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Abstract This paper presents an algorithm for blind recognition of punctured convo-
lutional codes which is an important problem in adaptive modulation and coding. For a
given finite sequence of convolutional code, the parity check matrix of the convolutional
code is first computed by solving a linear system with adequate error tolerance. Then a
minimal basic encoding matrix of the original convolutional code and its puncturing pattern
are determined according to the known parity check matrix of the punctured convolutional
code.
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1 Introduction

Adaptive modulation and coding (AMC) can remarkably improve bandwidth-efficiency,
information-rate and robustness in time-varying channel (fading channel)!™»?/. Therefore
the techniques will be considered to be used in communication systems, especially 3G
mobile communication system, software radio system and multimedia service system!*!,
But, how to recognize the demodulation and decoding method quickly, only by the re-
ceived data information in the receiver, is a very important problem. This paper addresses
the problem. Obviously, this problem is also one of the key problems in the field of infor-
mation interception.

Utilizing RCPC codes (Rate-Compatible Punctured Convolutional) to realize AMC is
a simple and efficient method®*!. RCPC codes, presented by Hagenauer!®, having good
performance, form a subclass of punctured convolutional codes!®l. Begin and Haccoun!”!
studied the construction technique of punctured codes, showed that any punctured code
can be obtained by means of an orthogonal puncturing pattern, and also gave lots of good
punctured codes. McEliece!®! researched the method of puncturing. Recently, Shen et
al.l” constructed the generator matrix of the punctured convolutional code on the con-
dition that the original convolutional code and puncturing pattern are given, and also

gave the necessary and sufficient condition on the inverse problem: representing a known
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convolutional code as a punctured convolutional code.

This paper solves the problem of blind recognition of punctured convolutional codes.
For a given finite sequence of a convolutional code, the parity check matrix of the convo-
Iutional code is first computed by solving a linear system with adequate error tolerance.
Then a minimal basic encoding matrix of the original convolutional code and its punctur-
ing pattern are determined according to the known parity check matrix of the punctured
convolutional code. In practical applications, an original rate-1/2 convolutional code is
usually used to generate a rate-(n — 1) /n punctured convolutional code. Thus we simply
focus on the punctured convolutional codes with rate (n — 1) /n.

2 Problem descriptions

For detailed treatment of punctured convolutional codes, readers can refer to refs. [5, 7,
8, 10]. We introduce some basic concepts for conveniently describing the main problem
of this paper.

Let F' = {0, 1} be the binary field, Z the set of all integers, and Z;, = {0,1,- -+, k—1},
where k is a positive integer. Let F'[ D] be the polynomial ring, F'(D) the rational function
field.

A rate k/n convolutional code C is a k-dimensional subspace of F'(D)". A generator
matrix G(D) for C is a k x n matrix over F'(D) whose rows form a basis for C. If G (D)
is a polynomial matrix with full rank, then G (D) is an encoding matrix. If G (D) is an
encoding matrix with right inverse, then G (D) is a basic encoding matrix.

For a k/n-rate convolutional code C, when k& information bits w; = (ug¢, U1 ¢, -+,
uy—1,¢) are input at time ¢, then C will output n bits v, = (Vo ¢, V1,4, -+, Vp—1,¢). We call
u, the information word at t, and v, the code word at t.

The following describes a simple procedure for constructing a high rate-/ /n punctured
code from an original rate-1/2 convolutional code.

Let C be a 1/2-convolutional code, U(D) = >°7°,u; D’ the input information se-

quence, and V(D) = (Z;io v 0 D7, 37 v D ) the output code sequence in C. If
we block the input information sequence and the output code sequence into [ and 2] sub-
sequences respectively as follows:

UI(D) = (U07 U17 Ty Ulfl) )
V,(D) = (%,Oa %,17 ‘/1,07 ‘/1,17 to 7‘/2—1,07 ‘/l—l,l) 5

where U; = Z;‘;O i DI, Vi = Z;’;O e D’ i =0,1,---,1 — 1,k = 0,1, then

by

the set of all kinds of V' (D) is an [ /2l-rate convolutional code C’ which is equivalent to

C.

Hence, for the code C’, at time ¢, the input information word and the corresponding
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output code word are

r_
Wy, = (U, Upg1, - 5 Uti—1)s

A
v, = (Ult,OaUlt,lavlt+1,07vlt+1,17 te >Ult+lfl,077)lt+l71,1)'

Let P € F2, Phasn components of value 1, and 2/ — n components of value 0. In
every output code word v of the code C’, 2] — n bits are deleted according to the positions
of 0 in P. The remaining n bits form a code word ¢/, of the punctured convolutional code
Cp att. Here P is called the puncturing pattern. Clearly, the punctured convolutional
code Cp has rate [ /n. Therefore, the procedure of construction can be simply described

as follows:

lock uncture
C blog c’ p

pP-

Let G(D)’ be a generator matrix of C’, P a puncturing pattern. After deleting the
columns of G’ (D) according to the positions of 0 in P, the remaining matrix G p(D) is a
generator matrix of the punctured convolutional code Cp.

Let ap = (ap(0),ap(l),---,ap(n — 1)) be a position vector of P, where ap (i)
is the position of the i-th 1 in P. For example, if P = (0,1,1,0,0,0,1), then ap =
(1,2,6).

Let 3 = (Bo, 51, Bk-1) € ZF. Let [G(D)], denote the matrix deduced from
G(D) with columns of 3, namely

G (D)), = [ (D), G (D), G (D)),
where G#) (D) is the 3;-th column of G (D).

In design of punctured code, the puncturing pattern should satisfy the following condi-
tions:

1) In order for Cp to have uniquely decoding property, the generator matrix G p(D)
should be a basic encoding matrix. Hence there exists an n x [ polynomial matrix (), such
that Gp(D) - Q = I,.

2) The puncturing pattern should not delete all the bits of the output code word v, of
the source code C at each time . Therefore, P must satisfy that (P(2:), P(2i + 1)) #
(0,0),i=0,1,---,1—1.

In this paper, we default that the puncturing patterns P to be blind recognized satisfy
the previous conditions. In fact, the punctured convolutional codes with nice properties
constructed by Begin and Haccoun!” satisfy the conditions.

If G(D) and P are known, it is easy to construct the generator matrix Gp(D) =

[G(D)'],,,, of the punctured code Cp. In this paper, we want to solve the inverse problem
as follows:
Mail problem. Letr;,7 = 0,1,---, N be a received sequence of signal words of

a transmitted sequence of code words of an unknown punctured convolutional code Cp
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through a noise channel, where r; = (7"1'70, Ti, e ,rm_l), r;; € F5. Find the generator
matrix G(D) of the source code C and the corresponding puncturing pattern P.

We will solve the main problem in this paper in two steps. In the first step, the par-
ity check matrix Hp(D) of Cp will be solved from a linear system constructed by the
sequence of signal words r;,7 = 0,1,---, V. In the second step, the generator matrix
G(D) of the source code C and the corresponding puncturing pattern P will be computed
according to the matrix Hp (D).

3 Blind recognition of parity check matrix

For convenience in description, we only consider to recognize the binary punctured
convolutional codes Cp of rate 2=1. Let Gp(D) be an (n — 1) x n encoding matrix of
Cp. Let Hp(D) be the parity check matrix of Cp. Then

Gp(D)-Hp(D) = 0.
Since the rank of Gp(D) is full, Hp(D) is an n X 1 polynomial matrix. We want to
compute the matrix Hp (D). Let Hp(D)T = (ho(D), hi (D), -+, hn_1(D)).

Let vy, vy, -+, vy be a sequence of code words of the punctured convolutional code
Cp such that

Pr(r;; =v;;)=1—p,i=0,1,---,N,j=0,1,---,n— 1.
3.1 Noiseless case

To compute the polynomials h;(D), we first estimate the maximum degree k =
maxogign,l(deg hZ(D)), and let hl(_D) = hi,O + hi,lD + -+ hi’k_Dk.

If N > (n+1) x (k+1) — 1, we can construct the following linear system:
k n—1

SN rik—jishi;=0,5s=0,1,--- N — k. (1)
§=0 i=0
The minimal matrix Hp(D) can be obtained by selecting a nonzero solution of (1).

Rules of selection for minimal matrix Hp (D) are as follows. Since the parity check

matrix Hp(D) is an n X 1 matrix, we need to find a suitable nonzero solution of linear
equation (1). Let the n(k + 1) unknown variables of eq. (1) be

(h/0,0a hl,Oa ) hn—l,Oa hO,la h‘l,la e 7hn—1,17 e 7h0,k'7 h‘l,k’a e 7hn—1,k)7

and a canonical basis of the subspace of solutions be the rows of the following matrix

40,0 qo,1 o Qon(k+1)—1—r—1 qo,n(k+1)—1—r 10 --- 0
q1,0 q1,1 o Qin(k+1)—-1—r—1 q1,n(k+1)—1—r o1 ---0
. . Y
Qr—11 Qqr—11 " Qr—1n(k+D)—1-r—1 Gr—1n(k+1)—1—r 00 -1
(2)
where r is dimension of subspace of solutions. Let J; be the first column in i-th row with
nonzero component value. Let j; = V;J ,#=0,1,---,r — 1. Find a minimal integer ¢
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suchthat 0 < i <r —1, and

. + T—io . + r—1
Jio n _0327{1 Ji n .

Then the best solution we want is

r—1
hi,j - qio,(j+ji0)n+i7i = 0)17"' , I — 1)] = 0717"')k - <ji0 + \‘ OJ) . (3)

n
The selected polynomials h;(D),7=0, 1, - - - , n—1 satisfy that maxoc;<,—1{deg h;(D)}
is minimal.

Remark 1. If the source information sequence has a very low linear complexity, the
dimension of subspace of the solutions of (1) will be so large that the nonzero solution
selected by the previous rules is not only a parity check, but also a scrambling polynomial
or some padding pattern with short period for information sequence .

Usually, we need N received signal words, where N ~ (n+1) x (k-+1). The number
of unknown variables is n x (k + 1). To guarantee the solvability of the linear equation
(1), the estimated maximum degree k of the component polynomials of H (D) should
be large enough. But, if the k is overlarge, the number of signal words to be acquired, IV,
will be too large, which results in the remarkable increase of the computing complexity,
and decrease of possibility of noiseless condition. The computing complexity of solving
linear system (1) by the well-known Gaussian method is O(N?).

From the form of linear system (1), we can find an important fact that the problem of
blind recognition of parity check matrix of a convolutional code is a natural generalization
of the problem of sequence synthesis which is a very important problem in cryptography,
algebraic coding, and linear systems. The famous BM algorithm*" is used to solve the
problem of sequence synthesis. Recently, based on theory of Grobner basis, we find a fast
algorithm to compute the syzygy of homogeneous ideal generated by some polynomials
in F[z,y]. The algorithm is a generalization of the BM algorithm, and can be used to
solve eq. (1) with computing complexity O(/N?). Limited by the space, it is impossible
to give a detailed introduction to the fast algorithm of syzygy computation, which needs
a plentiful background of commutative algebra. Fortunately, in practical applications,
usually £ < 15 and n < 8. Thus it is fast enough to find the solutions of (1) by Gaussian
method.

3.2 Noise case

If the error probability p < 5 x 1073, we deal with the problem with two different
methods.

In the case of broad band communications, since a great deal of signal words can be
obtained in a moment, we can repeatedly compute eq. (1) by trial and error with different
sequences of signal words.

In the case of narrow band communications without admission of long delay, since the
volume of received signal words is limited in a short time, we should adopt an avoiding
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error strategy. Since, in practice, n X (k 4+ 1) < 60, the number of errors in the received
N + 1 signal words may be less than 2. We can exhaust all the combination of two errors
to find the best solution of (1).

If the error probability is a little larger, for example, p = 2 x 1072, we further assume
that the number of unknown variables of eq. (1) is less than 60. Then, we have the
following computation of probability:

k n—1
Pr <Z ZTi,k—jJrshi,j = O> ~0.65,s =0,1,---,N — k. @)

j=0 i=0

Based on eq. (4), we can use a method of correlation attack in cryptanalysis to solve eq.
(1). More details of correlation attack can be found in ref. [12].

4 Generator matrices of punctured codes and properties

Shen et al.l” gave the expression of a generator matrix of a punctured convolutional
code. We present a more detailed description in this section.

Lemma 1. Let C be a parent rate-1/m convolutional code with polynomial gener-
ator matrix G(D) = (g1(D), - - -, gm (D)), where g (D) = 3272 gx ; D’ € F[D], k =
1,---,m. Let g,;(D) = Z;iogk7lj+iDj, 1 =0,1,---,0—1,k =1,---,m. Then
the generator matrix G'(D) of the rate-//ml convolutional code C’ equivalent to C is

G'(D) =

91,0(D) o dm,0(D) 91,1(D) o am,1(D) o 91-1(P) e G —1(D)
Dgy 1 —1(D) -+ Day—1(DP)  g1,0(D) o m,0(D) o g1-2(D) o Gy —2(D)
Dﬁl.l*Q(D) Dﬁ?rL.l72(D) Dﬁl.l*l(D) D-@?n.lfl(D) ﬁl.l*S(D> -‘h7'm,l73(D>
Dgy,1(D) <o+ Dgm,1(D) Dgy ,2(D) co+ Dgm 2(D) e g1,0(D) o Gm,0(D)

Example 1. Let m = 2, C an original rate-1/2 convolutional code with generator
matrix G(D) = (91(D), g2(D)), where g, (D) = 1+ D? + D3 + D5 + D° go(D) =
1+ D+ D*+ D3+ DS Ifl = 3, wehave §1o(D) = 14+ D + D? §,,(D) =
0, §12(D) = 1+ D, Goo(D) = 14+ D+ D? Go1(D) = g22(D) = 1. Then the
generator matrix G’ (D) of the rate-3/6 convolutional code C’ equivalent to C is

1+4D+4+D? 1+D+D? 0 1 1+ D 1
G'(D)=| p+p? D 1+D+D?> 1+D+D? 0 1
0 D D+ D? D 1+D+D? 14D+ D?

Example 2. Conditions are the same as Example 1. The rate of the punctured code
is 3/4, and the puncturing pattern is P = (0,1, 1,0, 1, 1) with its corresponding position
vector ap = (1,2,4,5). The generator matrix G'(D) of the rate-3/6 convolutional code
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C’ equivalent to C is the same as in Example 1. Thus the generator matrix of the punctured
code is

1+D+D? 0 1+D 1
Gp(D)=| D 1+4D+D* 0 1
D D + D? 1+D+D? 1+D+ D?

Lemma 2. Let G(D) = (¢1(D), -, gm(D)) be a polynomial generator matrix of
a 1/m rate convolutional code C. Then G (D) is an encoding matrix if and only if G'(D)
is an encoding matrix, where G’ (D) is defined as in Lemma 1.

Proof. If G(D) is an encoding matrix, then G(0) # 0. Without loss of generality, let
91(0) = 1. Then the m - j-columns, j = 0,1, - - -, m of G(0) consist of a triangle matrix
with g1 (0) in diagonals. Thus G(0) has full rank. Conversely, if G(0) has full rank, then
9:(0) # 0, for some 7, and G(0) has full rank.

Let G(D) be a k x n polynomial matrix. Let G;(D) = (gi1 (D), ..., gin (D)) denote
the i-th row of G(D), and we define the degree e, of G;(D) as the maximum degree of
its components, namely, e; = deg G;(D) = max;{degg; ;(D)}. In a similar way we
define the degree of any n-tuple of polynomials as the maximum degree of any component.

McEliece!® defined the internal degree and external degree of G(D) as follows:

intdegG(D) = maximum degree of G(D)’s k x k minors,
extdegGG(D) = sum of the row degrees of G(D).

Let G4 (D), Gy (D) be generator matrices of C. If there exists a nonsingular polyno-
mial matrix 7'(D) such that G, (D) = T(D)G5(D), we say G1(D) and G5(D) are
equivalent. Equivalent matrices generate the same convolutional code.

Lemma 3!,  Let G;(D) be a rational generator matrix of C. Then there exists a
basic encoding matrix G5(D) of C such that G, (D) and G4(D) are equivalent.

Let G[D], be constructed by the coefficients of the row degrees, namely, G[D], =
(Gin)kxn» Where
) 1, deggi;(D) = e,
o 0, degg;;(D) <e;.

If G(D) is a basic encoding matrix, and G[D]}, has full rank, then G(D) is called a
minimal basic encoding matrix.

Lemma 48, A k x n polynomial matrix G(D) is minimal if and only if extdeg
G(D) = intdegG(D).

Lemma 58, If G(D) = (9,(D), -+, gm(D)) is a minimal basic encoding matrix
of C, then G’(D) is a minimal basic encoding matrix of C’.

10]

Lemma 6! Let G1(D),G2(D) be equivalent minimal basic encoding generator
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matrices of a rate-k/n convolutional code C, e; ;, ez; the i-th row degrees of G (D),
G(D). If they are ordered from small to large, without loss of generality, we get (eq o,
€11, 61,1@71) and (62,0, €21, 762,1971)- Then (61,0, €11, 761,1971) = (62,07 €21,
e ko1)-

Lemma 7. Let G(D) be a polynomial generator matrix of a rate-k /n convolutional
code C, e; the i-th row degree of G(D). Then the (Ij + 7)-th row degree of G’(D) is
P’T”J,izo,l,-~-,l—1,j:0,1,---,k—1.

Corollary 1. Let G(D) = (¢1(D), -+, gm(D)) be a polynomial generator matrix

and
max{deggl(D)’ e 7deggm(D)} =d.

Then the i-th row degree of G’ (D) is L#J, 1=0,1,---,1 — 1. Moreover, the sum of
all row degrees of G’ (D) is d.

Theorem 1. Let G(D) = (¢1(D), -+, gm(D)) be a polynomial generator matrix
of an original rate-1/m convolutional code C, P a puncturing pattern. Let e p; be the i-th
row degree of Gp(D), and d = max{deg g, (D), - - -, deg g, (D)}. Then

-1
Z ep; < d.
i=0

Moreover, if deg g;(D) = --- = degg,,(D) and P satisfies that (P(mi), P(mi +
1)+, P(mi+m—1)) # (0,0,---,0),i € Z thenep,; = [Z],i=0,1,---, 11,
and Y\l ep; = d.

Proof. Let €] be the i-th row degree of G’(D). Then

ep; <€l
By Corollary 1, we have
d+i
6;:\\ _;—ZJ’.:Oala 7l_1
Therefore
{d + ZJ
e [N
P l
Since we have the l
-1
d
>[5 e
i=0 !

it implies that

Moreover, if deg g, (D) = - - - = deg ¢,,(D) = d, then there are m consequent columns,
from the ms-th column to the (ms + m — 1)-th column for some s € Z,, in the i-th
row of G'(D) with polynomial degrees equal to the i-th row degree of G'(D). Since P
satisfies that (P(mj), P(mj + 1),---, P(mj +m — 1)) # (0,0,---,0), j € Z;, we
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can see that these m polynomials cannot be deleted at all when we construct G p (D) from
G'(D) by P. Thusep; = €;,i=0,1,---,1 — 1, and Zé;(l) ep; =d.

Corollary 2. Let G(D) = (g1(D),--+,gm(D)) be a polynomial generator matrix
of an original rate-1/m convolutional code, where deg g,(D) = --- = degg,.(D) =
d. Let Py, P, be puncturing patterns, and ep, ; and ep, ; be the i-th row degrees of
Gp, (D) and Gp, (D) respectively. If (P, (mi), Py(mi+ 1), -, Py(mi +m — 1)) #
(0,0,---,0), k = 1,2, we have

d+iJ‘ 5)

l

€p,, —€p,;, = \\

5 Recognition of punctured codes

In this section, we realize the blind recognition of rate-(n — 1) /n punctured codes. Dif-
ferent original rate-1/2 convolutional codes and different puncturing patterns may gener-
ate the same punctured code. Our task is to find the optimal among those original convo-
lutional codes and their puncturing patterns.

Let g(D) = 3°72, ;D7 be a power series(or possibly just a polynomial), §;(D) =
Y izo Gij+iD?,i=0,1,---,1 — 1. The matrix g/ (D) is defined by

Go(D) a1(D) o gim(D)
Dgi—1(D)  go(D) o Gi—2(D)
d"(D):=| Dg_»(D) Dg_+(D) --- g-s(D) |. (6)
Dg(D)  Dg(D) - Go(D)
Let m; be a permutation on Z,,; such that
m(mi+j)=4l+1i,j=01,---.m—1,i=0,1,---,1—1. (7)

Then we have the following results.

Corollary 3°l.  Let G(D) = (g:(D), -+, gm(D)) be a basic encoding generator
matrix of an original rate-1/m convolutional code C and P a puncturing pattern. Then the
corresponding generator matrix G p(D) of the punctured code Cp is

Gp(D) = [G(D)]a,, = [¢'(D), . g (D)]ryer)-

Theorem 2. Let H(D) = (ho(D),hy(D),-+-,h,_1(D)) € F"[D] be a parity-
check matrix of an arbitrary rate-(n — 1)/n convolutional code. Then there exists a rate-
1/2 convolutional code C and a puncturing pattern P such that H (D) is a parity check
matrix of the corresponding punctured code Cp. Moreover the generator matrix of C is

G(D) = (¢1(D), g2(D)), where
91(D) = hyr (DY), g2(D) = hy (D" 1)+ Dhy (D" )+ D" 2y (D" ).
The puncturing pattern P = (1,0,1,0,---,1,0,1,1) € Z22(n—1)'
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Proof. Letg (D)= h,_1(D" '), g2(D) = hy_o(D" 1)+ Dhy,_s(D" 1)+ -+

D" 2hy(D™1). By (6), we have

ggnfll(D) = hn—1(D)In—179£n71] (D) = (A(n—l)x(n—Q)a B(n—l)xl) s
where I,,_; is an (n — 1)-order identity matrix, B,_1)x1 = (ho(D),h:(D),---,
hy_2(D))T.

Let P = (1,0,1,0,---,1,0,1,1) € ZZ" Y. Then ap = (0,2,---,2(n — 2),
2(n—2)+1). By (7), wehavew,_1(2j) =4,7=0,1,--- ,n—2,and 7,, _,(2(n—2)+
1) =n—14n—2=2n—3. Thus 7, _1(ap) = (7,_1(0), m,_1(2), -, m_1(2(n—2)),
Tn—1(2(n —2) 4+ 1)) = (0,1,---,n — 2,2n — 3). By Corollary 3, the generator matrix
of punctured code Cp is

Gr(D) = [g" (D), g~ (D)]

Gp(D) is the following matrix

_ | [n—1]
Tn—1(ap) - [gl (‘D)’B(nfl)xl} .

hat(D) 0 0 ho(D)
h, 1 hy
Gp(D) = O : ) .. O :(D) ’ ®)
0 0 hn-1(D)  hy—2(D)

It is clear that

Theorem 2 shows that an arbitrary rate-(n — 1) /n convolutional code can be generated
from an original rate-1/2 convolutional code by puncturing. Moreover the degree of the
minimal basic encoding generator matrix of the original rate-1/2 convolutional code is
< (n — 1)d + n — 2, where d is the degree of H(D). Although, by Theorem 2, we
can find a generator matrix of the original rate-1/2 convolutional code and a puncturing
pattern corresponding to a given rate-(n — 1) /n convolutional code, the constraint length
of the original rate-1/2 convolutional code may be too large to be suitable for a Viterbi
decoding algorithm. The search for an original convolutional code with as low degree as
possible is the main task to be carried out in this section. Note that, the matrix Gp(D) in
(8) is a basic encoding matrix if and only if h,,_; (D) = 1.

Lemma 819,

Let G(D)x, be a basic encoding matrix of a convolutional code C,
H (D)(n,k)xn a basic encoding generator matrix of the dual code Ct of C. Let e; be
the i-th row degree of G(D)yxn, ¢ = 0,1,---,k — 1, and ey ; the j-th row degree of
H(D)(n-kyxn>j =0,1,---,n —k — 1. Then

n—k—1

k—1
E €; = E €H,j-
=0 j=0

Lemma 91'%, Let G, (D)kxn be a minimal basic encoding matrix of a convolutional
code C, Go(D)xr, a polynomial generator matrix of C, and €1, €2,; the i-th row degrees
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of G1(D)kxn> G2(D)gxn respectively,i = 0,1, -+ k—1. If G1(D)gxrn and G1 (D) pxn
are equivalent, we have

k—1 k—1
E €1, < €2
i=0 i=0

Lemma 10. Let H(D)(,_x)xn be a basic encoding matrix of the dual code C*, and
G(D)jxn a basic encoding matrix of C, i.e. G(D) - H(D)" = 0, and G(D) has a right
inverse. Then G(D) is a minimal basic encoding matrix.

Proof. By Corollary 2.24 of ref. [10], there is a minimal basic encoding matrix S(D)
equivalent to G(D). Thus, by Theorem 2.20 of ref. [10], there exists a k X k invertible
polynomial matrix Q(D) such that

G(D) = Q(D)S(D). )
Thus both S(D) and G(D) are basic encoding matrices of C. By Lemma 8, we know that
n—k—1

Z en,; = extdeg G(D)
=0

> intdeg G(D)
= intdeg S(D)
= extdeg S(D)

n—k—1

= E €H,j-
j=0

Thus ext deg G(D) = int deg G(D). It implies that G(D) is a minimal basic encoding
matrix.

Theorem 3. Let G(D) = (¢:(D),--+,g,,(D)) be a polynomial generator matrix
of an original rate-1/m convolutional code C, P a puncturing pattern, and G p(D) is a
basic encoding matrix of the punctured code Cp. Let H(D) = (ho(D),hi(D),---,
hn—-1(D)) be a polynomial parity check matrix of Cp and ged(ho(D), hqi(D),-- -,
hn,—1(D)) = 1. Then

max{deg(g1(D)), - -, deg(gm(D))} > max {degh;(D)}. (10)
Moreover, if deg(g; (D)) = - -+ = deg(g,» (D)) = d, and punctured pattern satisfies
(P(mi),---,P(mi+m—1)) #0,i € Z,_o,
then
d= Ogr?gx_l{deg hi(D)}. (11)

Proof. Letmax{deg(g:(D)),---,deg(gm (D))} = d, where d is a positive integer.
Let G'(D) be the polynomial generator matrix of the rate-(n— 1) /k(n — 1) convolutional
code C’ equivalent to C, €] the i-th row degree of G’(D), and ep; the i-th row degree of
Gp(D),i=0,1,---,n — 2. By Corollary 1, we have

o
4:{ +Zyi:Qann—2
) n—1
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Thus
n—2
Y e =d.
i=0
Since Gp (D) is constructed by some columns of G’(D), we have

n—2 n—2
E ep; < E el =d.
=0 =0

By Lemma 3, there exists a minimal basic encoding matrix G pys(D) of Cp equivalent to
Gp(D). Let epyy,; be the ith row degree of Gpy (D), 7 = 0,1,---,n — 2. By Lemma
9’

n—2 n—2
E epM,i S E ep; < d.
i=0 i=0

Since H (D) is a parity check matrix of Cp and the rate of Cp is (n — 1)/n, H(D) is
a generator matrix of Cp. Since ged(ho(D), hy (D), -+, h,_1(D)) = 1, there exists
polynomials h| (D), h} (D), -, h!, (D) such that

n—1

f hi(D)K,_(D) = 1.
Let H'(D) = (h@(p),hg(p),ff?,h;kl(p))? Then H(D)H'(D) = 1. Thus H(D)

is a basic encoding matrix of C3>. By Lemma 6,
n—2
< d.
Therefore (10) holds.

Moreover, if deg(g, (D)) = --- = deg(gn(D)) = d and P satisfies: (P(mi),-- -,
P(mi+m —1)) #0,i € Z,_,, then by Theorem 2

o
ep_i:{ —HJ,Z':O,L---,n—Q.
’ n—1

Hence

n—2
E €p =d.
=0

Since Gp(D) is a basic polynomial encoding matrix of Cp, by Lemma 10, Gp(D) is a
minimal basic encoding matrix of Cp. Thus, by Lemma 8, we have

n—2
d :iji:epu
i=0
= extdeg(Gp(D))
= max {degh;(D)}. (12)

o<ig<n—1

If a parity check matrix of a rate-(n — 1)/n punctured code is known, we can further
determine a generator matrix of an original rate-1/2 convolutional code. Theorem 2 and
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Theorem 3 give respectively the upper and lower bounds of the degree of generator matrix
of the optimal original convolutional code. By Theorem 2, we can compute an original
rate-1/2 convolutional code and a puncturing pattern. But the code may be not the optimal.
we need to search original rate-1/2 convolutional codes with the minimal degree and
puncturing patterns. By Theorem 2 and Theorem 3, we present the following algorithm:

Algorithm 2. Find original generator matrix and puncturing pattern P
INPUT :H(D) = (ho(D),hi (D), ,h,_1(D))
d = maxgcicn_1 (deghy(D)), S = {P € F;"?*|w(P) =n}, k= (n—1)(d+1)—1,
GP = {},
M=k+1,q(D)= Ef:o a; D", g2(D) = Zf:o b;D".
Construct a formal matrix G’ (D)
WHILE (S # ) DO
P € S. Construct the matrix Gp(D) = [G'(D)], .-
According to Gp(D)H (D)™ = 0, rearrange the linear system
(;'(a0>a1>"'7ak>b07b1>"'7bk)T ::07 (13)
where G is an (n — 1) x 2(k + 1) matrix over F.
Let €2 be the set of nonzero solutions of eq. (13).

Represent each element in 2 as (@, b), where @ = (ag, a1, - -, a;) € F*,

and denote a(D) = ag + a1 D + - - + axD* a polynomial.

IF (Q#0)
DegP= min, jcq{max{deg(a(D)), deg(b(D))}}
IF (DegP= M)

GP = {(a,b) € Q|DegP = max{deg(a(D)),deg(b(D))}},
S = S\ P, CONTINUE.
IF (DegP< M)
M =DegP, GP = {(a,b) € Q|DegP = max{deg(a(D)),deg(b(D))}}
S = S\ P, CONTINUE.

ELSE S = S\P.
OUTPUT: All the minimal solutions in GP.

Remark 2. 1) There are (Q"H_l) punctured patterns to be searched in Algorithm 2.
2n—1

Since n is a small positive integer, usually n < 8, ( ) may not be a big integer. 2) The
main computation is to solve the linear system (13). The linear system has 2(n—1)(d+1)
unknown variables of a;, b;,4 = 0,1,---,(n — 1)d + n — 2 over F. Since n is a small

integer, solving the linear system in F' is very fast. 3) By Theorem 2, our algorithm can
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find a generator matrix (g, (D), g2(D)) with minimal degree and a punctured pattern P.

We can improve Algorithm 2 by considering the conditions on the puncturing pattern
P. Since P should satisfy the conditions in Theorem 1, the number of punctured patterns
to be searched can be largely reduced. Moreover, by Theorem 3, the degree of generator
of the optimal original convolutional code is equal to the degree of parity check matrix.
Hence, Algorithm 2 can be improved in the two aspects:

a) Determine whether P satisfies the conditions in Theorem 3. Thus the number of
patterns to be searched is 2”72 (n — 1), which is much less than (2”’;1).

b) Only search the original generator matrices with degree equal to the degree of the
parity check matrix, namely, let & = d as an initial value, and g;(D) = Z?:o a; D,
g2(D) = Zj:o b;D'. Therefore the unknown variables to be determined are 2(d + 1).
Since 2(d 4+ 1) < 2(n — 1)(d + 1), the improved algorithm will be much faster.

Example 3. Suppose a parity check matrix obtained is
H(D)= (D°,1+D*+ D1+ D>+ D*+ D°+ D° 1+ D+ D>+ D*+ D°%) .
By Algorithm 2, we can easily recognize the optimal generator matrix G(D) = (g,(D),
g2(D)), where g, (D) = 1+ D? + D*+ D° + D%, go(D) =1+ D + D*+ D? + D°,
and P = (1,0,1,0,1,1).

Example 4. Let
H(D)=(1+D?*+ D"+ D?, 1+ D+ D*, 1+ D + D*+
D’ + D% 1+ D?*+ D*+ D%
be the parity check matrix. By Algorithm 2, we find the minimal generator matrix G(D) =
(g1(D), g2(D)) where g, (D) = 1+ D+ D+ D"+ D®+ D°+ D'+ D2+ D3+ D'7,
QQ(D) — 1+D3—|—D6+D7+D8+D9+D10—|—D11+D12+Dl3—|—D14+D16—|—D17,and
P =(0,1,1,0,1,1). Note that deg G(D) = 17 > deg H(D) = 6. Theorem 3 implies
that Gp (D) is not a basic encoding matrix , namely G p(D) has no right inverse.

6 Conclusions

We study the construction and properties of punctured codes. Punctured codes from
original rate-1/2 convolutional codes are the emphasis. An algorithm is presented to solve
the problem of blind recognition of rate-(n — 1)/n punctured codes.
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