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Abstract We obtain new upper tail probabilities of m-times integrated Brownian motions under the uniform
norm and the LP norm. For the uniform norm, Talagrand’s approach is used, while for the LP norm, Zolotare’s

approach together with suitable metric entropy and the associated small ball probabilities are used. This

proposed method leads to an interesting and concrete connection between small ball probabilities and upper tail

probabilities (large ball probabilities) for general Gaussian random variables in Banach spaces. As applications,

explicit bounds are given for the largest eigenvalue of the covariance operator, and appropriate limiting behaviors

of the Laplace transforms of m-times integrated Brownian motions are presented as well.
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1 Introduction

Suppose that m > 0 is an integer, and {W () };>0 is the standard Brownian motion starting at zero. The

m-times integrated Brownian motions {X,,(t)}+>0 are defined as X (t) = W(¢) and
t
X (1) :/ Xm—1(s)ds, for t>0 and m>1.
0

From integration by parts, it follows that X,, in (1.1) has a representation

1 t
Xm(t) = —'/ (t—s)"dW(s), for t=0 and m >0.
m! J,
We use A,, to denote the covariance operator of X,,, namely,

1
Amf(t) = Km(sat)f(s)dsa
0
where

1 min{s,t}
K (s,t) = W /0 (s —u)™(t —u)™du
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is the covariance function of X,,. Among the various studies on m-times integrated Brownian motions
(see [2,6,8,16]), we specially recall the results on small ball probabilities established in [2,6]. Namely,
the exact asymptotics as € — 07 of

10gP{ sup | Xom(t)] < e}, 1og P{[| X Lrjo.1] < €}, with 1<p< oo
0<t<1

and P{|| X ||z2(0,1) < €} are achieved. It is then natural to investigate the rare events from the opposite
side, i.e., upper tail probabilities as r — oo,

IP{ sup |Xm(t)|>r} and  P{|| Xl Lo > 7} (1.3)

0<t<1

Based on the theory of Gaussian processes, it is quite easy to deduce exact asymptotics for the quantities

log]P’{ sup | X, ()] > 7"} and  log P{|| X[ Leo,1] > 7}5

0<t<1

see [12, Subsection 8.3] and [10, Subsection 3.1]. In this paper, we will firstly derive sharp asymptotics
for

]P’{ sup |Xm(t)|>r} and  P{|[ X200 > 7}
0<t<1

which are summarized in the following theorem.

Theorem 1.1.  (I) For m =0,

P{ sup [ Xo(t) > 7“} = IP’{ sup |W(t)| > r} ~

0<t<1 0<t<1

T -eXp{ - g} (1.4)

IP{ sup | X ()] > 7’} ~ m'; ! ~exp{ — M} (1.5)

0<t<1 V2m(2m + 1) 2

5=
3

Form > 1,

(IT) For 0 < p < 0o and m = 0,

r
P{|| XollLrjo.1) > 7} = P{[W || Lopo,1) > 7} ~ 20w/ <7

9\ 1/2 (r-2)/@p) (L 4 1
ORI
pT 2 1+ 5)

where

Forp=2andm > 1,

_ r?
P{lleHLz[O,l] >7“}NC(W)'7“ 1 -eXp{ - 2)\m}’ (17)
1
where W = (N™M)n>1 is the set of eigenvalues of the covariance operator Ay, of X, C(W) is a constant

depending on \™, and \* is the largest eigenvalue.

The cases m = 0 in both (I) and (II) of Theorem 1.1 have been known for a while; see for example [15,
Theorem 7.6] and [4, Theorem 1]. We thus will prove Theorem 1.1 only for m > 1. It is worthy to note
that under the uniform norm the case m = 0 and the case m > 1 show different features:

]P’{ sup W (t) > 7"} ~2P{W (1) >r} and IP{ sup X, (t) > 7’} ~P{X,,(1) > r}.

0st<1 0<t<1

As a simple application of Theorem 1.1, we are able to give explicit bounds for the largest eigenvalue A"
of the covariance operator A,,.
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Corollary 1.2.  For every m > 1, the largest eigenvalue 1" satisfies

1 1
<A - (m))? < :
mrizEmys S M) S omT

In [6], estimates on A" were given for large n with a fixed m. In [13], estimates on A" (and \5*) were
given for large m. None of them are for a fixed m and a fixed eigenvalue. But at the same time, estimates

(1.8)

in (1.8) are worse than those in [13] when m is large.

Proof of Corollary 1.2. It is straightforward to check that for 1 < p < oo,

IP{ sup [ Xomi1(t)] > r} < P{| Xoml| o] > 7} < IP{ sup | Xom(t)] > r}.
0<t<1 0<t<1

We take p = 2, and use (1.5) and (1.7) to deduce that
1
(m)?(2m+1) < s < (m % (2m + 3),
which is equivalent to (1.8). O

The idea of the proof of Theorem 1.1 is simple. Under the uniform norm, we employ the method
developed by Talagrand [17], while under the L? norm, an asymptotics is used regarding the /2 norm which
was derived by Zolotarev [18] (see also [14] for generalizations). Unfortunately, for general 1 < p < oo,

similar arguments will not work. The covariance operator A,, : L]0, 1] — L?[0, 1], where
1 1
S+ Z=1
p q

)

has a norm .
lAmllp = sup [|Amgll, = sup sup / / K, (t,s)f(t)g(s)dtds.
llgllq<t llglla<1lflle<1 /0 JO
If p = 2, then it is straightforward to see that ||4,,]l2 = AT*. Our second result works for general
1 < p < o0, but it is only an upper bound.

Theorem 1.3. For 1 <p < oo and m > 1, the following upper bound holds,
2
r

B Xonll o0, >r}<cmmﬁn«mp{—————
0.1 2 Al

+aam.p) s . (1.9

where c1(m, p) and ca(m,p) are two positive constants depending on m and p.

Note that the upper bound (1.9) is not trivial. To see this, let us recall the Borell’s inequality (see [1,
Subsection 2.1]). Suppose {Y (¢)}1er is a centered Gaussian process with sample paths bounded a.s.,
where 7' is some parametric set. Let ||Y]| = sup,cp Y (¢) and 02 = sup,c E(Y2(¢)). Then for r > E||Y],

—E|IY])?
P{||Y|| >r}<2exp{W}. (1.10)
207
Now we rewrite the LP norm as a uniform norm
1
Xl =sup [ Xon(6)g(t)dt i= sup X, (o) (1.11)
geT Jo geT
with ) )
T= {g e L90,1] : p + i L and ||gLejo,1 < 1}.

Then it follows from (1.10) that

— E| Xl Lejo.17)?
(r —E|Xm|lz [0,11)} (1.12)

]P){”Xm”Lp[O,l] > T} g 2exp{ - 2”14 H
milp

The leading term m coincides in (1.9) and (1.12), but the next term P in (1.9) is better than r
o

in (1.12). As an application of Theorem 1.3, we have the following estimates for the Laplace transforms

of m-times integrated Brownian motions.
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Corollary 1.4. Form > 1 and 1 <6 < 2, the following statements hold as r — oo :

0<t<1 2—10

E exp{r - (HXmHL?[O,l])a} NC(W) o 7270;))\{” exp{2299()\m) 7 (rg)=-7 }

Eexp{r- (| Xl zro.1)’} < e1(m, p,0) exp{eca(m, p, 0)r C=0Cw + c3(m, p, 0)r=7},

where ¢;,1 =1,2,3, are three positive constants depending on m,p and 0. In particular, the constant

20 - -
cs3(m,p,0) = 792/(2 (1 Amllp)* 0.

The related results of Corollary 1.4 have been known for m = 0; see for example [3] and references
therein. The proof of Theorem 1.3 is based on an upper bound estimate in [1] involving the metric
entropy of T endowed with the canonical metric, with the help of the small ball probabilities of X,,. It
turns out that such a proposed method works far beyond m-times integrated Brownian motions. Our
last result is to present an interesting and concrete connection between small ball probabilities and upper
tail probabilities for general Gaussian random variables in Banach spaces.

Theorem 1.5. Let X be a centered Gaussian random variable in Banach space (E, | - ||) with dual
space (E*, | - |l+). Suppose P{||X|| <&} = e~ “llozel” 452 - 0%, for some co >0, > 0 and 8 € R.
Then

1 (o3
P{X[> A} < exp{ ~ 3N +02Aa—+1<1ogx>%+l},

where 02 = SUp| g, <1 Elg(X)|?, and ¢1 and cy are constants depending only on ¢y, o and o.

For m-times integrated Brownian motions, according to [2], the small ball probabilities of X, have
the following form,

1in(1)e2m2+1 log P{[| Xonl| zrj01] < €} = —c(m,p), 1< p< oo,
e—

for some positive constant ¢(m, p) depending on m and p. In this case we can take o = 2/(2m + 1) and
£ =0 in Theorem 1.5 which leads to

P{|| Xonllzro1] > 7} < @1 exp{027°2m2+3} - P(r/o),

where

o? = sup E|g(X)]* = sup//K (t,8)g(t)g(s)dtdt,

llglla<1 llglla<1

and ¢ = p/(p — 1). Note that 0% = [|A,,|,- Indeed, it is trivial that o < [[A,|,. To see the other
direction, we notice that K, (¢, s) is a covariance kernel. Thus

|Amllp = sup sup / / K., )g(s)dtds

llglla<TIflla<t

1
s) S s ds
T2 e 1|f||q<1/ / Km(t,s)[f(t)g(s) + f(s)g(t)]dt

_ (t)+g@) f(s)+g(s) ft)—gt) f(s)—g(s)
‘nfﬁiluﬁﬂil/ / Km(t’s)[ 2 2 T 2 T dtds

t)+g(t) f(s)+g(s)
< K, dtds,
|Igllq<1||f|q<1/ / { 2 §
<o’

where the last inequality follows from the fact that ||(f + g)/2||q < 1. This recovers Theorem 1.3.
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2 Proofs

2.1 Proof of Theorem 1.1

As remarked before, we will only prove for m > 1. It is straightforward to deduce from (1.2) that

sup E(X,(t)? = su Lot !
0<t21 " B 0<t21 (mH22m+1  (mh22m+1

and the suprema occurs uniquely at ¢ = 1. Then by the result in [17], the asymptotics (1.5) is proved if
the following holds,

lim h™'E sup (X, (t) — X,n(1)) =0
h—0 teT),

with

T, = {t €10,1] : B(Xom(£)Xm(1)) = m%wﬁlﬂ - hQ}.

To see this, notice that for t € T},

h? > EXp, (1) — E(Xpm () Xm(1))

S AR A
= / (1 s 1 / (- (- s>m>ds}

1 [(1—t)2m+t i m m-1
> 2 | Zm a1 Jr/o(lfs) (1—-1)(1-2s) ds}

_ 1 '(1—t)2m+1+(1_t)( 1 _M)] (2.1)

(mh2| 2m+1 2m 2m

For small h, any t € T}, will be close to 1, we thus set such ¢ € [1/2,1] in (2.1). In this way,
h? = c(m)- (1 —1) (2.2)

for some positive constant ¢(m) depending on m. Therefore,

1
lim A~ 'E sup (X, (t) — X, (1)) = lim 2~ 'E sup 7/ Xm-1(s)ds
¢

h—0 teTy, h—0 teTh
1
< lim A7'E sup/ | X m—1(8)|ds
h—0 teTy Jt
1
< lim hilE/ [ Xm—1(s)|ds,
h—0 1— h2

c(m)

where the last inequality is from (2.2). This limit is then obviously zero since

sup E[X;—1(s)] < .
0<s<1

We also notice that

2P{Xn(1) > 1} = P{|Xpn(1)] > 7} < P{ sup [Xon(1)] > r}

0<t<

< QP{ sup X, (t) > 7“} ~ 2P{ X, (1) > 7},
0<t<1

which proves (I).



1096 Gao F C et al. Sci China Math May 2015 Vol. 58 No.5

For the proof of (IT), we first recall the Karhunen-Loeve expansion for X, as follows

= Z Zn\/an(t)

where {Z,,}n>1 is a sequence of i.i.d. standard normal N(0,1) random variables, {\"},,>1 is the set of
eigenvalues of the covariance operator A,,, and {f,,(t)}n>1 is the set of the associated eigenfunctions that
forms an orthonormal basis of L?[0,1]. Then we have the in law identity

0 1/2
1 Xom o0 = <ZA:¢Z§) |
n=1

Now the results in [18] can be applied in such [? and

00 1/2 2
A T

P{|| Xl £2p0.1) >r}P{<ZA§Z,%) >7"} ~ 2N i-r ! ~exp{2)\—m},
n=1 1

where E(W) is a constant depending on the eigenvalues {A},>1 whose exact expression is

ﬁ 17)\m/>\m 1/2.

The fact that 0 < E(W) < oo can be seen as follows. Since A" is the largest eigenvalue (with multiplic-
ity 1; see [6]), 1 — A /A" is always positive and less than 1. Therefore the convergence of the product is
equivalent to the convergence of the series

o0
m m
E A AT
n=2
The convergence of eigenvalue series is a basic fact of a covariance operator.

2.2 Proof of Theorem 1.3

We recall that

1 1
= {g € L0,1]: =+~ =1 and [|g[|Lapo,1) < 1}
p q
and
[ Xl Lo,y = SUPX = sup/ X
geT

On the parametric set T' we define the canonical metric

= \/E(Xm(f) - Xm(g))2'

Let N(e,T,d) be the minimum number of open balls of radius € needed to cover T, then log N (e, T, d)

is the metric entropy of (T,d). The proof will make use of the following upper estimate of the metric
entropy of (7 d).

Lemma 2.1.  For some constant ¢ > 0,
logN(e, T,d) <c-e" =)

Proof.  We recall the Karhunen-Loéve expansion for X,,, (which was used in Subsection 2.1) as follows:

=3 2T falt)
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There is an elegant connection between the small ball probability log P{|| X, r[0,1) < €} and the metric
entropy log N (e, S, | - |l;z), where

S:{(cl,CQ,...)EZQ:cnz/ O\ AT fu(t)dt, || gl Lajo,1) < 1} (2.3)
see [7,9]. We now show that
IOgN(E,T, d) - IOgN(E, S, || ’ Hl2)'

To this end, the covariance function K, (s,t) of X,, can be written as

Kon(s,t) = E(X () X (1)) = E( D Za N fals) Y znmfn@)) = > AT fals) fu(D)

Therefore, the covariance operator
1

Auslt) = [ o)1 (s.0)ds = 3 ATt ) [ o) sy

n=1

Thus the canonical metric

1 2
P(f,9) = EXm(f) — Xm(g))? = E( | s - g(t))dt)

Il
h
>
\
Q

() — 9(0) Am(f(E) — 9(t))et
AT ( [ u®-son, (t)dt)

cn = [, (2.4)

ol

3
Il

M

3
Il
—

where ¢ = (c1,ca,...) with
o = VAT [ (0 - g1t

Now we can pair a point g € T and a point ¢ € S, then the identity (2.4) implies that an e ball of ¢ is
also an € ball of ¢. Thus
IOgN(E,T, d) = IOgN(E, S’ || : Hl2)'

Now we find estimates on log N (e, S, || - ||;2) with the help of small ball probabilities of X,,. According
to [2], the small ball probabilities of X,,, have the following form,

.2
lim €257 log P{[| Xon| Lro,1) < €} = —¢(m,p), 1 <p < oo,
for some positive constant ¢(m, p) depending on m and p. From [7 Proposition 3.1], it follows that
log N(e, 5, || - 1) < ¢+ 75,

for some positive constant ¢. This completes the proof. O

We note that the same arguments yield
log N(e, T,d) > ¢ - ¢

with some constant ¢ > 0. Now we apply a result to estimate the upper tail probability by making use
of metric entropy log N (e, T, d). More precisely, [1, Theorem 5.4] says that if log N (e, T,d) < ¢- e, then

P{[| XonllLrio1) > 1} < crexples - r7¥5 1 @(r/ [ Amllp),

for two positive constants ¢; and ¢y, where
o0
o(r) = (27r)*1/2/ e~ 2 dy.
T

According to Lemma 2.1, the parameter o = mL_H Then it is straightforward to derive (1.9).
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2.3 Proof of Corollary 1.4

The proof is based on a result of [11] connecting the upper tail behavior of a supremum random variable
and its Laplace transform. More precisely, let {&}ier be a bounded and centered Gaussian random
function with an arbitrary parametric set T, then [11, Theorem 1] says, as r — 0o,

]P’{ sup & > (7,90%)1/(279)} ~ V2 —0Eexp {7" <?ng gt)e]-{supteT g,,>o}}

teT
1 o
~exp{ — (rfo? 2/(29)—}~ T ,
p{ (rboz) o2, V2n(rfo2 )1/ (2-0)

where 02 = sup,c, E£(t)?. Corollary 1.4 directly follows from (2.5) by taking £ = X, with appropriate
parametric sets T. More specifically, T' = [0, 1] yields the first asymptotics in Corollary 1.4, and

(2.5)

1 1
T = {g € L0,1] : — 4 = =1 and ||g| £ajo,1) < 1}
P q
yields the other asymptotics.
2.4 Proof of Theorem 1.5

As used in the proof of Theorem 1.3, we need connections between small ball probabilities and metric
entropy estimates which come from the following facts.

Proposition 2.2.  Let X be a centered Gaussian random variable in Banach space (E, || -||) with dual
space (E* || - ||l«). Denote By« to be the closed unit ball of E*, and for g € E*, define

lgllx = VEGP.
Then, for « > 0 and B € R, there is a constant ¢c; > 0 such that for all 0 < e <1,
log P{||X|| < e} < —c1e7“|logel?

if and only if there is a constant co > 0 such that for all 0 < e < 1,

log N(e, Be, | - |x) > cos™ 5| log e] 775
and for B> 0 and v € R, there is a constant cs > 0 such that for all 0 < e < 1,

log P{|| X | < e} < —c3|loge|?(log|logel)”
if and only if there is a constant cy > 0 such that for all 0 < e < 1,

log N(g, Bg-, || - ||x) = ca|loge|? (log | loge|)7.

Furthermore, the results also hold if the inequalities are reversed.

Proof.  The result is a consequence of the metric entropy duality and Kuelbs-Li connection between the
metric entropy and the small ball probability. It can be seen (in a less explicit form) in [5], and follows
immediately from [7, Proposition 3.1]. Indeed, without loss of generality, we assume that X = Z;’il fi&,
where f; € E and §; are i.i.d. N(0,1) random variables. Then we have

> ()G

=1

[X| = sup
gEB R~

Denote
T ={(9(f1),9(f2),...) : g € Be-} C I*.

Then T is symmetric and convex. It is straightforward to check that
N(e, Be=, |- [lx) = N(&, T, || - [[2)-

Thus, the result follows immediately from [7, Proposition 3.1]. O
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Proof of Theorem 1.5.  The result follows from combining Proposition 2.2 above and the proof of [1,
Theorem 5.4]. Indeed, if we denote

D(g,e) ={h € Bg~: |h—g||x <e}.

Then, by the Dudley’s metric entropy bound, we have

E sup h(X)gc/ V1og N(s, Bg-, | - || x)ds
heD(g,e) 0

By the lower bound assumption on the small ball probability and using Proposition 2.2, we immediately

obtain

C
E sup h(X)S< —(a+ 2)6”% | 10g5|ai+2.
heD(g,e) 2

By Borell’s inequality, we have

A2 A
IP’{ sup h(X) > )\} < 2exp{ — 55 tC(a+ 2)52%&|10g5|ai+2 3 }
heD(g.e) 20 20
Let g1,92, ..., gm be an e-net of Bg+ under || ||x distance with minimum cardinality. By Proposition 2.2,

we have )
2a 2
m < exp{C’e” 2t |loge|2T= }.

Thus,
P{|IX|| > A} = { sup h(X) > A}
hEBp-

m

Z { sup  h(X) > )\}

=1 heD(gl7 )

2
< exp{C’%*%Hogd%} . 2exp{ - ;7 +C(a+ 2)52+%|10g5|ai+2 222 }

The result follows by choosing & ~ CA" etz (log )\)ﬁ O
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