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Let Ω ⊆ R
n be a bounded convex domain with C2 boundary. For 0 < p, q 6 ∞

and a normal weight ϕ, the mixed norm space H
p,q,ϕ
k (Ω) consists of all polyharmonic functions

f of order k for which the mixed norm ‖ · ‖p,q,ϕ < ∞. In this paper, we prove that the Gleason’s

problem (Ω, a, H
p,q,ϕ
k ) is always solvable for any reference point a ∈ Ω. Also, the Gleason’s

problem for the polyharmonic ϕ-Bloch (little ϕ-Bloch) space is solvable. The parallel results for

the hyperbolic harmonic mixed norm space are obtained.

Keywords: Gleason’s problem, mixed norm space, Bloch-type space.

1 Introduction

Let Ω ⊆ R
n be a bounded domain with C2 boundary and λ(x) be a defining function

of Ω. That is, λ is a C2 real valued function and Ω = {x ∈ R
n : λ(x) < 0} is bounded,

|∇λ(x)| 6= 0 on the boundary ∂Ω of Ω (see ref. [1]). Here ∇ =
(

∂
∂x1

, ∂
∂x2

, · · · , ∂
∂xn

)

.

For r > 0 small enough, let Ωr = {x ∈ R
n : λ(x) < −r}, Ωr is also a C2 domain

with the defining function λ(x) + r and ∂Ωr = {x ∈ R
n : λ(x) = −r}. We denote by

dσr the induced surface measure on ∂Ωr. Of course, there are infinitely many defining

functions of Ω and two different defining functions yield two different systems of {∂Ωr}

and {dσr}.

A positive continuous function ϕ on the interval (0, ε] is called normal if there exist

two positive constants 0 < a < b such that
ϕ(r)

ra
is increasing and lim

r→+0

ϕ(r)

ra
= 0, (1)

ϕ(r)

rb
is decreasing and lim

r→+0

ϕ(r)

rb
= ∞. (2)

Throughout this paper, ϕ will always be normal on (0, ε] and k will be a fixed positive

integer. We denote by Hk(Ω) the family of all polyharmonic functions of order k

on Ω. That is, Hk(Ω) = {f ∈ C∞(Ω) : ∆kf ≡ 0}, where ∆k is the k-th power

of the Laplacian. Then, H1(Ω) is the class of all harmonic functions on Ω. For a
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multi-index α = (α1, α2, · · · , αn), x = (x1, x2, · · · , xn) ∈ Ω and f ∈ C∞(Ω), we write

|α| = α1 + α2 + · · · + αn and Dαf(x) = ∂|α|f

∂x
α1

1
∂x

α2

2
···∂x

αn
n

. For m = 0, 1, 2, · · ·, let

∇mf = (Dαf)|α|=m be the m-th gradient of f with |∇mf(x)| =
∑

|α|=m |Dαf(x)|.

Given a defining function λ, 0 < p 6 ∞ and r small enough, for f ∈ C(Ω) we write

Mp(f, r, λ) =

{
∫

∂Ωr

|f(ξ)|pdσr(ξ)

}
1

p

, 0 < p < ∞; M∞(f, r, λ) = sup
ξ∈∂Ωr

|f(ξ)|.

For ε > 0 small and fixed, 0 < p, q 6 ∞ and ϕ normal on (0, ε], the mixed norm

‖f‖p,q,ϕ,λ,ε for f ∈ C(Ω) is defined as

‖f‖p,q,ϕ,λ,ε =

{
∫ ε

0

M q
p (f, r, λ)

ϕq(r)

r
dr

}
1

q

, 0 < q < ∞;

‖f‖p,∞,ϕ,λ,ε = sup
0<r<ε

Mp(f, r, λ)ϕ(r).

We will simply write ‖f‖p,q,ϕ for ‖f‖p,q,ϕ,λ,ε and Mp(f, r) for Mp(f, r, λ) if no confusion

occurs. Then, the polyharmonic mixed norm space H
p,q,ϕ
k (Ω) is defined to be

H
p,q,ϕ
k (Ω) = {f ∈ Hk(Ω) : ‖f‖p,q,ϕ < ∞}.

In the case 0 < p = q < ∞, we will see that this space is just the polyharmonic

Bergman space.

For ε > 0 small and fixed, ϕ normal on (0, ε] and f ∈ C1(Ω), set

‖f‖B(ϕ) = sup
x∈Ω,d(x)6ε

ϕ(d(x))|∇f(x)|,

where d(x) is the Euclidean distance from x to ∂Ω. The polyharmonic ϕ-Bloch space

B(ϕ, k) and the polyharmonic little ϕ-Bloch space B0(ϕ, k) are defined respectively by

B(ϕ, k) =
{

f ∈ Hk(Ω) : ‖f‖B(ϕ) < ∞
}

,

B0(ϕ, k) = {f ∈ Hk(Ω) : lim
x→∂Ω

ϕ(d(x))|∇f(x)| = 0}.

Give any fixed point a ∈ Ω, set ‖f‖ = |f(a)| + ‖f‖B(ϕ). It is easy to check that ‖ · ‖

is a norm on both B(ϕ, k) and B0(ϕ, k). The ϕ-Bloch space B(ϕ, k) is a Banach space

and B0(ϕ, k) is a closed subspace of B(ϕ, k) under the norm ‖ · ‖.

These spaces are originally studied in the complex variable setting, see refs. [2–5] for

reference. In the real variable case, the harmonic Bergman space and harmonic mixed

norm space were discussed in refs. [6–8]. Pavlović and Stević respectively studied the

polyharmonic functions on the unit ball of R
n, see refs. [9, 10].

Let X be a space consisting of some functions in the domain Ω and a ∈ Ω fixed. The

Gleason’s problem for X with the reference point a, denoted by (Ω, a, X), is as follows.

If f ∈ X with f(a) = 0, do there exist functions g1, g2, · · · , gn ∈ X such that

f(x) =

n
∑

k=1

(xk − ak)gk(x) (3)

for all x ∈ Ω ?
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Whether the Gleason’s problem is solvable depends on Ω and the function space

X . In the holomorphic functions setting, Gleason originally asked the problem for

Ω = B ⊂ Cn, a = 0, and X = A(B), the ball algebra. This problem was solved by

Leibenson, see ref. [11]. Subsequently, many authors studied the Gleason’s problem for

various function spaces in B, see refs. [5,11–13]. In smoothly strongly pseudoconvex

domain Ω, Kerzman-Nagel, Ahern-Schneider discussed the problem in Lipschitz space

and Ck space, see refs. [14,15]. In ref. [16], Ren and Shi investigated the Gleason’s

problem for weighted Bergman space in the egg domain. The Gleason’s problem for

the harmonic Bergman space and Bloch space in the unit ball of R
n was considered in

ref. [7] and ref. [17]. In ref. [8], the Gleason’s problem (Ω, a, b
p
k), (Ω, a,B(ϕ, 1)) and

(Ω, a,B0(ϕ, 1)) were solved, where b
p
k is the harmonic Bergman-Sobolev space of order

k, 1 6 p < ∞ and Ω is a star-shaped domain with a strong reference point a ∈ Ω.

And also, Ren and Kahler studied the Gleason’s problem for the hyperbolic harmonic

weighted Bergman space in the unit ball of R
n in ref. [18]. But in these references

people can find that: (i) The domain Ω has a certain nice geometrical property, which

is either smoothly strongly pseudoconvex or symmetric in some sense with the point

0 ∈ Ω. (ii) The main tool used in these mentioned work is the Forelli-Rudin type

projection introduced in ref. [19]. (iii) In refs. [5,7,13,16], only the very special point

a = 0 is considered in (Ω, a, X).

The purpose of this paper is to solve the Gleason’s problem (Ω, a, H
p,q,ϕ
k ), (Ω, a,

B(ϕ, k)) and (Ω, a,B0(ϕ, k)) for any reference point a ∈ Ω and all possible 0 < p, q 6 ∞,

where Ω is the bounded convex domain with C2 boundary. And also we will discuss the

Gleason’s problem for the hyperbolic harmonic mixed norm space. As an application

of our approach, the analogous problems for the holomorphic functions will be studied.

Our work will extend those results in refs. [7,8,13,16–18,20].

In what follows, C will stand for positive constants whose value may change from

line to line but not depend on the functions being considered.

2 Some preliminary results

2.1 Independence on λ and ε

For a ∈ R
n and r > 0, set B(a, r) = {x ∈ R

n : |x− a| < r}. Let dm be the Lebesgue

volume measure on R
n.

Theorem 2.1. Let X be a space of certain continuous functions on Ω ⊆ R
n

satisfying

(I) For 0 < p < ∞, there exists a positive constant A1 such that for all f ∈ X and

B(a, r) ⊆ Ω,

|f(a)|p 6 A1r
−n

∫

B(a,r)

|f(x)|pdm(x).

(II) For any compact set K and open set G, K ⊂ G ⊂ Ω, there is a positive constant
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A2 such that for all f ∈ X ,

sup
x∈K

|f(x)| 6 A2 sup
x∈G\K

|f(x)|.

Then the mixed norm ‖ · ‖p,q,ϕ on X is independent of the defining function λ and

the parameter ε. That is, for any two defining functions λ1, λ2 and any two positive

parameters ε1, ε2, there exist some positive constants C1 and C2 such that for each

f ∈ X ,

C1‖f‖p,q,ϕ,λ1,ε1
6 ‖f‖p,q,ϕ,λ2,ε2

6 C2‖f‖p,q,ϕ,λ1,ε1
.

Proof. First, we prove that ‖ · ‖p,q,ϕ is independent of ε. It is sufficient to prove

that, given 0 < p, q 6 ∞ and 0 < ε1 < ε2 6 ε, there exists a constant C such that for

all f ∈ X ,

max
ε26r6ε

M∞(f, r) 6 C

{
∫ ε2

ε1

M q
p (f, t)dt

}
1

q

. (4)

To prove (4), we fix α and β, ε1 < α < β < ε2. By (II) we have some x0 such that

−β 6 λ(x0) 6 −α and maxε26r6ε M∞(f, r) 6 A2|f(x0)|. As in ref. [21] (or directly

by ref. [1]), we have some s > 0,

B(x0, s) ⊆ S(ε1, ε2) = {u ∈ R
n : −ε2 6 λ(u) 6 −ε1}.

By (I), we get

|f(x0)| 6

{

A1

sn

∫

B(x0,s)

|f(x)|pdm(x)

}
1

p

6 C

{
∫

S(ε1,ε2)

|f(x)|pdm(x)

}
1

p

6 C

{
∫ ε2

ε1

Mp
p (f, t)dt

}
1

p

. (5)

It gives

max
ε26r6ε

M∞(f, r) 6 C sup
ε16t6ε2

Mp(f, t).

This is (4) in the case q = ∞ and 0 < p 6 ∞. For p 6 q < ∞, applying Hölder

inequality to (5), we obtain

max
ε26r6ε

M q
∞(f, r) 6 C

{
∫ ε2

ε1

Mp
p (f, t)dt

}

q

p

6 C

∫ ε2

ε1

M q
p (f, t)dt.

For 0 < q < p 6 ∞, by the inequality Mq(f, r) 6 CMp(f, r), we have

max
ε26r6ε

M q
∞(f, r) 6 C

∫ ε2

ε1

M q
q (f, t)dt 6 C

∫ ε2

ε1

M q
p (f, t)dt.

Thus, the inequality (4) follows.

Given two defining functions λ1 and λ of Ω and ε small enough, keeping the estimates

(I) and (II) in mind and with the same approach as that of Lemma 3 in ref. [6], we

can prove, if q < ∞, there are two positive constants c1 and c2 such that

M q
p (f, r, λ1) 6

C

r

∫ c2r

c1r

M q
p (f, t, λ)dt (6)
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for all 0 < r 6 ε and f ∈ X . Since ϕ is normal, for the above constants c1 and c2, there

are two positive constants C1 and C2 such that, for 0 < r, t < ε satisfying c1 6
t
r

6 c2,

C1 6
ϕ(t)

ϕ(r)
6 C2. (7)

Then
∫ ε

c1

0

M q
p (f, r, λ1)

ϕq(r)

r
dr

6 C

∫ ε
c1

0

1

r

ϕq(r)

r

[
∫ c2r

c1r

M q
p (f, t, λ)dt

]

dr

= C

{
∫ ε

0

M q
p (f, t, λ)dt

∫ t
c1

t
c2

ϕq(r)

r2
dr + sup

λ(x)6−ε

|f(x)|q
}

6 C

{
∫ ε

0

M q
p (f, t, λ)

ϕq(t)

t
dt + sup

λ(x)6−ε

|f(x)|q
}

6 C

∫ ε

0

M q
p (f, t, λ)

ϕq(t)

t
dt. (8)

Thus, together with (4), we get
∫ ε

0

M q
p (f, r, λ1)

ϕq(r)

r
dr 6 C

∫ ε

0

M q
p (f, r, λ)

ϕq(r)

r
dr. (9)

Now for q = ∞, if 0 < r 6 min{ ε
c2

, ε}, by (6) and (7) again, we obtain that

Mp(f, r, λ1)ϕ(r) 6 C
ϕ(r)

r

∫ c2r

c1r

Mp(f, t, λ)dt

6 Cr−1

∫ c2r

c1r

Mp(f, t, λ)ϕ(t)dt

6 C sup
c1r6t6c2r

Mp(f, t, λ)ϕ(t)

6 C sup
06t6ε

Mp(f, t, λ)ϕ(t). (10)

This and (9) gives ||f ||p,q,ϕ,λ1
6 C||f ||p,q,ϕ,λ. Changing the positions of λ and λ1, we

have the domination in the other direction. The proof is completed.

2.2 Some norm estimates of the gradient

Theorem 2.2. Let X be a space of some C1 functions on Ω ⊆ R
n satisfying (I),

(II) and

(III) For 0 < p < ∞, there is a positive constant A3 such that for all f ∈ X ,

|∇f(a)|prp
6 A3r

−n

∫

B(a,r)

|f(x)|pdm(x).

Then there exists a constant C such that for all f ∈ X ,

‖∇f‖p,q,rϕ 6 C‖f‖p,q,ϕ. (11)

Proof. We have a positive constant c > 0 such that B(x, cr) ⊂ Ω r
2

for any x ∈ ∂Ωr

and 0 < r 6 ε. By (III),

|∇f(x)|q 6 A3
1

rn+q

∫

B(x,cr)

|f(u)|qdm(u).
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For 0 < p 6 ∞, 0 < q < ∞ and 0 < r 6 ε, similar to (6), we have c1 and c2 such that

M q
p (∇f, r) 6

C

rq+1

∫ c2r

c1r

M q
p (f, t)dt.

Therefore, similar to (8), apply Theorem 2.1 and (7) to get
∫ ε

0

M q
p (∇f, r)

rqϕq(r)

r
dr 6 C

∫ ε

0

ϕq(r)

r2
dr

∫ c2r

c1r

M q
p (f, t)dt

6 C

∫ ε

0

M q
p (f, t)

ϕq(t)

t
dt. (12)

For q = ∞, just doing the implication as (10), we have

‖∇f‖p,∞,rϕ 6 C‖f‖p,∞,ϕ.

This and (12) imply the estimate (11). The proof is completed.

For any f ∈ Hk(Ω) and any multi-index α, Dαf is still a polyharmonic function of

order k on Ω. And furthermore, {Dαf : f ∈ Hk(Ω), |α| 6 m} satisfy the conditions

(I), (II) and (III), see refs. [9] and footnote 1). Therefore, from Theorem 2.1 and

Theorem 2.2 we have the following corollaries.

Corollary 2.1. The spaces H
p,q,ϕ
k (Ω) and B(ϕ, k), B0(ϕ, k) are independent of

the defining function λ and the parameter ε.

Corollary 2.2. For 0 < p = q < ∞, the mixed norm spaces are exactly the

Bergman spaces. More precisely,

H
p,p,ϕ
k (Ω) =

{

f ∈ Hk(Ω);

{
∫

Ω

|f(x)|p
ϕp(d(x))

d(x)
dm(x)

}
1

p

< ∞

}

.

Corollary 2.3. Let Ω ⊆ R
n be a bounded domain with C2 boundary, 0 < p, q 6 ∞

and let m be a positive integer. Then there is a constant C such that for any f ∈ Hk(Ω),

‖∇mf‖p,q,rmϕ 6 C‖f‖p,q,ϕ.

Corollary 2.4. Let Ω ⊆ R
n be a bounded domain with C2 boundary, 0 < p, q 6 ∞

and let m be a positive integer. Then there is a constant C such that for any f ∈ Hk(Ω),

‖∇mf‖∞,∞,rm−1ϕ 6 C‖f‖B(ϕ).

Proof. Since |∇mf(x)| =
∑

|α|=m |Dαf(x)|, take p = q = ∞ in Corollary 2.3, we

obtain

‖∇mf‖∞,∞,rm−1ϕ 6 C
∑

|α|=m

∥

∥

∥

∂mf(x)

∂xα1

1 · · · ∂xαn
n

∥

∥

∥

∞,∞,rm−1ϕ

6 C

n
∑

i=1

∥

∥

∥

∂f

∂xi

(x)
∥

∥

∥

∞,∞,ϕ
6 C‖∇f‖∞,∞,ϕ

6 C sup
0<−λ(x)<ε

ϕ(d(x))|∇f(x)| = C‖f‖B(ϕ).

The proof is completed.

1) Hu Z J, Pavlović M, Zhang X J. The mixed norm spaces of polyharmonic functions to appear.
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2.3 The behavior of an integral operator

From now on, we suppose further that Ω is convex. Given a ∈ Ω, we define an

integral operator S on C(Ω) as

Sf(x) =

∫ 1

0

f(a + t(x − a))dt, f ∈ C(Ω) and x ∈ Ω.

Our interest is to understand the behavior of this operator. For this purpose we need

some more lemmas.

First, we adopt a special defining function ρ of Ω as in ref. [20]. Given a ∈ Ω, set

U =
{

x ∈ R
n : x = a + (1 − t)(ξ − a), t ∈

(

−
1

2
,
1

2

)

, ξ ∈ ∂Ω
}

.

For x = a + (1 − t)(ξ − a) ∈ U, define the special defining function ρ(x) on U just as

ρ(x) = −t, if x = a + (1 − t)(ξ − a) ∈ U. (13)

By ref. [20], ρ is of C2 and ∇ρ 6= 0 on ∂Ω. Therefore, as on Page 292 of ref. [21], we can

extend ρ to whole R
n to be a C2 defining function of Ω. Then for each x ∈ Ω sufficiently

near ∂Ω, saying 0 < −ρ(x) 6 ε, we have unique ξ ∈ ∂Ω and r = −ρ(x) ∈ (0, ε] such

that

x = a + (1 − r)(ξ − a) ∈ ∂Ωr.

Now for f continuous on Ω, we set f+ to be

f+(a + (1 − r)(ξ − a)) = sup
r
2
6t6r

|f(a + (1 − t)(ξ − a))|.

Lemma 2.1. Let X be a space of some continuous functions on Ω satisfying

conditions (I) and (II). Then there exists a constant C such that for all f ∈ X ,

||f+||p,q,ϕ 6 C||f ||p,q,ϕ.

Proof. Without loss of generality, we may assume a = 0. From (I), there exists a

constant C such that for all r
2 6 t 6 r, r ∈ (0, ε] and f ∈ X ,

|f((1 − t)ξ)|p 6
C

rn

∫

B((1−t)ξ, r
4
)

|f(u)|pdm(u) 6
C

rn

∫

B((1−r)ξ, 3

4
r)

|f(u)|pdm(u).

So

|f+((1 − r)ξ)|p 6
C

rn

∫

B((1−r)ξ, 3
4
r)

|f(u)|pdm(u). (14)

From this, as in the proof of Lemma 3 in ref. [6], we get

M q
p (f+, r) 6

C

r

∫ c2r

c1r

M q
p (f, t)dt

for all 0 < p 6 ∞ and 0 < q < ∞, where c1, c2 are positive constants not depending

on f . Thus, similar to (8) and (10), we get

‖f+‖p,q,ϕ 6 C‖f‖p,q,ϕ when 0 < p 6 ∞, 0 < q ≤ ∞.

The proof is completed.

Lemma 2.2. Let ϕ be normal on (0, ε] and s > 0. Then there exists some constant

C such that for all nonnegative continuous function g on (0, ε],
∫ ε

0

gs(r)
ϕ(r)

r
dr 6 C

{

sup
ε
2

6r6ε

gs(r) +

∫ ε

0

∣

∣

∣
g
(r

2

)

− g(r)
∣

∣

∣

s ϕ(r)

r
dr

}

. (15)
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Proof. The proof goes as that of Lemma 7 in ref. [9]. Without loss of generality,

we may assume that g is bounded on (0, ε]. Note that

I1 =

∫ ε

0

gs(r)
ϕ(r)

r
dr < ∞.

By (1) we get ϕ( r
2 ) 6

(

1
2

)a
ϕ(r). Then

I1 =

∫ 2ε

0

gs
(r

2

)ϕ
(

r
2

)

r
dr

=

∫ ε

0

gs
(r

2

)ϕ
(

r
2

)

r
dr +

∫ 2ε

ε

gs
(r

2

)ϕ
(

r
2

)

r
dr

6

(

1

2

)a
[

∫ ε

0

gs
(r

2

)ϕ(r)

r
dr + C sup

ε
2
6r6ε

gs(r)

]

. (16)

If s > 1, then by the Minkowski’s inequality we have

{
∫ ε

0

gs
(r

2

)ϕ(r)

r
dr

}
1

s

6

{
∫ ε

0

∣

∣

∣
g
(r

2

)

− g(r)
∣

∣

∣

s ϕ(r)

r
dr

}
1

s

+

{
∫ ε

0

gs(r)
ϕ(r)

r
dr

}
1

s

.

Thus,

I
1

s

1 6

(

1

2

)
a
s

{

[
∫ ε

0

gs
(r

2

)ϕ(r)

r
dr

]
1

s

+ C
1

s sup
ε
2

6r6ε

g(r)

}

6

(

1

2

)
a
s

{

I
1

s

1 +

[
∫ ε

0

∣

∣

∣
g
(r

2

)

− g(r)
∣

∣

∣

s ϕ(r)

r
dr

]
1

s

+ C
1

s sup
ε
2
6r6ε

g(r)

}

.

This implies

I
1

s

1 6

(

1
2

)
a
s

1 −
(

1
2

)
a
s

{

[
∫ ε

0

∣

∣

∣
g
(r

2

)

− g(r)
∣

∣

∣

s ϕ(r)

r
dr

]
1

s

+ C
1

s sup
ε
2

6r6ε

g(r)

}

. (17)

If 0 < s < 1, based on the inequality (a + b)s 6 as + bs(a, b > 0), from (16) we get

I1 6

(

1

2

)a
{

∫ ε

0

∣

∣

∣
g
(r

2

)

− g(r)
∣

∣

∣

s ϕ(r)

r
dr + I1 + C sup

ε
2
6r6ε

gs(r)

}

.

This yields

I1 6

(

1
2

)a

1 −
(

1
2

)a

{

∫ ε

0

∣

∣

∣
g
(r

2

)

− g(r)
∣

∣

∣

s ϕ(r)

r
dr + C sup

ε
2
6r6ε

gs(r)

}

. (18)

Hence (17) and (18) give the estimate (15). The proof is completed.

Lemma 2.3. Let ϕ be normal on (0, ε] and s > 0. Then there exists some constant

C such that for all nonnegative continuous functions g on (0, ε],

sup
0<r6ε

gs(r)ϕ(r) 6 C

{

sup
ε
2

6r6ε

gs(r) + sup
0<r6ε

∣

∣

∣
g

(r

2

)

− g(r)
∣

∣

∣

s

ϕ(r)

}

. (19)

Proof. Similar to Lemma 2.2, we can assume that g is bounded on (0, ε]. We
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consider the case that s = 1 first. Then

sup
0<r6ε

g(r)ϕ(r)

= sup
0<r62ε

g
(r

2

)

ϕ
(r

2

)

6 sup
0<r6ε

g
(r

2

)

ϕ
(r

2

)

+ sup
ε<r62ε

g
(r

2

)

ϕ
(r

2

)

6

(

1

2

)a
{

sup
0<r6ε

g
(r

2

)

ϕ(r) + C sup
ε
2

6r6ε

g(r)ϕ(r)

}

6

(

1

2

)a
{

sup
0<r6ε

∣

∣

∣
g

(r

2

)

− g(r)
∣

∣

∣
ϕ(r) + sup

0<r6ε

g(r)ϕ(r) + C sup
ε
2
6r6ε

g(r)

}

.

This gives the estimate (19) for s = 1. The general case that 0 < s < ∞ still holds

because the weight ϕ
1

s is still normal. The proof is completed.

Theorem 2.3. Let X be a space of some continuous functions on Ω satisfying

conditions (I) and (II). Then there exists a constant C such that for any f ∈ X ,

‖Sf‖p,q,ϕ 6 C‖f‖p,q,rϕ.

Proof. We may assume that a = 0 and prove the above estimate with the special

defining function ρ as (13). Then Sf(x) =
∫ 1

0 f(tx)dt. For x = (1−r)ξ ∈ ∂Ωr, r ∈ (0, ε],

we have

|Sf(x)| 6

∫ 1

0

|f(tx)|dt

6 C

{

M∞(f, ε) +

∫
ε−r
1−r

0

|f((1 − t)(1 − r)ξ)|dt

}

6 C

{

M∞(f, ε) +

∫ ε

r

|f((1 − u)ξ)|du

}

.

Writing

h(x) =

∫ ε

r

|f((1 − u)ξ)|du, (20)

we only need to prove that

||h||p,q,ϕ 6 C||f ||p,q,rϕ.

First, we claim that, for 0 < p, q 6 ∞,

||h||p,q,ϕ 6 C

{

‖f+‖p,q,rϕ + sup
ε
2
6r6ε

Mp(h, r)

}

. (21)

In fact, by (20)

h
((

1 −
r

2

)

ξ
)

− h ((1 − r)ξ) =

∫ r

r
2

|f((1 − u)ξ)|du. (22)

If 0 < p 6 1, then by (22)

hp
((

1 −
r

2

)

ξ
)

− hp((1 − r)ξ) =

{

∫ r

r
2

|f((1 − u)ξ)| du

}p

6

(r

2

)p

sup
r
2
6u6r

|f((1 − u)ξ)|p. (23)
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Note |f+((1 − r)ξ)| = sup r
2
6u6r |f((1− u)ξ)|. Denoting by dσ the surface measure on

∂Ω and integrating both sides of (23) on ∂Ω, we obtain
∫

∂Ω

hp
((

1 −
r

2

)

ξ
)

dσ(ξ) −

∫

∂Ω

hp((1 − r)ξ)dσ(ξ)

6 Crp

∫

∂Ω

|f+((1 − r)ξ)|pdσ(ξ). (24)

Setting g(r) =
∫

∂Ω hp((1 − r)ξ)dσ(ξ) and applying Lemma 2.2 with s = q
p
, we get

∫ ε

0

gs(r)
ϕq(r)

r
dr

6 C

{

∫ ε

0

[

g
(r

2

)

− g(r)
]s ϕq(r)

r
dr + sup

ε
2

6r6ε

gs(r)

}

6 C

{

∫ ε

0

[
∫

∂Ω

|f+((1 − r)ξ)|pdσ(ξ)

]s
[rϕ(r)]q

r
dr + sup

ε
2
6r6ε

gs(r)

}

.

Because Ω is of C2, we have two positive constants C1 and C2 such that for all contin-

uous functions F on {x ∈ Ω : 0 < −ρ(x) 6 ε},

C1

∫

∂Ωr

|F (x)|dσr(x) 6

∫

∂Ω

|F ((1 − r)ξ)|dσ(ξ) 6 C2

∫

∂Ωr

|F (x)|dσr(x). (25)

Hence,

‖h‖p,q,ϕ 6 C

{

‖f+‖p,q,rϕ + sup
ε
2
6r6ε

Mp(h, r)

}

. (26)

This is (21) for 0 < p 6 1 and 0 < q < ∞. For 1 < p 6 ∞, applying Minkowski’s

inequality to (22), we have
{

∫

∂Ω

hp((1 −
r

2
)ξ)dσ(ξ)

}
1

p

−

{
∫

∂Ω

hp((1 − r)ξ)dσ(ξ)

}
1

p

6

{
∫

∂Ω

[
∫ r

r
2

|f((1 − u)ξ)|du

]p

dσ(ξ)

}
1

p

6
r

2

{
∫

∂Ω

|f+((1 − r)ξ)|pdσ(ξ)

}
1

p

. (27)

Applying Lemma 2.2 to g(r) =
{∫

∂Ω hp((1 − r)ξ)dσ(ξ)
}

1

p with s = q > 0, we have
∫ ε

0

gs(r)
ϕq(r)

r
dr 6 C

{
∫ ε

0

[
∫

∂Ω

|f+((1 − r)ξ)|pdσ(ξ)

]

q

p [rϕ(r)]q

r
dr + sup

ε
2
6r6ε

gq(r)

}

.

From this and (25), the estimate (21) holds for 1 < p 6 ∞ and 0 < q < ∞. Now for

the case that q = ∞, instead of using Lemma 2.2 we apply Lemma 2.3 on (24) and

(27) respectively to get (21). From Lemma 2.1, there is a constant C such that for

each f ∈ X ,

‖f+‖p,q,rϕ 6 C||f ||p,q,rϕ.

Meanwhile, by the proof of Theorem 2.1 we obtain

sup
ε
2
6r6ε

Mp(h, r) 6 C sup
ε
2

6−ρ(x)6ε

|f(x)| 6 C||f ||p,q,rϕ.

This and (26) imply the conclusion of the theorem. The proof is completed.
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3 The Gleason’s problem

In this section, we will study the Gleason’s problem.

3.1 The case of polyharmonic function spaces

Notice that Hk(Ω) satisfies the conditions (I), (II) and (III). Hence, Theorem 2.2

and Theorem 2.3 hold for f ∈ Hk(Ω).

Theorem 3.1. Let Ω ⊆ R
n be a bounded convex domain with C2 boundary.

Suppose ϕ is normal and 0 < p, q 6 ∞, then the Gleason’s problem (Ω, a, H
p,q,ϕ
k ) can

be solved. More precisely, for any a ∈ Ω and integer m > 1, there exist bounded

linear operators Aα on H
p,q,ϕ
k (Ω), |α| = m, such that if f ∈ H

p,q,ϕ
k (Ω) with Dαf(a) =

0 (|α| 6 m − 1), then

f(x) =
∑

|α|=m

(x − a)αAαf(x). (28)

Proof. Without loss of generality, we may assume a = 0. For j = 1, 2, · · · , n,

define the operator Aj on Hk(Ω) as

Aj(f)(x) =

∫ 1

0

∂f

∂xj

(tx)dt for f ∈ Hk(Ω).

Then Aj(f) ∈ Hk(Ω). And for f ∈ Hk(Ω) with f(0) = 0, we have

f(x) =

n
∑

j=1

xjAj(f)(x). (29)

To prove (28), we suppose m = 1 first. By Theorem 2.2, each operator f 7−→ ∂f
∂xj

is

bounded from H
p,q,ϕ
k (Ω) to H

p,q,rϕ
k (Ω). Then, Theorem 2.3 implies that the operator

f 7−→ Aj(f) = S( ∂f
∂xj

) is bounded on H
p,q,ϕ
k (Ω). This yields the conclusion (28) for

m = 1. The equality (28) for m > 2 can be proved by induction. The proof is

completed.

Theorem 3.2. Let Ω ⊆ R
n be a bounded convex domain with C2 boundary.

Suppose ϕ is normal and a ∈ Ω. Then for any integer m > 1 there exist bounded

linear operators Aα on B(ϕ, k) (or on B0(ϕ, k)), |α| = m, such that if f ∈ B(ϕ, k) (or

f ∈ B0(ϕ, k)) with Dαf(a) = 0 (|α| 6 m − 1), then

f(x) =
∑

|α|=m

(x − a)αAαf(x). (30)

Proof. Similarly, we may assume a = 0 ∈ Ω. And we need only to prove, for

integer m > 1, there exist bounded linear operators Aα on B(ϕ, k) (and on B0(ϕ, k)),

|α| = m, such that if f ∈ B(ϕ, k) (or f ∈ B0(ϕ, k)) with Dαf(0) = 0 (|α| 6 m − 1),

then

f(x) =
∑

|α|=m

xαAαf(x).

For this purpose, we consider the case m = 1 first. By Theorem 2.3,

||Sf ||∞,∞,ϕ 6 C||f ||∞,∞,rϕ.
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From Theorem 2.3, Corollary 2.4 and the fact that

∂

∂xk

(Ajf) (x) = S

(

∂2f

∂xj∂xk

)

(x),

we get

||Aj(f)||B(ϕ) = sup
x∈Ω,d(x)6ε

ϕ(d(x))|∇Aj (f)(x)|

6 C

n
∑

k=1

∥

∥

∥

∥

S

(

∂2f

∂xj∂xk

)∥

∥

∥

∥

∞,∞,ϕ

6 C

n
∑

k=1

∥

∥

∥

∥

∂2f

∂xj∂xk

∥

∥

∥

∥

∞,∞,rϕ

6 C||f ||B(ϕ). (31)

If f ∈ B0(ϕ, k), we claim that Aj(f) ∈ B0(ϕ, k). In fact, for any ε > 0, we have some

δ > 0 such that for 0 < r < δ,

sup
ξ∈∂Ω

ϕ(r)
n

∑

j=1

∣

∣

∣

∣

∂f

∂xj

((1 − r)ξ)

∣

∣

∣

∣

< ε. (32)

Because |∇ρ(x)| 6= 0 on ∂Ω, we have some positive constant c such that

B((1 − r)ξ, cr) ⊂ Ω r
2
\ Ω2r when 0 < r < ε, ξ ∈ ∂Ω.

Then from the condition (III),
n

∑

k=1

∣

∣

∣

∣

∂2f

∂xj∂xk

((1 − r)ξ)

∣

∣

∣

∣

6 C
1

rn+1

∫

B((1−r)ξ,cr)

∣

∣

∣

∣

∂f

∂xj

(y)

∣

∣

∣

∣

dm(y),

where the constant C is independent of r and ξ. From (1), (2) and (32), we get some

δ1 > 0 such that for 0 < r < δ1

sup
ξ∈∂Ω

rϕ(r)
n

∑

j,k=1

∣

∣

∣

∣

∂2f

∂xj∂xk

((1 − r)ξ)

∣

∣

∣

∣

< ε. (33)

We know that

|Sf(x)| 6

∫ 1

0

|f(tx)|dt 6 C

{

M∞(f, δ1) +

∫ δ1

r

|f((1 − u)ξ)|du

}

.

By (33),

ϕ(r)

∣

∣

∣

∣

∂Aj(f)

∂xk

((1 − r)ξ)

∣

∣

∣

∣

= ϕ(r)

∣

∣

∣

∣

S

(

∂2f

∂xj∂xk

)

((1 − r)ξ)

∣

∣

∣

∣

6 Cϕ(r)

{

M∞

(

∂2f

∂xj∂xk

, δ1

)

+

∫ δ1

r

∣

∣

∣

∣

(

∂2f

∂xj∂xk

)

((1 − u)ξ)

∣

∣

∣

∣

du

}

6 C

{

ϕ(r)M∞

(

∂2f

∂xj∂xk

, δ1

)

+ ra

∫ δ1

r

ϕ(u)

ua

∣

∣

∣

∣

(

∂2f

∂xj∂xk

)

((1 − u)ξ)

∣

∣

∣

∣

du

}

6 C

{

ϕ(r)M∞

(

∂2f

∂xj∂xk

, δ1

)

+ εra

∫ δ1

r

1

ua+1
du

}

6 C

{

ϕ(r)M∞

(

∂2f

∂xj∂xk

, δ1

)

+ ε

}

.
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The constant C in the above inequalities are also independent of r and ξ. Therefore,

sup
ξ∈∂Ω

ϕ(r)

∣

∣

∣

∣

∂Ajf

∂xk

((1 − r)ξ)

∣

∣

∣

∣

< ε, (34)

if r is sufficiently small. That means Aj(f) ∈ B0(ϕ, k). Furthermore, combining (29),

(31) and (34) we conclude the proof for m = 1. The general case can also be proved

by induction. The proof is completed.

Remark 3.1. In ref. [7], the authors have considered the Gleason’s problem for

the harmonic weighted Bergman space bp with 1 6 p < ∞ and harmonic Bloch space

with ϕ(r) = r in the unit ball B of R
n. In ref. [17], Ren and Kahler have solved

the Gleason’s problem (B, a,Bs), where Bs is the harmonic Bloch-type space with

ϕ(r) = rs and 0 < s < ∞. Our Theorem 3.1 and 3.2 generalize those in refs. [7,17].

3.2 The case of hyperbolic harmonic function spaces

Denote by In the identity matrix. The Poincaré metric on B = {x ∈ R
n : |x| < 1}

deduced from the positive-definite matrix (gij) = (1 − |x|2)−2In is ds = |dx|
1−|x|2 . And

the corresponding Laplace-Beltrami operator is given by

∆h = (1 − |x|2)2∆ + 2(n − 2)(1 − |x|2)

n
∑

j=1

xj

∂

∂xj

.

Originally, the hyperbolic harmonic functions f are only defined on B for which ∆hf ≡

0. So, the hyperbolic harmonic functions are closely connected with the Poincaré metric

and the Lorenz group SO(n, 1) on B, see refs. [18,22] for a small part of references.

Similar to the fact that people are often interested in harmonic functions in a domain Ω

in R
n, although the Laplacian ∆ is for the Riemannian manifold R

n with the Euclidean

metric, we are going to be interested in those functions f ∈ C2(Ω) with ∆hf(x) = 0 for

x ∈ Ω. These functions f are real analytic at any x ∈ Ω \ ∂B by the regular theorem

of elliptic PDE, see ref. [23]. On the other hand, the C2 function f defined by

f(x) =







|x|2 − 1
|x|2 − 4 log |x|, |x| > 1,

0 , |x| 6 1

satisfies ∆hf ≡ 0 on R
4, but f is not infinitely differentiable at any x ∈ ∂B. Therefore,

it is natural to define the set h(Ω) of all hyperbolic harmonic functions on Ω, provided

Ω ⊆ R
n \ ∂B, to be

h(Ω) =
{

f ∈ C2(Ω) : ∆hf(x) = 0, x ∈ Ω
}

;

and define the hyperbolic harmonic mixed norm space hp,q,ϕ(Ω) to be

hp,q,ϕ(Ω) = {f ∈ h(Ω) : ‖f‖p,q,ϕ < ∞}.

The hyperbolic harmonic Bergman space can be defined in the usual way and it coin-

cides with hp,p,ϕ(Ω).

To study the Gleason’s problem on some hyperbolic harmonic function spaces, one

could not hope that the function gk in (3) is still hyperbolic harmonic as pointed out

in ref. [18]. We adopt the adjustment for this problem as Ren and Kahler, which is as

follows.
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Let X be a space of some hyperbolic harmonic functions in the domain Ω ⊆ R
n \∂B

and denote by Y a certain function space associated to X without the condition of

hyperbolic harmonicity. The Gleason’s problem could be turned out in this way:

if a ∈ Ω and f ∈ X with f(a) = 0, do there exist functions g1, g2, · · · , gn ∈ Y such

that

f(x) =

n
∑

k=1

(xk − ak)gk(x)

for all x ∈ Ω?

Before formulating our solution to the Gleason’s problem for the hyperbolic harmonic

mixed norm space, we need some more lemmas.

Lemma 3.1. Let Ω ⊆ R
n\∂B be a domain. Then for any compact subset K ⊂ Ω,

multi-index α and f ∈ h(Ω),

sup
x∈K

|Dαf(x)| = sup
x∈∂K

|Dαf(x)| .

Proof. By ref. [23], the function f ∈ h(Ω) has the maximal property. That is, for

each compact subset K ⊂ Ω,

sup
x∈K

|f(x)| 6 sup
x∈∂K

|f(x)|.

Because h(Ω) is linear, with the above estimate and the definition of partial derivatives,

we obtain

sup
x∈K

∣

∣

∣

∣

∂f

∂xj

(x)

∣

∣

∣

∣

6 sup
x∈∂K

∣

∣

∣

∣

∂f

∂xj

(x)

∣

∣

∣

∣

, j = 1, · · · , n.

This implies the conclusion for |α| = 1. The general case can also be proved by

induction. The proof is completed.

Lemma 3.2. Let Ω ⊆ R
n \ ∂B be a domain. Then for 0 < p < ∞, there exists a

constant C such that for each f ∈ h(Ω) and B(a, r) ⊂ Ω,

|f(a)| + r|∇f(a)| + r2
∑

|α|=2

|Dαf(a)| 6 C

{

1

|B(a, r)|

∫

B(a,r)

|f(x)|pdm(x)

}
1

p

. (35)

Proof. For x ∈ Ω, recall that d(x) is the distance from x to ∂Ω. Clearly, d(x) 6

|1 − |x|| since Ω ⊆ R
n \ ∂B. For each f ∈ h(Ω), f is a solution of the equation

∆f +
2(n − 2)

1 − |x|2

n
∑

j=1

xj

∂f

∂xj

= 0. (36)

Applying Proposition 13.3 on Page 225 of ref. [23], for f ∈ h(Ω) and B(a, r) ⊂ Ω,

0 < p < ∞, we have

sup
x∈B(a, r

4
)

|f(x)| 6 C1

{

1

|B(a, r)|

∫

B(a,r)

|f(x)|pdm(x)

}
1

p

. (37)

And applying Theorem 6.2 in ref. [24] to (36),

r|∇f(a)| + r2
∑

|α|=2

|Dαf(a)| 6 C2 sup
x∈B(a, r

4
)

|f(x)|, (38)
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where C1 and C2 are both independent of f and a, r. Now, the estimate (35) follows

from (37) and (38). The proof is ended.

By Theorem 2.1, we have the following two corollaries.

Corollary 3.1. Let Ω ⊆ R
n \∂B be a bounded convex domain with C2 boundary,

and ϕ be normal, 0 < p, q 6 ∞. Then the spaces hp,q,ϕ(Ω) are independent of the

defining function λ and the parameter ε.

Corollary 3.2. If 0 < p = q < ∞, then hp,q,ϕ(Ω) = ap,ϕ(Ω), where ap,ϕ is the

p-th Bergman space

ap,ϕ =

{

f ∈ h(Ω);

{
∫

Ω

|f(x)|p
ϕp(d(x))

d(x)
dm(x)

}
1

p

< ∞

}

.

Now we are ready to state our solution to (Ω, a, hp,q,ϕ(Ω)).

Theorem 3.3. Let Ω ⊆ R
n \∂B be a bounded convex domain with C2 boundary.

Suppose that ϕ is normal and 0 < p, q 6 ∞, then for any a ∈ Ω, there exist bounded

linear operators Aj from hp,q,ϕ(Ω) to X = {f ∈ C(Ω) : ‖f‖p,q,ϕ < ∞}, j = 1, 2, · · · , n,

such that if f ∈ hp,q,ϕ(Ω) with f(a) = 0, then

f(x) =

n
∑

j=1

(xj − aj)Ajf(x).

Proof. We may also assume a = 0. Similar to the proof of Theorem 3.1, for

f ∈ h(Ω) with f(a) = 0, we have

f(x) =

n
∑

j=1

xjAj(f)(x),

where Aj(f)(x) =
∫ 1

0
∂f
∂xj

(tx)dt. By Lemma 3.2 and Theorem 2.2, for f ∈ h(Ω)
∥

∥

∥

∥

∂f

∂xj

∥

∥

∥

∥

p,q,rϕ

6 C‖f‖p,q,ϕ.

By Lemma 3.2, similar to (14), we have
∣

∣

∣

∣

∣

(

∂f

∂xj

)+

((1 − r)ξ)

∣

∣

∣

∣

∣

p

6
C

rn+p

∫

B((1−r)ξ, 3
4
r)

|f(u)|pdm(u).

Then as the proof of Lemma 2.1, for 0 < p, q 6 ∞ we obtain
∥

∥

∥

∥

∥

(

∂f

∂xj

)+
∥

∥

∥

∥

∥

p,q,rϕ

6 C‖f‖p,q,ϕ. (39)

For x = (1 − r)ξ ∈ ∂Ωr, r ∈ (0, ε], set

h(x) =

∫ ε

r

∣

∣

∣

∂f

∂xj

((1 − u)ξ)
∣

∣

∣
du.

As (21) we get, for 0 < p, q 6 ∞,

‖h‖p,q,ϕ 6 C







∥

∥

∥

∥

∥

(

∂f

∂xj

)+
∥

∥

∥

∥

∥

p,q,rϕ

+ sup
ε
2
6r6ε

Mp(h, r)







.
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Then, Lemma 3.2 and (39) give

‖h‖p,q,ϕ 6 C







∥

∥

∥

∥

∥

(

∂f

∂xj

)+
∥

∥

∥

∥

∥

p,q,rϕ

+ ‖f‖p,q,ϕ







6 C‖f‖p,q,ϕ. (40)

It is trivial that

|Aj(f)(x)| 6 C

{

M∞

( ∂f

∂xj

, ε
)

+ h(x)

}

. (41)

Now the estimate ‖Aj(f)‖p,q,ϕ 6 C‖f‖p,q,ϕ comes from (40) and (41) and Lemma 3.2.

The proof is finished.

Remark 3.2. For Ω = B, 0 < p = q < ∞ and ϕ(r) = rs, the conclusion of

Theorem 3.3 is the main result in ref. [18], where the approach is strongly based on

the symmetry of B.

4 Final remarks

As in ref. [8], a domain Ω ⊆ R
n is called star-shaped with a strong reference point

a ∈ Ω if Ω is star-shaped with a and there exists an angle θ0 ∈ [0, π
2 ) such that

ξ − a

|ξ − a|
· −→n (ξ) > cosθ0 > 0

for all ξ ∈ ∂Ω, where −→n denotes the unit outward normal vector filed on ∂Ω. It is

trivial that a bounded convex C2 domain must be star-shaped with any point a ∈ Ω,

and furthermore, any a ∈ Ω is a strong reference point. In ref. [8], the authors

solved the Gleason’s problem (Ω, a, b
p
k), (Ω, a,B(ϕ, 1)) and (Ω, a,B0(ϕ, 1)), where b

p
k is

the harmonic Bergman-Sobolev space of order k, 1 6 p < ∞ and Ω is a star-shaped

domain with a strong reference point a ∈ Ω.

A careful check of our results in sec. 2 and Theorem 3.1, Theorems 3.2 and 3.3

shows that the conclusions (28) and (30) remain valid if Ω is a star-shaped bounded

C2 domain with the strong reference point a ∈ Ω. Therefore, our theorems also extend

ref. [8]. To short the length, here we only exhibit it as Theorem 3.4.

Theorem 3.4. Let Ω ⊆ R
n be a star-shaped bounded C2 domain with a strong

reference point a ∈ Ω. Suppose that ϕ is normal and 0 < p, q 6 ∞, then for any integer

m > 1, there exist bounded linear operators Aα on H
p,q,ϕ
k (Ω), |α| = m, such that if

f ∈ H
p,q,ϕ
k (Ω) with Dαf(a) = 0 (|α| 6 m − 1), then

f(x) =
∑

|α|=m

(x − a)αAαf(x).

We now go back to the complex variables. Let Ω ⊆ Cn = R
2n be a star-shaped

bounded C2 domain with a strong reference point a ∈ Ω. Denote H(Ω) the family

of all holomorphic functions on Ω. The holomorphic mixed norm space Hp,q,ϕ(Ω) is

defined as

Hp,q,ϕ(Ω) = {f ∈ H(Ω); ‖f‖p,q,ϕ < ∞} .

And the holomorphic ϕ-Bloch (little ϕ-Bloch) space B(ϕ) (B0(ϕ)) is defined in the

same way.
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It is well known that the holomorphic functions still satisfy the conditions (I), (II)

and (III), and so these corresponding results in sec. 2 still hold for the function

f ∈ H(Ω). Therefore, with our approach in sec. 2 and subsec. 3.1, we can solve

the Gleason’s problem in the holomorphic function setting. We have the following

theorems.

Theorem 3.5. Let Ω ⊆ Cn be a star-shaped bounded C2 domain with a strong

reference point a ∈ Ω. Suppose that ϕ is normal and 0 < p, q 6 ∞. Then for any

integer m > 1, there exist bounded linear operators Aα on Hp,q,ϕ(Ω), |α| = m, such

that if f ∈ Hp,q,ϕ(Ω) with Dαf(a) = 0 (|α| 6 m − 1), then

f(z) =
∑

|α|=m

(z − a)αAαf(z).

Theorem 3.6. Let Ω ⊆ Cn be a star-shaped bounded C2 domain with a strong

reference point a ∈ Ω and ϕ a normal function. Then for any integer m > 1, there exist

bounded linear operators Aα on B(ϕ) (or on B0(ϕ)), |α| = m, such that if f ∈ B(ϕ)

(or f ∈ B0(ϕ)) with Dαf(a) = 0 (|α| 6 m − 1), then

f(z) =
∑

|α|=m

(z − a)αAαf(z).

We define Aj on H(Ω) as

Ajf(z) =

∫ 1

0

∂f

∂zj

(tz)dt, f ∈ H(Ω), z ∈ Ω.

Then for f ∈ H(Ω) with f(0) = 0, we have

f(z) =

n
∑

j=1

zjAjf(z). (42)

From this, the proof of these two theorems goes as the proofs of Theorem 3.1 and

Theorem 3.2 with only one adjustment that (29) should be replaced by the equality

(42).
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