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Abstract We obtain new upper tail probabilities of m-times integrated Brownian motions under the uniform

norm and the Lp norm. For the uniform norm, Talagrand’s approach is used, while for the Lp norm, Zolotare’s

approach together with suitable metric entropy and the associated small ball probabilities are used. This

proposed method leads to an interesting and concrete connection between small ball probabilities and upper tail

probabilities (large ball probabilities) for general Gaussian random variables in Banach spaces. As applications,

explicit bounds are given for the largest eigenvalue of the covariance operator, and appropriate limiting behaviors

of the Laplace transforms of m-times integrated Brownian motions are presented as well.
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1 Introduction

Suppose that m > 0 is an integer, and {W (t)}t>0 is the standard Brownian motion starting at zero. The

m-times integrated Brownian motions {Xm(t)}t>0 are defined as X0(t) = W (t) and

Xm(t) =

∫ t

0

Xm−1(s)ds, for t > 0 and m > 1. (1.1)

From integration by parts, it follows that Xm in (1.1) has a representation

Xm(t) =
1

m!

∫ t

0

(t− s)mdW (s), for t > 0 and m > 0. (1.2)

We use Am to denote the covariance operator of Xm, namely,

Amf(t) =

∫ 1

0

Km(s, t)f(s)ds,

where

Km(s, t) =
1

(m!)2

∫ min{s,t}

0

(s− u)m(t− u)mdu

∗Corresponding author
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is the covariance function of Xm. Among the various studies on m-times integrated Brownian motions

(see [2, 6, 8, 16]), we specially recall the results on small ball probabilities established in [2, 6]. Namely,

the exact asymptotics as ǫ → 0+ of

logP
{

sup
06t61

|Xm(t)| 6 ǫ
}

, logP{‖Xm‖Lp[0,1] 6 ǫ}, with 1 6 p < ∞

and P{‖Xm‖L2[0,1] 6 ǫ} are achieved. It is then natural to investigate the rare events from the opposite

side, i.e., upper tail probabilities as r → ∞,

P

{

sup
06t61

|Xm(t)| > r
}

and P{‖Xm‖Lp[0,1] > r}. (1.3)

Based on the theory of Gaussian processes, it is quite easy to deduce exact asymptotics for the quantities

logP
{

sup
06t61

|Xm(t)| > r
}

and logP{‖Xm‖Lp[0,1] > r};

see [12, Subsection 8.3] and [10, Subsection 3.1]. In this paper, we will firstly derive sharp asymptotics

for

P

{

sup
06t61

|Xm(t)| > r
}

and P{‖Xm‖L2[0,1] > r},

which are summarized in the following theorem.

Theorem 1.1. (I) For m = 0,

P

{

sup
06t61

|X0(t)| > r
}

= P

{

sup
06t61

|W (t)| > r
}

∼ 4√
2π

· r−1 · exp
{

− r2

2

}

. (1.4)

For m > 1,

P

{

sup
06t61

|Xm(t)| > r
}

∼ 2

m!
√

2π(2m+ 1)
· r−1 · exp

{

− (m!)2(2m+ 1)r2

2

}

. (1.5)

(II) For 0 < p < ∞ and m = 0,

P{‖X0‖Lp[0,1] > r} = P{‖W‖Lp[0,1] > r} ∼ 2σπ−3/4

(

Γ(12 + 1
p )

Γ(1 + 1
p )

)1/2

· r−1 · exp
{

− r2

2σ2

}

, (1.6)

where

σ =

(

2

pπ

)1/2(

1 +
p

2

)(p−2)/(2p)Γ(12 + 1
p )

Γ(1 + 1
p )

.

For p = 2 and m > 1,

P{‖Xm‖L2[0,1] > r} ∼ c(
−→
λm) · r−1 · exp

{

− r2

2λm
1

}

, (1.7)

where
−→
λm = (λm

n )n>1 is the set of eigenvalues of the covariance operator Am of Xm, c(
−→
λm) is a constant

depending on
−→
λm, and λm

1 is the largest eigenvalue.

The cases m = 0 in both (I) and (II) of Theorem 1.1 have been known for a while; see for example [15,

Theorem 7.6] and [4, Theorem 1]. We thus will prove Theorem 1.1 only for m > 1. It is worthy to note

that under the uniform norm the case m = 0 and the case m > 1 show different features:

P

{

sup
06t61

W (t) > r
}

∼ 2P{W (1) > r} and P

{

sup
06t61

Xm(t) > r
}

∼ P{Xm(1) > r}.

As a simple application of Theorem 1.1, we are able to give explicit bounds for the largest eigenvalue λm
1

of the covariance operator Am.
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Corollary 1.2. For every m > 1, the largest eigenvalue λm
1 satisfies

1

(m+ 1)2(2m+ 3)
6 λm

1 · (m!)2 6
1

2m+ 1
. (1.8)

In [6], estimates on λm
n were given for large n with a fixed m. In [13], estimates on λm

1 (and λm
2 ) were

given for large m. None of them are for a fixed m and a fixed eigenvalue. But at the same time, estimates

in (1.8) are worse than those in [13] when m is large.

Proof of Corollary 1.2. It is straightforward to check that for 1 6 p < ∞,

P

{

sup
06t61

|Xm+1(t)| > r
}

6 P{‖Xm‖Lp[0,1] > r} 6 P

{

sup
06t61

|Xm(t)| > r
}

.

We take p = 2, and use (1.5) and (1.7) to deduce that

(m!)2(2m+ 1) 6
1

λm
1

6 ((m+ 1)!)2 (2m+ 3),

which is equivalent to (1.8).

The idea of the proof of Theorem 1.1 is simple. Under the uniform norm, we employ the method

developed by Talagrand [17], while under the L2 norm, an asymptotics is used regarding the l2 norm which

was derived by Zolotarev [18] (see also [14] for generalizations). Unfortunately, for general 1 6 p < ∞,

similar arguments will not work. The covariance operator Am : Lq[0, 1] → Lp[0, 1], where

1

p
+

1

q
= 1,

has a norm

‖Am‖p := sup
‖g‖q61

‖Amg‖p = sup
‖g‖q61

sup
‖f‖q61

∫ 1

0

∫ 1

0

Km(t, s)f(t)g(s)dtds.

If p = 2, then it is straightforward to see that ‖Am‖2 = λm
1 . Our second result works for general

1 6 p < ∞, but it is only an upper bound.

Theorem 1.3. For 1 6 p < ∞ and m > 1, the following upper bound holds,

P{‖Xm‖Lp[0,1] > r} 6 c1(m, p) · exp
{

− r2

2‖Am‖p
+ c2(m, p) · r 2

2m+3

}

, (1.9)

where c1(m, p) and c2(m, p) are two positive constants depending on m and p.

Note that the upper bound (1.9) is not trivial. To see this, let us recall the Borell’s inequality (see [1,

Subsection 2.1]). Suppose {Y (t)}t∈T is a centered Gaussian process with sample paths bounded a.s.,

where T is some parametric set. Let ‖Y ‖ = supt∈T Y (t) and σ2
T = supt∈T E(Y 2(t)). Then for r > E‖Y ‖,

P{‖Y ‖ > r} 6 2 exp

{

− (r − E‖Y ‖)2
2σ2

T

}

. (1.10)

Now we rewrite the Lp norm as a uniform norm

‖Xm‖Lp[0,1] = sup
g∈T

∫ 1

0

Xm(t)g(t)dt := sup
g∈T

Xm(g) (1.11)

with

T =

{

g ∈ Lq[0, 1] :
1

p
+

1

q
= 1 and ‖g‖Lq[0,1] 6 1

}

.

Then it follows from (1.10) that

P{‖Xm‖Lp[0,1] > r} 6 2 exp

{

− (r − E‖Xm‖Lp[0,1])
2

2‖Am‖p

}

. (1.12)

The leading term r2

2‖Am‖p
coincides in (1.9) and (1.12), but the next term r

2
2m+3 in (1.9) is better than r

in (1.12). As an application of Theorem 1.3, we have the following estimates for the Laplace transforms

of m-times integrated Brownian motions.
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Corollary 1.4. For m > 1 and 1 6 θ < 2, the following statements hold as r → ∞ :

E exp
{

r ·
(

sup
06t61

Xm(t)
)θ}

∼ 1√
2− θ

exp

{

2− θ

2θ
((m!)2(2m+ 1))

θ
θ−2 (rθ)

2
2−θ

}

;

E exp{r · (‖Xm‖L2[0,1])
θ} ∼ c(

−→
λm)

√

2π

(2− θ)λm
1

exp

{

2− θ

2θ
(λm

1 )
θ

2−θ (rθ)
2

2−θ

}

;

E exp{r · (‖Xm‖Lp[0,1])
θ} 6 c1(m, p, θ) exp{c2(m, p, θ)r

2
(2−θ)(2m+3) + c3(m, p, θ)r

2
2−θ },

where ci, i = 1, 2, 3, are three positive constants depending on m, p and θ. In particular, the constant

c3(m, p, θ) =
2− θ

2θ
θ2/(2−θ)(‖Am‖p)θ/(2−θ).

The related results of Corollary 1.4 have been known for m = 0; see for example [3] and references

therein. The proof of Theorem 1.3 is based on an upper bound estimate in [1] involving the metric

entropy of T endowed with the canonical metric, with the help of the small ball probabilities of Xm. It

turns out that such a proposed method works far beyond m-times integrated Brownian motions. Our

last result is to present an interesting and concrete connection between small ball probabilities and upper

tail probabilities for general Gaussian random variables in Banach spaces.

Theorem 1.5. Let X be a centered Gaussian random variable in Banach space (E, ‖ · ‖) with dual

space (E∗, ‖ · ‖∗). Suppose P {‖X‖ 6 ε} > e−c0ε
−α| log ε|β as ε → 0+, for some c0 > 0, α > 0 and β ∈ R.

Then

P{‖X‖ > λ} 6 c1 exp

{

− 1

2σ2
λ2 + c2λ

α
α+1 (logλ)

β

α+1

}

,

where σ2 = sup‖g‖∗61 E|g(X)|2, and c1 and c2 are constants depending only on c0, α and σ.

For m-times integrated Brownian motions, according to [2], the small ball probabilities of Xm have

the following form,

lim
ǫ→0

ǫ
2

2m+1 logP{‖Xm‖Lp[0,1] 6 ǫ} = −c(m, p), 1 6 p < ∞,

for some positive constant c(m, p) depending on m and p. In this case we can take α = 2/(2m+ 1) and

β = 0 in Theorem 1.5 which leads to

P{‖Xm‖Lp[0,1] > r} 6 c1 exp{c2r
2

2m+3 } · Φ(r/σ),

where

σ2 = sup
‖g‖q61

E|g(X)|2 = sup
‖g‖q61

∫ 1

0

∫ 1

0

Km(t, s)g(t)g(s)dtdt,

and q = p/(p − 1). Note that σ2 = ‖Am‖p. Indeed, it is trivial that σ2 6 ‖Am‖p. To see the other

direction, we notice that Km(t, s) is a covariance kernel. Thus

‖Am‖p = sup
‖g‖q61

sup
‖f‖q61

∫ 1

0

∫ 1

0

Km(t, s)f(t)g(s)dtds

=
1

2
sup

‖g‖q61

sup
‖f‖q61

∫ 1

0

∫ 1

0

Km(t, s)[f(t)g(s) + f(s)g(t)]dtds

= sup
‖g‖q61

sup
‖f‖q61

∫ 1

0

∫ 1

0

Km(t, s)

[

f(t) + g(t)

2
· f(s) + g(s)

2
− f(t)− g(t)

2
· f(s)− g(s)

2

]

dtds

6 sup
‖g‖q61

sup
‖f‖q61

∫ 1

0

∫ 1

0

Km(t, s)

[

f(t) + g(t)

2
· f(s) + g(s)

2

]

dtds,

6 σ2,

where the last inequality follows from the fact that ‖(f + g)/2‖q 6 1. This recovers Theorem 1.3.
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2 Proofs

2.1 Proof of Theorem 1.1

As remarked before, we will only prove for m > 1. It is straightforward to deduce from (1.2) that

sup
06t61

E(Xm(t))2 = sup
06t61

1

(m!)2
t2m+1

2m+ 1
=

1

(m!)2
1

2m+ 1

and the suprema occurs uniquely at t = 1. Then by the result in [17], the asymptotics (1.5) is proved if

the following holds,

lim
h→0

h−1
E sup

t∈Th

(Xm(t)−Xm(1)) = 0

with

Th =

{

t ∈ [0, 1] : E(Xm(t)Xm(1)) >
1

(m!)2
1

2m+ 1
− h2

}

.

To see this, notice that for t ∈ Th,

h2 > EX2
m(1)− E(Xm(t)Xm(1))

=
1

(m!)2

[
∫ 1

0

(1− s)2mds−
∫ t

0

(t− s)m(1− s)mds

]

=
1

(m!)2

[
∫ 1

t

(1− s)2mds+

∫ t

0

(1− s)m((1− s)m − (t− s)m)ds

]

>
1

(m!)2

[

(1− t)2m+1

2m+ 1
+

∫ t

0

(1− s)m(1− t)(1− s)m−1ds

]

=
1

(m!)2

[

(1− t)2m+1

2m+ 1
+ (1− t)

(

1

2m
− (1− t)2m

2m

)]

. (2.1)

For small h, any t ∈ Th will be close to 1, we thus set such t ∈ [1/2, 1] in (2.1). In this way,

h2 > c(m) · (1− t) (2.2)

for some positive constant c(m) depending on m. Therefore,

lim
h→0

h−1
E sup

t∈Th

(Xm(t)−Xm(1)) = lim
h→0

h−1
E sup

t∈Th

−
∫ 1

t

Xm−1(s)ds

6 lim
h→0

h−1
E sup

t∈Th

∫ 1

t

|Xm−1(s)|ds

6 lim
h→0

h−1
E

∫ 1

1− h2

c(m)

|Xm−1(s)|ds,

where the last inequality is from (2.2). This limit is then obviously zero since

sup
06s61

E|Xm−1(s)| < ∞.

We also notice that

2P{Xm(1) > r} = P{|Xm(1)| > r} 6 P

{

sup
06t61

|Xm(t)| > r
}

6 2P
{

sup
06t61

Xm(t) > r
}

∼ 2P{Xm(1) > r},

which proves (I).
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For the proof of (II), we first recall the Karhunen-Loève expansion for Xm as follows

Xm(t) =
∞
∑

n=1

Zn

√

λm
n fn(t),

where {Zn}n>1 is a sequence of i.i.d. standard normal N(0, 1) random variables, {λm
n }n>1 is the set of

eigenvalues of the covariance operator Am, and {fn(t)}n>1 is the set of the associated eigenfunctions that

forms an orthonormal basis of L2[0, 1]. Then we have the in law identity

‖Xm‖L2[0,1] =

( ∞
∑

n=1

λm
n Z2

n

)1/2

.

Now the results in [18] can be applied in such l2 and

P{‖Xm‖L2[0,1] > r} = P

{( ∞
∑

n=1

λm
n Z2

n

)1/2

> r

}

∼ 2 · c̄(−→λm) ·
√

λm
1

2π
· r−1 · exp

{

− r2

2λm
1

}

,

where c̄(
−→
λm) is a constant depending on the eigenvalues {λm

n }n>1 whose exact expression is

c̄(
−→
λm) =

∞
∏

n=2

(1− λm
n /λm

1 )−1/2.

The fact that 0 < c̄(
−→
λm) < ∞ can be seen as follows. Since λm

1 is the largest eigenvalue (with multiplic-

ity 1; see [6]), 1− λm
n /λm

1 is always positive and less than 1. Therefore the convergence of the product is

equivalent to the convergence of the series

∞
∑

n=2

λm
n /λm

1 .

The convergence of eigenvalue series is a basic fact of a covariance operator.

2.2 Proof of Theorem 1.3

We recall that

T =

{

g ∈ Lq[0, 1] :
1

p
+

1

q
= 1 and ‖g‖Lq[0,1] 6 1

}

and

‖Xm‖Lp[0,1] = sup
g∈T

Xm(g) = sup
g∈T

∫ 1

0

Xm(t)g(t)dt.

On the parametric set T we define the canonical metric

d(f, g) =
√

E(Xm(f)−Xm(g))2.

Let N(ǫ, T, d) be the minimum number of open balls of radius ǫ needed to cover T, then logN(ǫ, T, d)

is the metric entropy of (T, d). The proof will make use of the following upper estimate of the metric

entropy of (T, d).

Lemma 2.1. For some constant c > 0,

logN(ǫ, T, d) 6 c · ǫ− 1
m+1 .

Proof. We recall the Karhunen-Loève expansion for Xm (which was used in Subsection 2.1) as follows:

Xm(t) =
∞
∑

n=1

Zn

√

λm
n fn(t).
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There is an elegant connection between the small ball probability logP{‖Xm‖Lp[0,1] 6 ǫ} and the metric

entropy logN(ǫ, S, ‖ · ‖l2), where

S =

{

(c1, c2, . . .) ∈ l2 : cn =

∫ 1

0

g(t)
√

λm
n fn(t)dt, ‖g‖Lq[0,1] 6 1

}

; (2.3)

see [7, 9]. We now show that

logN(ǫ, T, d) = logN(ǫ, S, ‖ · ‖l2).
To this end, the covariance function Km(s, t) of Xm can be written as

Km(s, t) = E(Xm(s)Xm(t)) = E

( ∞
∑

n=1

Zn

√

λm
n fn(s)

∞
∑

n=1

Zn

√

λm
n fn(t)

)

=

∞
∑

n=1

λm
n fn(s)fn(t).

Therefore, the covariance operator

Amg(t) =

∫ 1

0

g(s)Km(s, t)ds =

∞
∑

n=1

λm
n fn(t)

∫ 1

0

g(s)fn(s)ds.

Thus the canonical metric

d2(f, g) = E(Xm(f)−Xm(g))2 = E

(
∫ 1

0

Xm(t)(f(t) − g(t))dt

)2

=

∫ 1

0

(f(t)− g(t))Am(f(t)− g(t))dt

=
∞
∑

n=1

λm
n

(
∫ 1

0

(f(t)− g(t))fn(t)dt

)2

=

∞
∑

n=1

c2n = ‖~c‖2l2 , (2.4)

where ~c = (c1, c2, . . .) with

cn =
√

λm
n

∫ 1

0

(f(t)− g(t))fn(t)dt.

Now we can pair a point g ∈ T and a point ~c ∈ S, then the identity (2.4) implies that an ǫ ball of g is

also an ǫ ball of ~c. Thus

logN(ǫ, T, d) = logN(ǫ, S, ‖ · ‖l2).
Now we find estimates on logN(ǫ, S, ‖ · ‖l2) with the help of small ball probabilities of Xm. According

to [2], the small ball probabilities of Xm have the following form,

lim
ǫ→0

ǫ
2

2m+1 logP{‖Xm‖Lp[0,1] 6 ǫ} = −c(m, p), 1 6 p < ∞,

for some positive constant c(m, p) depending on m and p. From [7, Proposition 3.1], it follows that

logN(ǫ, S, ‖ · ‖l2) 6 c · ǫ− 1
m+1 ,

for some positive constant c. This completes the proof.

We note that the same arguments yield

logN(ǫ, T, d) > c′ · ǫ− 1
m+1

with some constant c′ > 0. Now we apply a result to estimate the upper tail probability by making use

of metric entropy logN(ǫ, T, d). More precisely, [1, Theorem 5.4] says that if logN(ǫ, T, d) 6 c · ǫ−α, then

P{‖Xm‖Lp[0,1] > r} 6 c1 exp{c2 · r
2α

2+α } · Φ(r/‖Am‖p),
for two positive constants c1 and c2, where

Φ(r) = (2π)−1/2

∫ ∞

r

e−x2/2dx.

According to Lemma 2.1, the parameter α = 1
m+1 . Then it is straightforward to derive (1.9).
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2.3 Proof of Corollary 1.4

The proof is based on a result of [11] connecting the upper tail behavior of a supremum random variable

and its Laplace transform. More precisely, let {ξt}t∈T be a bounded and centered Gaussian random

function with an arbitrary parametric set T, then [11, Theorem 1] says, as r → ∞,

P

{

sup
t∈T

ξt > (rθσ2
T )

1/(2−θ)
}

∼
√
2− θE exp

{

r ·
(

sup
t∈T

ξt

)θ

1{supt∈T ξt>0}

}

· exp
{

− (rθσ2
T )

2/(2−θ) 1

θσ2
T

}

· σT√
2π(rθσ2

T )
1/(2−θ)

,

(2.5)

where σ2
T = supt∈T Eξ(t)2. Corollary 1.4 directly follows from (2.5) by taking ξ = Xm with appropriate

parametric sets T. More specifically, T = [0, 1] yields the first asymptotics in Corollary 1.4, and

T =

{

g ∈ Lq[0, 1] :
1

p
+

1

q
= 1 and ‖g‖Lq[0,1] 6 1

}

yields the other asymptotics.

2.4 Proof of Theorem 1.5

As used in the proof of Theorem 1.3, we need connections between small ball probabilities and metric

entropy estimates which come from the following facts.

Proposition 2.2. Let X be a centered Gaussian random variable in Banach space (E, ‖ · ‖) with dual

space (E∗, ‖ · ‖∗). Denote BE∗ to be the closed unit ball of E∗, and for g ∈ E∗, define

‖g‖X =
√

E|g(X)|2.

Then, for α > 0 and β ∈ R, there is a constant c1 > 0 such that for all 0 < ε < 1,

logP{‖X‖ < ε} 6 −c1ε
−α| log ε|β

if and only if there is a constant c2 > 0 such that for all 0 < ε < 1,

logN(ε,BE∗ , ‖ · ‖X) > c2ε
− 2α

2+α | log ε|
2β

2+α ;

and for β > 0 and γ ∈ R, there is a constant c3 > 0 such that for all 0 < ε < 1,

logP{‖X‖ < ε} 6 −c3| log ε|β(log | log ε|)γ

if and only if there is a constant c4 > 0 such that for all 0 < ε < 1,

logN(ε,BE∗ , ‖ · ‖X) > c4| log ε|β(log | log ε|)γ .

Furthermore, the results also hold if the inequalities are reversed.

Proof. The result is a consequence of the metric entropy duality and Kuelbs-Li connection between the

metric entropy and the small ball probability. It can be seen (in a less explicit form) in [5], and follows

immediately from [7, Proposition 3.1]. Indeed, without loss of generality, we assume that X =
∑∞

i=1 fiξi,

where fi ∈ E and ξi are i.i.d. N(0, 1) random variables. Then we have

‖X‖ = sup
g∈BE∗

∣

∣

∣

∣

∞
∑

i=1

g(fi)ξi

∣

∣

∣

∣

.

Denote

T = {(g(f1), g(f2), . . .) : g ∈ BE∗} ⊂ l2.

Then T is symmetric and convex. It is straightforward to check that

N(ε,BE∗ , ‖ · ‖X) = N(ε, T, ‖ · ‖2).

Thus, the result follows immediately from [7, Proposition 3.1].
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Proof of Theorem 1.5. The result follows from combining Proposition 2.2 above and the proof of [1,

Theorem 5.4]. Indeed, if we denote

D(g, ε) = {h ∈ BE∗ : ‖h− g‖X < ε}.

Then, by the Dudley’s metric entropy bound, we have

E sup
h∈D(g,ε)

h(X) 6 C

∫ ε

0

√

logN(s,BE∗ , ‖ · ‖X)ds.

By the lower bound assumption on the small ball probability and using Proposition 2.2, we immediately

obtain

E sup
h∈D(g,ε)

h(X) .
C

2
(α + 2)ε

2
2+α | log ε|

β

α+2 .

By Borell’s inequality, we have

P

{

sup
h∈D(g,ε)

h(X) > λ
}

6 2 exp

{

− λ2

2σ2
+ C(α + 2)ε

2
2+α | log ε| β

α+2
λ

2σ2

}

.

Let g1, g2, . . . , gm be an ε-net of BE∗ under ‖·‖X distance with minimum cardinality. By Proposition 2.2,

we have

m 6 exp{C′ε−
2α

2+α | log ε|
2β

2+α }.
Thus,

P{‖X‖ > λ} = P

{

sup
h∈BE∗

h(X) > λ
}

6

m
∑

i=1

P

{

sup
h∈D(gi,ε)

h(X) > λ
}

6 exp{C′ε−
2α

2+α | log ε|
2β

2+α } · 2 exp
{

− λ2

2σ2
+ C(α+ 2)ε

2
2+α | log ε|

β

α+2
λ

2σ2

}

.

The result follows by choosing ε ∼ cλ− α+2
2α+2 (logλ)

β

2α+2 .
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