that ¢ is normal and 0 < p,q < oco. Then for any
integer m > 1, there exist bounded linear operators A, on Hj, 4,(9), || = m, such
that if f € H, ; () with D*f(a) =0 (Ja] < m — 1), then

F2) = 3 (2 —a)"Auf(2).
loe|=m

Theorem 3.6. Let Q C C™ be a star-shaped bounded C? domain with a strong
reference point a € € and ¢ a normal function. Then for any integer m > 1, there exist
bounded linear operators A, on B(y) (or on By(y)), || = m, such that if f € B(y)
(or f € Bo(p)) with D*f(a) =0 (Ja| < m — 1), then

f2)= ) (z=a)*Aaf(2).

laj=m
We define A; on H(Q) as
1 8f
Aif(z)= ——(tz)dt, feH(), ze€.

0 0z

Then for f € H(Q2) with f(0) = 0, we have

F(2) =) #Af(2). (42)
j=1

From this, the proof of these two theorems goes as the proofs of Theorem 3.1 and
Theorem 3.2 with only one adjustment that (29) should be replaced by the equality
(42).
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