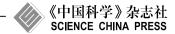
link.springer.com

math.scichina.com



定向图的斜秩

李学良^①, 于桂海^{①②*}

① 南开大学组合数学研究中心, 天津 300071;

② 山东工商学院数学与信息科学学院, 烟台 264005

E-mail: lxl@nankai.edu.cn, yuguihai@126.com

收稿日期: 2014-05-06; 接受日期: 2014-07-28; * 通信作者

国家自然科学基金 (批准号: 11301302 和 11371205)、中国博士后基金 (批准号: 2013M530869 和 2014T70210) 和山东省博士基金 (BS2013SF009) 资助项目

摘要 定向图 G^{σ} 是一个不含有环 (loop) 和重边的有向图, 其中 G 称作它的基图. $S(G^{\sigma})$ 是 G^{σ} 的斜邻接矩阵. $S(G^{\sigma})$ 的秩称为 G^{σ} 的斜秩, 记为 $SC(G^{\sigma})$. 定向图的斜邻接矩阵是斜对称的, 因而, 它的斜秩是偶数. 本文主要考虑简单定向图的斜秩, 首先给出斜秩的一些简单基本知识, 紧接着分别刻画斜秩是 2 的定向图和斜秩是 4 的带有悬挂点的定向图; 其次利用匹配数给出具有 n 个顶点、围长是 k 的单圈图的斜秩表达式; 作为推论, 列出斜秩是 4 的所有单圈图和带有悬挂点的双圈图; 另外研究具有 n 个顶点、围长是 k 的单圈图的图类中斜秩的最小值, 并刻画了极图; 最后研究斜邻接矩阵是非奇异的定向单圈图.

关键词 定向图 斜邻接矩阵 斜秩

MSC (2010) 主题分类 05C20, 05C50, 05C75

1 引言

设 G 是具有 n 个顶点的简单图, 顶点集是 $V(G) = \{v_1, v_2, \ldots, v_n\}$, 边集是 E(G). n 个顶点的图 G 的临界矩阵 A(G) 是 $n \times n$ 的 0-1 对称矩阵 $(a_{ij})_{n \times n}$, 其中 $a_{ij} = 1$ 当且仅当 v_i 与 v_j 是相邻的, 否则是 0. 记 $\mathrm{Sp}(G)$ 是图 G 的临界矩阵的谱. 矩阵 A(G) 的秩称为图 G 的秩,记为 r(G). 设 G^{σ} 是对每条边给予一定方向的定向图, 图 G 称为 G^{σ} 的基图. 定向图 G^{σ} 的斜邻接矩阵记为 $S(G^{\sigma}) = (s_{ij})_{n \times n}$, 其中 $s_{ij} = 1$, 如果存在一条从 v_i 到 v_j 的弧; $s_{ij} = -1$, 如果存在一条从 v_j 到 v_i 的弧; 否则, $s_{ij} = 0$. 显然, $S(G^{\sigma})$ 是斜对称的. $S(G^{\sigma})$ 的秩称为定向图 G^{σ} 的斜秩,记为 $\mathrm{sr}(G^{\sigma})$. $S(G^{\sigma})$ 的谱定义为是 G^{σ} 的斜谱 $\mathrm{Sp}(G^{\sigma})$. 显然, 定向图的斜谱是纯虚数或零, 而且斜秩是偶数.

设 $C_k^{\sigma} = u_1 u_2 \cdots u_k u_1$ 是偶定向圈. 偶圈的符号 $\operatorname{sgn}(C_k^{\sigma})$ 定义为 $\prod_{i=1}^k s_{u_i u_{i+1}}$ 且 $u_{k+1} = u_1$. 偶定向圈 C_k^{σ} 称为偶定向的 (奇定向的),是指它的符号是正的 (负的). 如果 G^{σ} 中的每个偶圈都是偶定向的,则 G^{σ} 称为偶定向的. 如果一个定向图是 K_2 ,或者是一个偶圈,则这个定向图就称为初等定向图. 如果一个定向图的每一个分支都是初等定向图,则该定向图就称为基本定向图. 定向图 G^{σ} 称为多部图,如果它的基图是多部图. 基图 G 的诱导子图以及它的每条边在 G^{σ} 中的定向所构成的定向图称为 G^{σ} 的诱导子图. 对 G^{σ} 的一个诱导子图 H^{σ} , $G^{\sigma} = H^{\sigma}$ 表示 G^{σ} 去掉 H^{σ} 的所有顶点及其临边后得到的子图. 对于 G^{σ} 的顶点集的子集 V', $G^{\sigma} = V^{\sigma}$ 表示 G^{σ} 去掉 V^{σ} 中所有点以及与其关联的边所得的子图.

如果 G^{σ} 的一个顶点只与唯一的一个顶点相连, 则该顶点称为悬挂点, 它的临点称为拟悬挂点. 设 M 是 G^{σ} 的一个边集的子集合, 若 G^{σ} 的每一个顶点至少与 M 中至少一条边相关联, 则 M 称为一个匹配. 如果 G^{σ} 的每一个顶点恰好与 M 中一条边相关联, 则 M 称为一个完美匹配. 记 $m_{G^{\sigma}}(i)$ 表示 G^{σ} 中边数是 i 的匹配的数目, $\beta(G^{\sigma})$ 表示 G^{σ} 的匹配数 (即极大匹配中边的条数). 对于具有至少两个顶点的定向图 G^{σ} , 一个顶点 $v \in V(G^{\sigma})$ 称为不饱和的, 如果存在 G^{σ} 的一个极大匹配使得其中任何一条边都不与 v 相关联; 否则, v 称为饱和的. 用 P_n , S_n , C_n 和 K_n 表示具有 n 个顶点的非定向的路图、星图、圈图和完全图. $K_{n_1,n_2,...,n_r}$ 表示非定向的完全 r- 部图. 含有一个顶点的简单图, 称为平凡图.

近年来, 定向图的斜邻接矩阵引起了很多学者的研究兴趣. Cavers 等人[1] 发表了一篇关于斜邻接矩阵的文章, 内容包括以下几个问题: 斜邻接矩阵是同谱的图的相关问题; 匹配多项式与邻接矩阵和斜邻接矩阵的关系的相关问题; 斜谱半径的问题等. Anuradha 等人[2] 研究了定向图的 Cartesian 积的斜谱. Anuradha 等人[3] 考虑了某类特殊二部图的斜谱, 并解决了 Cui 和 Hou [4] 的一个猜想. Hou 等人[5] 给出了斜邻接矩阵的特征多项式的系数的表达式, 作为应用给出了一些已知结果的新的组合证明. Gong 等人[6] 研究了赋权定向图的一些相关问题. Xu [7] 考虑了定向图的斜谱半径的问题, 并研究了与基图的谱半径的关系. 另外, 很多学者研究了定向图的能量问题, 可参见文献 [8–15].

本文内容结构如下: 第 2 节给出一些预备知识; 第 3 节分别刻画斜秩是 2 的连通定向图和斜秩是 4 的带有悬挂点的定向图; 第 4 节利用匹配数给出单圈图的斜秩的表达式. 考虑了顶点数是 n、围长是 k 的单圈图的斜秩的极小值, 并刻画了极图; 第 5 节考虑定向单圈图的斜邻接矩阵的非奇异性.

2 预备知识

下面的结果可由矩阵的初等知识得到.

引理 2.1 (1) 设 H^{σ} 是 G^{σ} 的一个诱导子图, 则有 $\operatorname{sr}(H^{\sigma}) \leqslant \operatorname{sr}(G^{\sigma})$;

- (2) 设 $G^{\sigma} = G_1^{\sigma} \cup G_2^{\sigma} \cup \cdots \cup G_t^{\sigma}$, 其中 G_1^{σ} , G_2^{σ} , ..., G_t^{σ} 是 G^{σ} 的连通分支, 则有 $\operatorname{sr}(G^{\sigma}) = \sum_{i=1}^t \operatorname{sr}(G_i^{\sigma})$;
- (3) 设 G^{σ} 是具有 n 个顶点的定向图, 则 $sr(G^{\sigma}) = 0$ 当且仅当 G^{σ} 是一个空图 (有顶点但无边). 由文献 [5,16] 知, 定向树与它的基图具有相同的谱. 由文献 [17], 可得下面的引理:

引理 2.2 设 T^{σ} 是定向树, 匹配数为 $\beta(T)$, 则有 $\operatorname{sr}(T^{\sigma}) = r(T) = 2\beta(T)$.

由引理 2.2, 可得下面的引理:

引理 2.3 设 P_n^{σ} 是具有 n 个顶点的定向路,则有

$$\operatorname{sr}(P_n^{\sigma}) = \begin{cases} n-1, & n \text{ 是奇数,} \\ n, & n \text{ 是偶数.} \end{cases}$$

引理 2.4 $^{[5,16]}$ 设 C_n^{σ} 是具有 n 个顶点的定向圈, 则

引理 2.5 设 G^{σ} 是一定向图, v 是其一个悬挂点, u 是 v 的邻点, 则有 $\operatorname{sr}(G^{\sigma}) = \operatorname{sr}(G^{\sigma} - u - v) + 2$.

证明 设 G^{σ} 的所有顶点为 v_1, v_2, \ldots, v_n 且 $v_1 = v, v_2 = u$. G^{σ} 的邻接矩阵可表示为

$$S(G^{\sigma}) = \begin{pmatrix} 0 & s_{12} & 0 & \cdots & 0 \\ s_{21} & 0 & s_{23} & \cdots & s_{2n} \\ 0 & s_{32} & 0 & \cdots & s_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & s_{n2} & s_{n3} & \cdots & 0 \end{pmatrix},$$

其中前两行前两列是由 v_1 和 v_2 诱导的. 由矩阵的初等变换可得

$$\operatorname{sr}(G^{\sigma}) = r \begin{pmatrix} 0 & s_{12} & 0 & \cdots & 0 \\ s_{21} & 0 & 0 & \cdots & s_{3n} \\ 0 & 0 & 0 & \cdots & s_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & s_{n3} & \cdots & 0 \end{pmatrix} = r \begin{pmatrix} 0 & s_{12} \\ s_{21} & 0 \end{pmatrix} + r \begin{pmatrix} 0 & \cdots & s_{3n} \\ \vdots & \ddots & \vdots \\ s_{n3} & \cdots & 0 \end{pmatrix}$$
$$= r \begin{pmatrix} 0 & s_{12} \\ s_{21} & 0 \end{pmatrix} + \operatorname{sr}(G^{\sigma} - \{v_1, v_2\})$$
$$= 2 + \operatorname{sr}(G^{\sigma} - u - v).$$

注 2.6 事实上, 引理 2.5 对于非定向图也成立, 可参见文献 [17, 推论 1].

为了方便, 引理 2.5 中的变换称为 δ- 变换. 某些图的斜秩可以借助于有限步的此变换得到.

设 w 是两个不相邻的顶点的公共邻点. 连接 w 和 v 以及 w 和 u 的弧称为一致定向的, 是指弧由 u, v 指向 w, 或者 w 指向 u, v. 连接 w 和 v 以及 w 和 u 的弧称为反定向的, 是指一条弧从 u, v 指向 w, 另一条由 w 指向 v, u.

两个不相邻的顶点称为一致 (反) 双胞胎点, 是指它们的邻点集相同, 且 u, v 到它们的公共邻点的弧是一致定向的 (反定向的).

例 2.7 图 1(a) 中的 u 和 v 是一致定向的, 图 1(b) 中的是反定向的.

在定向图 G^{σ} 中,一致双胞胎点在斜邻接矩阵中对应的行和列是相同的,反双胞胎点对应的行和列互为相反数. 因而,去掉或增加一个一致双胞胎点 (反双胞胎点),并不改变定向图的斜秩. 可得下面的引理.

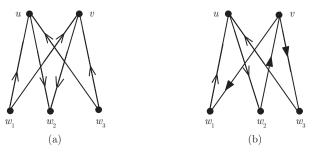


图 1 一致定向与反定向的示例

引理 2.8 设 u 和 v 是定向图 G^{σ} 中的一致 (反) 双胞胎点,则有 $\operatorname{sr}(G^{\sigma}) = \operatorname{sr}(G^{\sigma} - u) = \operatorname{sr}(G^{\sigma} - v)$. 两个悬挂点称为悬挂双胞胎点,是指它们具有相同的邻点.

引理 2.9 设 u 和 v 是定向图 G^{σ} 中的悬挂双胞胎点,则 $\operatorname{sr}(G^{\sigma}) = \operatorname{sr}(G^{\sigma} - u) = \operatorname{sr}(G^{\sigma} - v)$. 由一致 (反) 双胞胎点和偶定向图的定义,可得下面的引理:

引理 2.10 设 G^{σ} 是完全多部定向图. 如果其中的所有 4 个顶点的全是偶定向的,则在同一分布中的点是一致定向双胞胎点或反双胞胎点.

3 具有小斜秩的定向图

根据引理 2.1 和 2.3, 对任意的非空图 G 来说, $\operatorname{sr}(G^{\sigma}) \geq 2$. 因而, 很自然地考虑下列问题: 刻画斜 秩是 2 或 4 的定向图.

设 G_1 是通过在 K_3 的某个顶点上加一条悬挂边而得到的 (见图 2(a)). 设 G^{σ} 是一定向图, $v \in V(G^{\sigma})$, $V' \subset V(G^{\sigma})$. N(v) 表示 v 在 G^{σ} 的邻点集. $G^{\sigma}[V^{\sigma}]$ 表示由 V' 在 G^{σ} 诱导的子图.

定理 3.1 设 G^{σ} 是具有 n (n=2,3,4) 个顶点的连通定向图, $\mathrm{sr}(G^{\sigma})=2$ 当且仅当 G^{σ} 是下列图中之一:

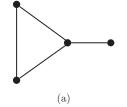
- (1) 当 n=2, G^{σ} 是定向任意的定向路 P_2^{σ} .
- (2) 当 n=3, G^{σ} 是 K_3^{σ} 或 P_3^{σ} , 并且边上的定向是任意的.
- (3) 当 n=4, G^{σ} 是下列图中其中之一:
- (a) 偶定向圈 C₄;
- (b) K3 且每条边具有任意的定向;
- (c) 偶定向图 $K_{1,1,2}^{\sigma}$.

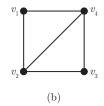
证明 当 n = 2, 3, 由引理 2.3 和 2.4, 结果显然成立.

当 n=4, 所有的 4 点连通非定向图为 $K_{1,3}$, C_4 , P_4 , $K_{1,1,2}$, K_4 和 G_1 (见图 2). 由引理 2.3 和 2.5, 以 P_4 和 G_1 为基图的定向图斜秩为 4. 由引理 2.4 知, 如果 C_4^σ 是奇定向圈, 则 $\mathrm{sr}(C_4^\sigma)=4$, 但是 C_4^σ 是偶定向圈,则 $\mathrm{sr}(C_4^\sigma)=2$. 如果基图是 $K_{1,3}$,则 $\mathrm{sr}(G^\sigma)=2$ 且定向是任意的. 接下来, 考虑基图是 $K_{1,1,2}$ 或 K_4 时的情形.

 $K_{1,1,2}$ 的顶点标号为 v_1, v_2, v_3, v_4 (见图 2(b)). $K_{1,1,2}^{\sigma}$ 的邻接矩阵可表示为

$$S(K_{1,1,2}^{\sigma}) = \begin{pmatrix} 0 & s_{12} & 0 & s_{14} \\ -s_{12} & 0 & s_{23} & s_{24} \\ 0 & -s_{23} & 0 & s_{34} \\ -s_{14} & -s_{24} & -s_{34} & 0 \end{pmatrix}.$$





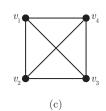


图 2 三个图 $G_1, K_{1,1,2}$ 和 K_4

由矩阵初等变换可得

$$\operatorname{sr}(K_{1,1,2}^{\sigma}) = r \begin{pmatrix} 0 & s_{12} & 0 & 0 \\ -s_{12} & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{34} + s_{23} \cdot \frac{s_{14}}{s_{12}} \\ 0 & 0 & -s_{34} - s_{23} \cdot \frac{s_{14}}{s_{12}} & 0 \end{pmatrix}.$$

于是, $\operatorname{sr}(K_{1,1,2}^{\sigma}) = 2$ 当且仅当 $s_{34} + s_{23} \cdot \frac{s_{14}}{s_{12}} = 0$,即 $s_{12}s_{34} + s_{14}s_{23} = 0$.这暗示了 $K_{1,1,2}^{\sigma}$ 中的以 $\{v_1, v_2, v_3, v_4\}$ 为顶点的 C_4^{σ} 是偶定向的.

以 K4 为基图的定向图的斜邻接矩阵可表示为

$$S(K_4^{\sigma}) = \begin{pmatrix} 0 & s_{12} & s_{13} & s_{14} \\ -s_{12} & 0 & s_{23} & s_{24} \\ -s_{13} & -s_{23} & 0 & s_{34} \\ -s_{14} & -s_{24} & -s_{34} & 0 \end{pmatrix},$$

则有

$$\operatorname{sr}(K_4^{\sigma}) = r \begin{pmatrix} 0 & s_{12} & 0 & 0 & 0 \\ -s_{12} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{34} + s_{23} \cdot \frac{s_{14}}{s_{12}} - s_{24} \cdot \frac{s_{13}}{s_{12}} \\ 0 & 0 & -s_{34} - s_{23} \cdot \frac{s_{14}}{s_{12}} + s_{24} \cdot \frac{s_{13}}{s_{12}} & 0 \end{pmatrix}.$$

假设 $s_{34}+s_{23}\cdot\frac{s_{14}}{s_{12}}-s_{24}\cdot\frac{s_{13}}{s_{12}}=0$,这等价于 $s_{12}s_{34}+s_{14}s_{23}=s_{13}s_{24}$. 显然,等式左边的值为 0,2 或 -2,但是右边的值 1 或 -1. 因而, $s_{34}+s_{23}\cdot\frac{s_{14}}{s_{12}}-s_{24}\cdot\frac{s_{13}}{s_{12}}\neq 0$,因此, $\operatorname{sr}(K_4^\sigma)=4$.

下面的引理在定理 3.3 的证明中起了很重要的作用.

引理 3.2 $^{[18]}$ 一个完全图不是完全多部图的充分必要条件是它包含 P_4,G_1 或两个 P_2 作为诱导子图.

定理 3.3 设 G^{σ} 是具有 n $(n \ge 5)$ 个项点的连通定向图, 则 $\operatorname{sr}(G^{\sigma}) = 2$ 当且仅当 G^{σ} 的基图是完全二部图或完全三部图, 并且 G^{σ} 中的 4 个项点的圈是偶定向的.

证明 充分性 假设 G^{σ} 是完全二部图 K_{n_1,n_2}^{σ} 并且所有的 4 个顶点的圈是偶定向的, 由引理 2.9 知, 在同一分部中的顶点时一致双胞胎点或反双胞胎点. 设 X_1 和 X_2 是 K_{n_1,n_2}^{σ} 的顶点集的二分部. 假设 $n_1 \ge 2$, x_1 和 x_2 是 X_1 中任意两个点. 由引理 2.7 知,

$$\operatorname{sr}(K_{n_1,n_2}^{\sigma}) = \operatorname{sr}(K_{n_1,n_2}^{\sigma} - x_1) = \operatorname{sr}(K_{n_1,n_2}^{\sigma} - x_2) = \operatorname{sr}(P_2^{\sigma}) = 2.$$

类似地, 如果在完全三部图 $K^{\sigma}_{n_1,n_2,n_3}$ 中所有的 4 个顶点的圈是偶定向的, 则有

$$\mathrm{sr}(K^{\sigma}_{n_1,n_2,n_3})=\mathrm{sr}(K^{\sigma}_3)=2.$$

必要性 假设基图 G 不是一个完全多部图, 有引理 3.2 知, G 一定包含 P_4 , G_1 或 $2P_2$ 作为诱导子图. 这暗示 $\mathrm{sr}(G^\sigma) \geqslant 4$. 这也是矛盾的.

由上述知, G^{σ} 的基图 G 是一个完全多部图. 记 G^{σ} 的基图是完全 t 部图 $K_{n_1,n_2,...,n_t}$. 假设 $t \ge 4$, 则 G^{σ} 一定包含 K_{σ}^{σ} 作为诱导子图, 因而, $\operatorname{sr}(G^{\sigma}) \ge \operatorname{sr}(K_{\sigma}^{\sigma}) = 4$. 于是, t = 2 或 3.

情形 1 t=2. 设 X_1 和 X_2 是 K_{n_1,n_2} 顶点集的二分部. 如果其中之一仅含有一个顶点,则 G^{σ} 是定向星图,并且定向是任意的. 当每个分部中的顶点个数多于一个, K_{n_1,n_2} 一定包含 C_4^{σ} 作为诱导子图. 如果 K_{n_1,n_2} 包含一个奇定向圈 C_4^{σ} 作为诱导子图,则 $\mathrm{sr}(K_{n_1,n_2}^{\sigma}) \geqslant \mathrm{sr}(C_4^{\sigma}) = 4$. 因此, K_{n_1,n_2} 中所有 4 个顶点的圈是偶定向的.

情形 2 t=3.

类似于上面的讨论, 可得 K_{n_1,n_2,n_3}^{σ} 中的所有 4 个顶点圈是偶定向的.

定理 3.4 设 G^{σ} 是带有悬挂点, 顶点个数为 n 的定向图, 则 $\mathrm{sr}(G^{\sigma})=4$ 当且仅当 G^{σ} 是下列图中某一个:

- (1) 通过在 $S_{n-n_1-n_2}^{\sigma}$ $(n_1+n_2\geqslant 2)$ 的中心和完全二部图 K_{n_1,n_2}^{σ} 的某些顶点之间加一些边而得到的图, 并且完全二部图 K_{n_1,n_2}^{σ} 的所有 4 个顶点的圈是偶定向的;
- (2) 通过在 $S_{n-n_1-n_2-n_3}^{\sigma}$ $(n_1+n_2+n_3\geqslant 3)$ 的中心和完全三部图 K_{n_1,n_2,n_3}^{σ} 的某些顶点之间加一些边而得到的图, 并且完全三部图 K_{n_1,n_2,n_3}^{σ} 的所有 4 个顶点的圈是偶定向的.

证明 充分性 由引理 2.5 和定理 3.3, 很容易验证.

必要性 假设 $\operatorname{sr}(G^{\sigma}) = 4$, $x \in G^{\sigma}$ 中一个悬挂点, N(x) = y. 设 $G^{\sigma} - x - y = G_{11}^{\sigma} \cup G_{12}^{\sigma} \cup \cdots \cup G_{1t}^{\sigma}$, 其中 G_{11}^{σ} , G_{12}^{σ} , ..., G_{1t}^{σ} 是 $G^{\sigma} - x - y$ 的连通分支. 如果 G_{1i}^{σ} ($i = 1, 2, \ldots, t$) 是平凡的, 则 $G^{\sigma} - x - y$ 是 定向星图, 可知 $\operatorname{sr}(G^{\sigma}) = 2$ 矛盾. 因而, $G^{\sigma} - x - y$ 一定含有非平凡连通分支. 接下来将验证, $G^{\sigma} - x - y$ 恰含有一个非平凡连通分支.

假设 $G^{\sigma}-x-y$ 含有两个非平凡连通分支. 不失一般性, 记为 G_{11}^{σ} 和 G_{12}^{σ} . 由引理 2.5, 可得

$$\operatorname{sr}(G^{\sigma}) = 2 + \operatorname{sr}(G^{\sigma} - x - y) = 2 + \sum_{j=1}^{2} \operatorname{sr}(G_{1j}^{\sigma}) \geqslant 2 + \sum_{j=1}^{2} 2 \ (\boxtimes \bowtie \operatorname{sr}(G_{1j}^{\sigma}) \geqslant 2) = 6.$$

这是矛盾的.

因而, $G^{\sigma}-x-y$ 只含有一个非平凡连通分支. 不失一般性, 假设 G_{11}^{σ} 是非平凡的. 因而, $G^{\sigma}-x-y=G_{11}^{\sigma}\cup(n-|G_{11}^{\sigma}|-2)K_1$. 这样, $\operatorname{sr}(G^{\sigma})=\operatorname{sr}(G_{11}^{\sigma})+2\geqslant 4$ 等式成立当且仅当 $\operatorname{sr}(G_{11}^{\sigma})=2$. 于是, G_{11}^{σ} 是定理 3.3 中所描述的图中某一个. 从而结论得证.

定理 3.5 设 U^{σ} 是 n 个顶点的定向单圈图, C^{σ} 是 U^{σ} 的唯一定向圈, 则 $\mathrm{sr}(U^{\sigma})=4$ 当且仅当 U^{σ} 是下列图中的某一个:

- (1) 奇定向圈 C_4^{σ} , 偶定向圈 C_6^{σ} , 带有任意定向的 C_5 ;
- (2) 以 $U_1^{r,s}$ (r+s=n-3), $U_2^{p,q}$ (p+q=n-4) 或 U_3^{n-4} (见图 3) 作为基图, 并且定向任意的定向图;
 - (3) 以 U_4^{n-5} (见图 3) 为基图的定向图, 并且其中 C_4^{σ} 是偶定向的.

定理 3.6 设 B^{σ} 是带有悬挂点且顶点数为 n 的定向双圈图, 则 $\operatorname{sr}(B^{\sigma})=4$ 当且仅当 B^{σ} 是下列图中的某一个:

- (1) 以 B_1, B_2 或 B_3 (见图 4) 为基图的定向图, 每条边上的定向是任意的;
- (2) 以 B_4 或 B_5 (见图 4) 为基图的定向图, 并且由顶点 u_i (i = 1, 2, 3, 4) 诱导的子图为偶定向的;
- (3) 以 B_6 或 B_7 (见图 4) 为基图的定向图, 并且由 w_i (i = 1, 2), v_j (j = 1, 2, 3) 中 4 个顶点诱导的圈是偶定向的:
 - (4) 以 B_8 或 B_9 (见图 4) 为基图的定向图, 并且其中的诱导子图 $K_{1,1,2}^{\sigma}$ 是偶定向的.

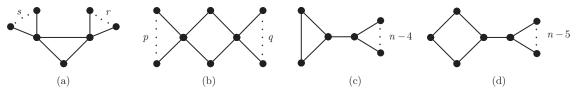


图 3 4 个非定向单圈图. (a) $U_1^{r,s}$, (b) $U_2^{p,q}$, (c) U_3^{n-4} 和 (d) U_4^{n-5}

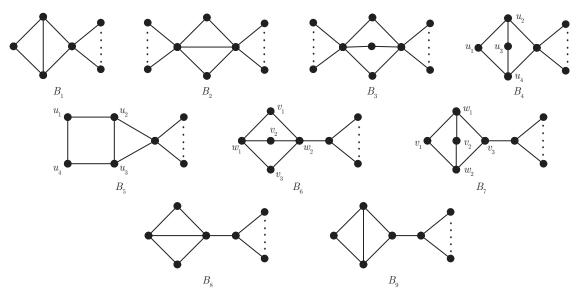


图 4 9 个非定向双圈图 B_i (i = 1, 2, ..., 9)

4 定向单圈图的斜秩

本节借助于匹配数来确定围长是 k、顶点数是 n 的定向单圈图的斜秩, 并考虑围长是 k、顶点数是 n 的定向单圈图类中斜秩的最小值, 刻画了极图.

引理 $4.1^{[5,6]}$ 设 G^{σ} 是 n 个顶点的定向图, 斜邻接矩阵为 $S(G^{\sigma})$, 特征多项式为

$$\phi(G^{\sigma}, \lambda) = \sum_{i=0}^{n} (-1)^{i} a_{i} \lambda^{n-i} = \lambda^{n} - a_{1} \lambda^{n-1} + a_{2} \lambda^{n-2} + \dots + (-1)^{n-1} a_{n-1} \lambda + (-1)^{n} a_{n}.$$

如果 i 是偶数,则

$$a_i = \sum_{\mathscr{H}} (-1)^{c^+} 2^c,$$

其中求和符号取遍 G^{σ} 中具有 i 个顶点的基本定向图 \mathcal{H} 的全体, c^{+} 和 c 分别表示基本定向图 \mathcal{H} 中偶定向圈的数目和偶圈的数目; 如果 i 是奇数, 则 $a_{i}=0$.

定理 4.2 设 G^{σ} 是围长是 k、顶点数是 n、匹配数是 $\beta(G^{\sigma})$ 的定向单圈图, C_k^{σ} 是 G^{σ} 的唯一定向圈, 则

$$\operatorname{sr}(G^{\sigma}) = \begin{cases} 2\beta(G^{\sigma}) - 2, & \text{如果 } C_k^{\sigma} \text{ 是偶定向的且 } \beta(G^{\sigma}) = 2\beta(G^{\sigma} - C_k^{\sigma}), \\ 2\beta(G^{\sigma}), & \text{其他.} \end{cases}$$

证明 若 $i > \beta(G^{\sigma})$, G^{σ} 不包含具有 2i 个顶点的基本定向图, 因而, $a_{2i} = 0$. 接下来考虑 $i \leq \beta(G^{\sigma})$. 注意到 $\lambda^{n-2\beta(G^{\sigma})}$ 是特征多项式 $\phi(G^{\sigma},\lambda)$ 的一个因子, 因而, $\operatorname{sr}(G^{\sigma}) \leq 2\beta(G^{\sigma})$. 于是考虑系数 $a_{2\beta(G^{\sigma})}$. 下面分 3 种情形来考虑此问题:

情形 1 k 是奇数.

在这种情形下,每一个基本定向图中不包含偶圈,只含有 P_2 .因而,

$$a_{2\beta(G^\sigma)} = \sum_{\mathscr{H}} (-1)^0 2^0 = \sum_{\mathscr{H}} 1 \neq 0.$$

从而, $\operatorname{sr}(G^{\sigma}) = 2\beta(G^{\sigma})$.

情形 2 k 是偶数, C_k^{σ} 是奇定向的.

在这种情形下, 基本定向图中包含偶圈, 但不包含偶定向圈, 从而 $a_{2\beta(G^{\sigma})} \neq 0$, 于是,

$$\operatorname{sr}(G^{\sigma}) = 2\beta(G^{\sigma}).$$

情形 3 k 是偶数, C_k^{σ} 是偶定向的.

设 \mathcal{H} 是有 $2\beta(G^{\sigma})$ 个顶点的基本定向图的集合. \mathcal{H}_1 是含有 $\beta(G^{\sigma})$ 个 P_2 的基本定向图的集合. \mathcal{H}_2 是有 $2\beta(G^{\sigma})$ 个顶点,包含一个 C_k^{σ} 和 $\beta(G^{\sigma}) - \frac{k}{2}$ 个 P_2 作为连通分支的基本定向图的集合. 显然, $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$. 这样,

$$a_{2\beta(G^{\sigma})} = \sum_{\mathcal{H} \in \mathcal{H}_1} (-1)^0 \cdot 2^0 + \sum_{\mathcal{H} \in \mathcal{H}_2} (-1)^1 \cdot 2^1 = \beta(G^{\sigma}) - 2\beta(G^{\sigma} - C_k^{\sigma}).$$

于是, 如果 $\beta(G^{\sigma}) - 2\beta(G^{\sigma} - C_k^{\sigma}) \neq 0$, 则 $r(G^{\sigma}) = 2\beta(G^{\sigma})$. 如果 $\beta(G^{\sigma}) - 2\beta(G^{\sigma} - C_k^{\sigma}) = 0$, 则 $sr(G^{\sigma}) < 2\beta(G^{\sigma})$. 接下来将验证, 如果 $\beta(G^{\sigma}) - 2\beta(G^{\sigma} - C_k^{\sigma}) = 0$, 则 $sr(G^{\sigma}) = 2\beta(G^{\sigma}) - 2$. 设 \mathcal{H}_1' 是有 $2\beta(G^{\sigma}) - 2$ 个顶点, 含有 $\beta(G^{\sigma}) - 1$ 个 P_2 作为连通分支的基本定向图的集合. \mathcal{H}_2' 是有 $2\beta(G^{\sigma}) - 2$ 个顶点, 包含一个 C_k'' 和 $\beta(G^{\sigma}) - \frac{k}{2} - 1$ 个 P_2 作为连通分支的基本定向图的集合. 由引理 4.1 可得

$$a_{2\beta(G^{\sigma})-2} = \sum_{\mathscr{H} \in \mathcal{H}_{1}'} (-1)^{0} \cdot 2^{0} + \sum_{\mathscr{H} \in \mathcal{H}_{2}'} (-1)^{1} \cdot 2^{1} = m_{G^{\sigma}}(\beta(G^{\sigma}) - 1) - 2m_{G^{\sigma} - C_{k}^{\sigma}}(\beta(G^{\sigma} - C_{k}^{\sigma}) - 1).$$

为了方便,引入下列 3 个记号:

 $S_1: G^{\sigma}$ 的 $(\beta(G^{\sigma})-1)$ - 匹配的集合;

 $S_2: G^{\sigma} - C_k^{\sigma}$ 的 $(\beta(G^{\sigma} - C_k^{\sigma}) - 1)$ - 匹配的集合;

 $S_3 = \{ M' \mid M' = C_k^{\sigma} \cup M, M \in S_2 \}.$

显然, $|S_1| \geq 2|S_2|$, $|S_2| = |S_3|$. 下面将证明 $m_{G^{\sigma}}(\beta(G^{\sigma}) - 1) - 2m_{G^{\sigma} - C_k^{\sigma}}(\beta(G^{\sigma} - C_k^{\sigma}) - 1) \neq 0$. 因为 $|S_1| = m_{G^{\sigma}}(\beta(G^{\sigma}) - 1)$, $|S_2| = m_{G^{\sigma} - C_k^{\sigma}}(\beta(G^{\sigma} - C_k^{\sigma}) - 1)$, 所以,只需验证 $|S_1| > 2|S_2|$. 注意到, C_k^{σ} 中恰有两个含有 $\frac{k}{2}$ 条边的完美匹配 M_1 和 M_2 . 记 $S^* = \{M_1 \cup M | M \in S_2\} \cup \{M_2 \cup M | M \in S_2\}$, 则有 $|S^*| = 2|S_2| = 2|S_3|$, $|S^*| \leq |S_1|$. 易知,一定存在一个 $(\beta(G^{\sigma}) - 1)$ - 匹配 M^* ,它是图 $G^{\sigma} - C_k^{\sigma}$ 的,具有 $\beta(G^{\sigma}) - \frac{k}{2}$ 条边的匹配与 C_k^{σ} 的,具有 $\frac{k}{2} - 1$ 条边的匹配的并集,并使得 $M^* \in S_1$, $M^* \notin S^*$. 从而, $|S_1| \geq |S^*| + 1 = 2|S_2| + 1 > 2|S_2|$. 结论成立.

 $H_{n,k}$ 是通过在 C_k 的某个顶点上加了 n-k 条悬挂边而得到的图.

定理 4.3 设 G^{σ} 是围长是 k, 且具有 n (n > k) 个顶点的定向单圈图, 则有

$$\operatorname{sr}(G^{\sigma}) \geqslant \begin{cases} k, & k \text{ 是偶数,} \\ k+1, & k \text{ 是奇数.} \end{cases}$$

这个下界是可以得到的. 所有以 $H_{n,k}$ 作为基图的定向图均可达到此下界.

证明 因为 G^{σ} 一定包含 $H_{k+1,k}^{\sigma}$ 作为诱导子图, 由引理 2.1 知, $\operatorname{sr}(H_{k+1,k}^{\sigma}) \leqslant \operatorname{sr}(G^{\sigma})$. 由定理 2.3 和 2.5, 可得

$$\operatorname{sr}(H_{k+1,k}^{\sigma}) = \begin{cases} k, & k \text{ 是偶数,} \\ k+1, & k \text{ 是奇数.} \end{cases}$$

注意到所有的以 $H_{n,k}$ 作为基图的定向图与 $H_{k+1,k}^{\sigma}$ 具有相同的斜秩. 结论得证.

下列结果根据文献 [19, 定理 3.1 和 3.3], 可以得证.

引理 4.4 设 T^{σ} 是定向树, $u \in V(T^{\sigma})$. G_0^{σ} 是不同于 T^{σ} 的定向图. 设 G^{σ} 是由 G_0^{σ} 和 T^{σ} 通过连接 u 与 T^{σ} 中的某些点而得到的. 下列结论成立:

(1) 如果 u 在 T^{σ} 中是饱和的, 则

$$\operatorname{sr}(G^{\sigma}) = \operatorname{sr}(G_0^{\sigma}) + \operatorname{sr}(T^{\sigma}).$$

(2) 如果 u 在 T^{σ} 中是不饱和的, 则

$$\operatorname{sr}(G^{\sigma}) = \operatorname{sr}(T^{\sigma} - u) + \operatorname{sr}(G_0^{\sigma} + u),$$

其中 $G_0^{\sigma} + u$ 是 G_0^{σ} 的顶点和 u 在 G^{σ} 中诱导的子图.

设 G^{σ} 是一定向单圈图, C_{σ} 是 G^{σ} 中唯一的定向圈. G_{0}^{σ} 是由 G^{σ} 去掉 C_{σ} 上顶点 v 的两个邻点而得到定向图. 设 $G^{\sigma}\{v\}$ 是 G_{0}^{σ} 的包含顶点 v 的一个分支, 显然, $G^{\sigma}\{v\}$ 是一定向树.

由上述引理可得下面的定理:

定理 4.5 设 G^{σ} 是一定向单圈图, C^{σ} 是 G^{σ} 中唯一的定向圈, 则下列结论成立:

(1) 如果存在 $v \in V(C^{\sigma})$ 在 $G^{\sigma}\{v\}$ 是饱和的, 则

$$\operatorname{sr}(G^{\sigma}) = \operatorname{sr}(G^{\sigma}\{v\}) + \operatorname{sr}(G^{\sigma} - G^{\sigma}\{v\}),$$

其中 $G^{\sigma}\{v\}$ 为在 v 点长出的包含 v 的树.

(2) 如果不存在 $v \in V(C^{\sigma})$ 在 $G^{\sigma}\{v\}$ 是饱和的, 则

$$\operatorname{sr}(G^{\sigma}) = \operatorname{sr}(C^{\sigma}) + \operatorname{sr}(G^{\sigma} - C^{\sigma}).$$

设 U^* 是通过在 S_{n-k} 的中心与 C_k 的某一点上连一条边而得到的.

定理 4.6 设 G^{σ} 是具有 n 个顶点的定向单圈图, C_{μ}^{σ} 是其中唯一的定向圈, 并且

$$\operatorname{sr}(G^{\sigma}) = \begin{cases} k, & k \text{ 是偶数,} \\ k+1, & k \text{ 是奇数,} \end{cases}$$

则下列结论成立:

(1) 如果存在 $v \in V(C_k^{\sigma})$ 在 $G^{\sigma}\{v\}$ 中是饱和的, 则 $G^{\sigma}\{v\}$ 是定向星图,

并且 G^{σ} 有任意的定向.

- (2) 如果不存在 $v \in V(C_{\nu}^{\sigma})$ 在 $G^{\sigma}\{v\}$ 中是饱和的, 则
- (a) 如果 k 是奇数, 则 $G \cong U^*$ 且 G^{σ} 有任意的定向;
- (b) 如果 k 是偶数, 则 $G \cong U^*$ 且 C_k^{σ} 是偶定向的.

证明 假设存在 $v \in V(C_k^{\sigma})$ 在 $G^{\sigma}\{v\}$ 中是饱和的,则 $G^{\sigma}\{v\}$ 和 $G^{\sigma} - G^{\sigma}\{v\}$ 是两棵树. 若 k 是偶数,由引理 2.2 和 4.5 可得

$$\operatorname{sr}(G^{\sigma}) = \operatorname{sr}(G^{\sigma}\{v\}) + \operatorname{sr}(G^{\sigma} - G^{\sigma}\{v\}) = 2\beta(G^{\sigma}\{v\}) + 2\beta(G^{\sigma} - G^{\sigma}\{v\}) = k.$$

因为 $\beta(G^{\sigma}\{v\}) \geqslant 1$, $\beta(G^{\sigma} - G^{\sigma}\{v\}) \geqslant \frac{k-2}{2}$, 所以,

$$\beta(G^{\sigma}\{v\}) = 1, \quad \beta(G^{\sigma} - G^{\sigma}\{v\}) = \frac{k-2}{2}.$$

由证明过程可知, 结果成立并且与 Go 的定向没有关系.

类似地, 当 k 是奇数时, 结果也成立.

假设不存在 $v \in V(C_k^{\sigma})$ 在 $G^{\sigma}\{v\}$ 中是饱和的. 由定理 4.5 可知, $\operatorname{sr}(G^{\sigma}) = \operatorname{sr}(C_k^{\sigma}) + 2\beta(G^{\sigma} - C_k^{\sigma})$. 接下来分 3 种情形讨论:

情形 1 k 是奇数.

由上述等式和引理 2.4, 可得 $k+1=k-1+2\beta(G^{\sigma}-C_{k}^{\sigma})$. 从而, $\beta(G^{\sigma}-C_{k}^{\sigma})=1$, 即 $G^{\sigma}-C_{k}^{\sigma}$ 是 星图, G^{σ} 有任意定向.

情形 2 k 是偶数, C_k^{σ} 是奇定向的.

由情形 1 的证明可得 $\beta(G^{\sigma} - C_k^{\sigma}) = 0$. 这与假设矛盾.

情形 3 k 是偶数, C_k^{σ} 是偶定向的.

由上面的讨论可知, $\beta(G^{\sigma}-C_{k}^{\sigma})=1$, 即 $G^{\sigma}-C_{k}^{\sigma}$ 是定向星图.

5 定向单圈图的斜邻接矩阵的非奇异性

设 $\mathcal{U}_{n,k}$ 是围长是 k 且含有 n 个顶点的定向单圈图的集合. \mathcal{U}_1 表示经过有限步 δ - 变换化为空图的定向单圈图的集合, \mathcal{U}_2 表示经过有限步 δ - 变换化为孤立点和 C_k^{σ} 的定向单圈图的集合. 显然, $\mathcal{U}_{n,k} = \mathcal{U}_1 \cup \mathcal{U}_2$.

定理 5.1 设 G^{σ} 是围长是 k 且含有 n (k < n) 个顶点的定向单圈图, 则

(1) 若 $G^{\sigma} \in \mathcal{U}_1$, 则

$$\operatorname{sr}(G^{\sigma}) \leqslant \begin{cases} n, & n \text{ 是偶数}, \\ n-1, & n \text{ 奇数}; \end{cases}$$

(2) 若 $G^{\sigma} \in \mathcal{U}_2$, 则

$$\operatorname{sr}(G^{\sigma}) \leqslant \begin{cases} n-1, & n \text{ 是奇数}, & k \text{ 是奇数}, \\ n-2, & n \text{ 是偶数}, & k \text{ 是奇数}, \\ n, & n \text{ 是偶数}, & C_k^{\sigma} \text{ 是奇定向的}, \\ n-1, & n \text{ 是奇数}, & C_k^{\sigma} \text{ 是奇定向的}, \\ n-2, & n \text{ 是偶数}, & C_k^{\sigma} \text{ 是偶定向的}, \\ n-3, & n \text{ 是奇数}, & C_k^{\sigma} \text{ 是偶定向的}. \end{cases}$$

证明 若 $G^{\sigma} \in \mathcal{U}_1$, 则经过有限步 δ - 变换 G^{σ} 化为空图. 由引理 2.5 可得 $\operatorname{sr}(G^{\sigma}) \leqslant 2 \cdot \lfloor \frac{n}{2} \rfloor$. 若 $G^{\sigma} \in \mathcal{U}_2$, 则经过有限步 δ - 变换 G^{σ} 化为孤立点和 C_k^{σ} 的并, 由引理 2.5 可得

$$\operatorname{sr}(G^{\sigma}) \leqslant 2 \cdot \left\lfloor \frac{n-k}{2} \right\rfloor + \operatorname{sr}(C_k^{\sigma}).$$

证毕.

接下来考虑定向单圈图的斜邻接矩阵的非奇异性. 如果 n 是奇数,则定向单圈图的斜邻接矩阵一定是奇异的,因而只需考虑 n 是偶数的情形即可.

定理 5.2 设 G^{σ} 是含有 n 个顶点的定向单圈图, 则 $S(G^{\sigma})$ 是非奇异的当且仅当 $G^{\sigma} \in \mathcal{U}_1$, G^{σ} 存在完美匹配; 或者 $G^{\sigma} \in \mathcal{U}_2$, C_k^{σ} 是奇定向的, $G^{\sigma} - C_k^{\sigma}$ 存在完美匹配.

致谢 作者非常感谢审稿人给出的宝贵意见.

参考文献。

- 1 Cavers M, Cioabă S M, Fallat S, et al. Skew-adjacency matrices of graphs. Linear Algebra Appl, 2012, 436: 4512–4529
- 2 Anuradha A, Balakrishnan R. Skew spectrum of the Cartesian product of an oriented graph with an oriented Hypercube. In: Combinatorial Matrix Theory and Generalized Inverses of Matrices. New York: Springer, 2013, 1–12
- 3 Anuradha A, Balakrishnan R, Chen X, et al. Skew spectra of oriented bipartite graphs. Electron J Combin, 2013, 20: $\sharp P19$
- 4 Cui D, Hou Y. On the skew spectra of Cartesian products of graphs. Electron J Combin, 2013, 20: #P19
- 5 Hou Y, Lei T. Charactristic polynomials of skew-adjacency matrices of oriented graphs. Electro J Combin, 2011, 18: #P156
- 6 Gong S, Xu G. The characteristic polynomial and the matching polynomial of a weighted oriented graph. Linear Algebra Appl, 2012, 436: 3597–3607
- $7~{
 m Xu~G.}$ Some inequlities on the skew-spectral radii of oriented graphs. J Inequal Appl, 2012, 2012: 211
- 8 Adiga C, Balakrishnan R. The skew-energy of a digraph. Linear Algebra Appl, 2010, 432: 1825–1835
- 9 Chen X, Li X, Lian H. 4-Regular oriented graphs with optimum skew energy. Linear Algebra Appl, 2013, 439: 2948–2060
- 10 Hou Y, Shen X, Zhang C. Oriented unicyclic graphs with extremal skew energy. ArXiv:1108.6229, 2011
- 11 Gong S, Xu G. 3-Regular digraphs with optimum skew energy. Linear Algebra Appl, 2012, 436: 465–471
- 12 Li X, Lian H. A survey on the skew energy of oriented graphs. ArXiv:1304.5707, 2013
- 13 Shen X, Hou Y, Zhang C. Bicyclic digraphs with exremal skew energy. Electron J Linear Algebra, 2012, 23: 340–355
- 14 Tian G. On the skew energy of orientations of hypercubes. Linear Algebra Appl, 2011, 435: 2140–2149
- 15 Zhu J. Oriented unicyclic graphs with the first $\lfloor \frac{n-9}{2} \rfloor$ largest skew energies. Linear Algebra Appl, 2012, 437: 2630–2649
- 16 Shader B, So W S. Skew spectra of oriented graphs. Electron J Combin, 2009, 16: $\sharp N32$
- 17 Cvetković D, Dood M, Sachs H. Spectra of Graphs. New York: Academic Press, 1980
- 18 Smith J H. Some properties of the spectrum of a graph. In: Combinatorial Structures and Their Application. New York: Gordon and Breach, 1970, 403–406
- 19 Gong S, Fan Y, Yin Z. On the nullity of graphs with pendant trees. Linear Algebra Appl, 2010, 433: 1374–1380

The skew-rank of oriented graphs

LI XueLiang & YU GuiHai

Abstract An oriented graph G^{σ} is a digraph without loops and multiple arcs, where G is called the underlying graph of G^{σ} . Let $S(G^{\sigma})$ denote the skew-adjacency matrix of G^{σ} . The rank of the skew-adjacency matrix of G^{σ} is called the skew-rank of G^{σ} , denoted by $S(G^{\sigma})$. The skew-adjacency matrix of an oriented graph is skew symmetric and the skew-rank is even. We consider the skew-rank of simple oriented graphs. Firstly, we give some preliminary results about the skew-rank. Secondly, we characterize the oriented graphs with skew-rank 2 and characterize the oriented graphs with pendant vertices which attain the skew-rank 4. As a consequence, we list the oriented unicyclic graphs, the oriented bicyclic graphs with pendant vertices which attain the skew-rank 4. Moreover, we determine the skew-rank of oriented unicyclic graphs of order S(S(G)) with girth S(S(G)) in terms of matching number. We investigate the minimum value of the skew-rank among oriented unicyclic graphs of order S(S(G)) with girth S(G) and characterize oriented unicyclic graphs attaining the minimum value. In addition, we consider oriented unicyclic graphs whose skew-adjacency matrices are nonsingular.

Keywords oriented graph, skew-adjacency matrix, skew-rank

MSC(2010) 05C20, 05C50, 05C75

doi: 10.1360/012014-51