辑

SU(N) 规范场静态球对称磁单极解

马 中 骐

(中国科学院高能物理研究所,北京)

摘 要

对 SU(N) 规范场和属伴随表示的 Higgs 场的相互作用系统,作为全空间正则的能量有限的静态球对称磁单极解 (q=0) 在 $r\to\infty$ Higgs 真空区域的渐近形式,本文得到了所有 SU(N) 静态球对称点磁单极解,列举了 N=2, 3, 4, 5 的 SU(N) 不等价或不准等价的点磁单极解及其相应的磁荷值,最后讨论了在 SU(N) 情况下 磁荷与 Higgs 场拓扑性质的关系.

一、引言

应用标准微分环路位相因子方法 $^{[1,2]}$ 处理 SU(N) 静态球对称规范场具有显著的优越性。标准微分环路位相因子满足相容条件

$$W^{\mu}(0,t) = 0, \ \mathbf{r} \cdot \mathbf{W}(\mathbf{r},t) = 0. \tag{1}$$

它在规范变换中作常相似变换,由它可决定规范势的一个等价类,它本身是这个等价类中的一个规范势. 本文讨论的规范势都同时是标准微分环路位相因子,这相当选择了特定的规范(还允许常规范变换). 在前文^[2],应用标准微分环路位相因子的方法,可以不引入其它假设(ansatz),得到SU(N)静态球对称规范势的一般形式及其满足的常微分方程. 本文所用全部符号,除另加说明外,都同前文^[2]。

在 SU(2) 规范场理论中 $^{12-71}$,由于静态球对称规范势一般形式及其运动方程已经得到,在 $r \to \infty$ Higgs 真空区域可解得作为正则解渐近形式的点源解,然后用 'tHooft 的标准方法 141 ,选择试验函数代人能量表式进行变分,可得能量有限的正则磁单极解和双子(dyon)解. 要把这一套方法推广到 SU(N) 规范场中去,关键在于找出 $r \to \infty$ Higgs 真空区域所有不等价的点源解,而前文 121 得到的 SU(N) 静态球对称规范势的一般形式,及其满足的常微分方程已为找点磁单极解和点双子解提供了基础.

SU(N) 情况下 Dirac 量子化条件需要推广 $^{[8-10]}$,磁荷与 Higgs 场的拓扑性质的关系也更为复杂 $^{[8,10]}$. 本文找到具体的连续 SU(N) 变换把 Higgs 场化为标准形式,从而明显给出 Higgs 场拓扑性质与磁荷的关系。有人 $^{[11]}$ 在 Prasad-Sommerfield 极限下,对一类较特殊的情况,找到了能量有限的磁单极解析解,这个问题值得进一步研究。

本文于 1981 年 5 月 11 日收到。

二、磁荷与 Higgs 场拓扑性质的关系

对 SU(N) 静态球对称规范场和属伴随表示的 Higgs 场相互作用系统,Higgs 场的真空期望值只能有两种不同的本征值^[12],它把 SU(N) 群破缺到 $H=SU(n)\times SU(N-n)\times U(1)$ 对称性,规一化的 Higgs 场 $\hat{\phi}$ 决定了电磁场的嵌入方式: 电荷算符 $Q=\hat{\phi}=\phi/\phi_0$. $\hat{\phi}$ 有 n

个本征值为
$$A = \sqrt{\frac{N-n}{2Nn}}$$
, $(N-n)$ 个为 $B = -\sqrt{\frac{n}{2N(N-n)}}$, 因此单位电荷

$$q_0 = \frac{en'}{\sqrt{2Nn(N-n)}},\tag{2}$$

n' 是 n 和 (N-n) 的最大公约数、推广的 Dirac 量子化条件^[8]给出单位磁荷

$$g_0 = \frac{2\pi}{ne} \sqrt{\frac{2Nn}{N-n}} = \frac{4\pi}{e} (A-B), \quad A-B = \sqrt{\frac{N}{2n(N-n)}}.$$
 (3)

文献[10]也用不同方法得到此结果.

文献 [10] 把 SU(2) 规范场中 Kronecker 指标 IIII 的概念直接推广到 SU(N) 规范场,给出 磁荷与 Higgs 场拓扑性质的关系. 本文从另一角度导出这关系.

在 ф 对角化表象

$$\hat{\phi}\hat{\phi} = \frac{1}{2N} 1 + \frac{N - 2n}{\sqrt{2Nn(N - n)}} \hat{\phi},$$

$$\hat{\phi}\hat{\phi}\hat{\phi} = \frac{N - 2n}{2N\sqrt{2Nn(N - n)}} 1 + \left(\frac{1}{2N} + \frac{(N - 2n)^2}{2Nn(N - n)}\right) \hat{\phi}.$$
(4)

此等式是规范协变的,在其它表象也成立. 在 $r \to \infty$ Higgs 真空区域

$$F^{\mu\nu} = 2Tr[QG^{\mu\nu}] = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} + \mathcal{F}^{\mu\nu},$$

$$A^{\mu} = 2Tr[QW^{\mu}] = \frac{2}{\phi_0}Tr[\phi W^{\mu}],$$
(5)

$$\mathcal{F}^{\mu\nu} = 2Tr[-W^{\nu}\partial^{\mu}\hat{\phi} + W^{\mu}\partial^{\nu}\hat{\phi} - ie\hat{\phi}(W^{\mu}W^{\nu} - W^{\nu}W^{\mu})]$$

$$= 2ieTr[W^{\mu}W^{\nu}\hat{\phi} - W^{\nu}W^{\mu}\hat{\phi}]$$

$$= \frac{i2}{e(A-B)^{2}}Tr\{\hat{\phi}[\partial^{\mu}\hat{\phi}, \partial^{\nu}\hat{\phi}]\},$$
(6)

故

$$g = -\frac{ig_0}{4\pi(A-B)^3} \iint d\mathbf{s} \cdot 2Tr\{\hat{\phi}(\nabla\hat{\phi} \wedge \nabla\hat{\phi})\}. \tag{7}$$

如果在 z 轴上 $\hat{\phi}$ 是对角化的, $\hat{\phi} = \sum_{ia} S_a^{ij} N_a^{ij}, S_a^{ij}$ 等于 A 或 B,则

$$\begin{split} \nabla \hat{\phi} &= \frac{1}{r} \sum_{ja} \hat{\mathcal{L}}_{a}^{ij} \Gamma_{a}^{i} (S_{a}^{ij} - S_{a-1}^{ij}) \\ \nabla \hat{\phi} \wedge \nabla \hat{\phi} &= \frac{\hat{r}}{2ir^{2}} \sum_{ia} N_{a}^{ij} [(\Gamma_{a+1}^{i})^{2} (S_{a+1}^{ij} - S_{a}^{ij})^{2} - (\Gamma_{a}^{i})^{2} (S_{a}^{ij} - S_{a-1}^{ij})^{2}] \end{split}$$

$$g = -\frac{g_0}{(A-B)^3} \sum_{ja} S_a^{ij} [(\Gamma_{a+1}^i)^2 (S_{a+1}^{ij} - S_a^{ij})^2 - (\Gamma_a^i)^2 (S_a^{ij} - S_{a-1}^{ij})^2]$$

$$= \frac{g_0}{A-B} \sum_{j} \sum_{a>0} 2a (S_a^{ij} - S_{-a}^{ij}). \tag{8}$$

(7) 式是 Kronecker 指标的推广,Higgs 场 $\hat{\phi}$ 给出球面 S^2 到 SU(N)/H 的映照. 磁荷与这映 照的同伦不变量有关,它只能取 g_0 的整数倍.

三、SU(N) 静态球对称点磁单极解

在 $r \to \infty$ Higgs 真空区域,找出能量有限的正则磁单极解的所有可能的渐近形式. 首先我们分析这些点磁单极解的性质:

- 1. 在 Higgs 真空区域, $D^*\phi=0$,所以 $J^*=0$,点磁单极解是在无穷远处杨-Mills 方程的无源解.
 - 2. 假定没有电荷, q = 0, $\mathcal{E} = 0$, 故 $P_a^{ik} = 0$.
 - 3. 如果 r 足够大,我们只需取到 r^{-1} 展开式的最低次项,即取 $\frac{1}{r}$ 形式的解, w_a^{ik} 是常数.
- 4. 如果正则磁单极解不是狭义静态的,那么在文献 [2](26) 式中包含的对时间二级微商的项 $w_a^{i,k}$,当 $\alpha_i \neq \alpha_k$ 时,比其它项显然高 r 的两个数量级,因此 $w_a^{i,k} = 0$. 这样,作为渐近形式,点磁单极解一定独立于时间(狭义静态).

现在,问题简化为找下列代数方程的解

$$\sum_{it} \left[2w_a^{ji} w_a^{ti*} w_a^{tk} - w_a^{ji} w_{a-1}^{it} w_{a-1}^{kt*} - w_{a+1}^{tj*} w_{a+1}^{ti} w_a^{ik} \right] = 2w_a^{jk}. \tag{9}$$

其次,点源解有二重性. 一方面,它作为正则解的标准微分环路位相因子,在 $r\to\infty$ Higgs 真空区域的渐近形式,在规范变换中作常相似变换,当选定表象后(对应表示取标准形式),允许的相似变换的自由度是不大的. 另一方面,局限于 $r\to\infty$ 的球面附近,把它看成无源杨-Mills 方程的一组解,那么对它作规范变换后,显然仍满足同一方程. 如果我们要求变换以后的解仍是SU(N) 静态球对称规范场标准微分环路位相因子的渐近形式,而且对应的表示取标准形式,那么这样的规范变换可取什么形式,它们构成什么样的子群呢?显然,它们应该仅依赖于空间方向 \hat{r} ,在z 轴上,由文献[2]中(4)和(13)式,规范变换 U_0 必须与 J_x 对易,这样 U_0 是一组么正矩阵 U_0 的直和, U_0 在相同a 的行列 a_i 间作变换, U_0 构成的群称为小群[14]。定义

$$U(\mathbf{x}) = U(R^{-1}\mathbf{x}_0) = \mathcal{D}(R^{-1})U_0\mathcal{D}(R), \tag{10}$$

有

$$DU = -\nabla U - ie[W_{wy}, U] = 0.$$

$$UWU^{-1} + \frac{i}{e} (\nabla U)U^{-1} = \mathcal{D}(R^{-1})\{U_0[W(x_0) - W_{wy}(x_0)]RU_0^{-1} + W_{wy}(x_0)R\}\mathcal{D}(k),$$
(11)

其中 W_{uy} 是文献 (2) (14) 式中 W 的第一项,它是嵌入的 SU(2) 吴-杨解. 这样的规范变换 U 恰好是把点源解在 z 轴上的 $W(x_0) - W_{uy}(x_0)$ 部分作相似变换 U_0 ,适当选择 U_0 可以把. 有确定 j 的 $w_{a_1}^{i_1}$ 变成 $i\delta_{ik}v_{a_1}^{i_2}$, $v_{a_1}^{i_2} \ge 0$,或者把有确定 j 的 $w_a^{i_1}$ 变成 $i\delta_{ik}v_a^{i_2}$, $v_a^{i_1} \ge 0$.

由这变换U联系起来的解,作为位相因子,它们不一定等价 $^{[14]}$,但是它们可以很容易地互相诱导出来.这样的点源解我们称为准等价的.我们只需要找出所有不准等价的解就够了.

现在用小群变换把点单极解化为标准形式。设 W^{μ} 是一个点单极解,其中非零的 w_a^{ik} 的最大下标 a 为 c ,例如 $w_c^{ij} \approx 0$,选 U_{co} 使 $w_c^{ij} = i\delta_{ij}v_c^{ij}$, $v_c^{ij} \approx 0$,选 $U_{(c-1)0}$ 使 $w_c^{ik} = i\delta_{ij}v_c^{ij} + i\delta_{(k}v_c^{ik})$ (如果 v_c^{ik} 存在)。一般说来,还会有些 $w_c^{ik} \approx 0$, $t \approx j$ (如果所有 $w_c^{ik} = 0$, $t \approx j$,则可选 $U_{(c-1)0}$ 使 $w_c^{ij} = i\delta_{ij}v_c^{ij}$)。例如, $w_c^{kk} \approx 0$,再选 U_c 保持 w_c^{ij} 不变,而使 $w_c^{ik} = i\delta_{ij}v_c^{ik} + i\delta_{ik}v_c^{ik}$, $v_c^{ik} \approx 0$ 。下面讨论 w_{c-1}^{ij} 如果某些 $w_{c-1}^{ij}w_{c-1}^{ij} \approx 0$,例如 $w_{c-1}^{ik}w_{c-1}^{ik} \approx 0$,选 $U_{(c-2)0}$ 使 $w_{c-1}^{ij}w_{c-1}^{ij} = i\delta_{ij}w_{c-1}^{ij} \approx 0$,其它 $w_{c-1}^{ij} \approx 0$,必有 $w_{c-1}^{ij} \approx 0$,有在这些 t 中选 $U_{(c-2)0}$ 使 $w_{c-1}^{ij} = i\delta_{ij}v_{c-1}^{ij} = i\delta_{ij}v_{c-1}^{ij} = 0$,而 w_{c-1}^{ij} 保持不变。

现在,在等式 (9) 中作替换 $i \longleftrightarrow k$, $a \to c$, 得

$$v_c^{kk}(2v_c^{ik}v_c^{ij}-iv_{c-1}^{kk}w_{c-1}^{ik*})=0$$
,

作替换 $j \longleftrightarrow k$, $a \to c - 1$, 得

$$(2iv_{c-1}^{kk}w_{c-1}^{jk*}-v_c^{jk}v_c^{ij})v_{c-1}^{jj}=0.$$

因为 $v_t^{ij} \neq 0$, $v_t^{ik} \neq 0$, $v_{t-1}^{ik} \neq 0$, $v_{t-1}^{ik} \neq 0$, 所以 $v_t^{ik} = 0$, $w_{t-1}^{ik} = 0$. 再在等式 (9) 中作替换 $k \to t \neq j$, $a \to c$, 得 $v_{t-1}^{ij} = v_{t-1}^{ik} = 0$. 即 $w_{t-1}^{ij} = 0$, $t \neq j$. 进一步,如果有些 $w_{t-2}^{ii} \neq 0$,例如 $w_{t-2}^{ij} \neq 0$,选 $U_{(c-3)0}$ 使 $w_{t-2}^{ii} = i\delta_{ij}v_{t-2}^{ij}$. 同理可证 $w_{t-2}^{ii} = i\delta_{ij}v_{t-2}^{ij}$. 反复运用这套方法,可把任何点源解化为如下标准形式:

$$w_a^{ik} = i v_a^{ik}, \quad v_a^{ik} \ge 0, v_a^{ik} v_a^{ik} = \delta_{it} (v_a^{ik})^2, \quad v_a^{ik} v_a^{it} = \delta_{kt} (v_a^{ik})^2.$$
 (12)

把 🚧 和 🛵 称为相连的,把加个相连的非零的 v 称为长为加的相连线:

$$v_{a-1}^{ij_1} = 0, \quad v_{a-1}^{i_1 j_2} \succeq 0, \quad v_{a-1}^{i_2 j_3} \succeq 0, \quad \cdots, \quad v_{a-m+1}^{i_m i_{m+1}} \succeq 0, \quad v_{a-m}^{i_{m+1} k} = 0. \tag{13}$$

代入(9)式求解,得

$$v_{a-n+1}^{i_n i_{n+1}} = \sqrt{n(m-n+1)}, \quad n = 1, 2, \dots m.$$
 (14)

对每一给定的表示,按(14)式取值的所有可能相连线的分布,都对应一组点单极解,用此方法可以找出所有不准等价的点单极解,再通过小群变换,可以找出所有不等价的点单极解.

现在讨论 Higgs 场,在 Higgs 真空区域,

$$\mathbf{D}\phi = -\hat{r} \sum_{jka} \left(N_a^{jk} \operatorname{Re} + \widetilde{N}_a^{jk} \operatorname{Im} \right) \left(\frac{H_a^{jk}}{\epsilon r} \right)'$$

$$+ \frac{1}{\epsilon r^2} \sum_{i\epsilon r} (\hat{\mathbf{L}}_a^{jk} \operatorname{Re} + \hat{\mathbf{M}}_a^{jk} \operatorname{Im}) \sum_{l} \left(v_a^{jl} H_{a-1}^{lk*} - H_a^{jl*} v_a^{lk} \right) = 0$$

故

$$\frac{H_a^{jk}}{er} = \phi_0(S_a^{jk} + i\tilde{S}_a^{jk}) = \ddot{\mathbb{E}} \mathcal{B},$$

$$\sum_{t} \left[S_a^{jt} v_a^{tk} - v_a^{jt} S_{a-1}^{tk} \right] = 0, \quad \sum_{t} \left[\tilde{S}_a^{jt} v_a^{tk} - v_a^{jt} \tilde{S}_{a-1}^{tk} \right] = 0,$$
(15)

$$\hat{\phi} = \sum_{i \neq a} \left[N_a^{ik} S_a^{ik} + \widetilde{N}_a^{jk} \widetilde{S}_a^{ik} \right], \tag{16}$$

如果 $v_{\alpha}^{i} \approx 0$,

$$S_a^{jj} = S_{a-1}^{kk}. \tag{17}$$

如果 $v_a^{ik} \neq 0$, $v_a^{il} \neq 0$, 则 $S_a^{il}v_a^{il} = v_a^{ik}S_{a-1}^{kl}$, $S_a^{il}v_a^{ik} = v_a^{il}S_{a-1}^{ik}$, 类似地有 \tilde{S}_a^{ik} 的关系式,

若
$$v_a^{it} \neq v_a^{ik}$$
, 则 $S_a^{ii} = S_{a-1}^{ki} = \tilde{S}_a^{ii} = \tilde{S}_{a-1}^{ki} = 0$ 若 $v_a^{it} = v_a^{ik}$, 则 $S_a^{ij} = S_{a-1}^{ki} = \tilde{S}_a^{ii} = \tilde{S}_{a-1}^{ki} = 0$ 者 $v_a^{it} = v_a^{ik}$, 则 $S_a^{ij} = S_{a-1}^{ki}$. $\tilde{S}_a^{ij} = \tilde{S}_{a-1}^{ki}$.

而且递推下去,只有当 v_{α}^{i} 和 v_{α}^{i} 所在的两根相连线一样长,由同一下标 α 引向同一b时,这些S和 \hat{S} 才能不为零,而且对应相等,但此时对此两相连线所经过的各点,让 $U_{\alpha 0}$, $U_{(\alpha-1)0}$,… U_{b0} 作同一变换,可以把这些非对角元S和 \hat{S} 消去而保持 v_{α}^{i} 不变。显然,与v不相连结的其它非对角分量S和 \hat{S} 也可通过小群变换消去。因此,总可找到小群变换在保持W不变的情况下,使 $\hat{\phi}$ 对角化

$$\hat{\phi} = \sum_{ja} S_a^{jj} N_a^{jj}, \ S_a^{jj} = A \not \boxtimes B. \tag{19}$$

由此得磁场强度 B、总磁荷 B 和无穷远处的能量密度 θ_{00} 如下:

$$\mathbf{B} = 2Tr(\hat{\phi}\mathscr{B}) = \frac{\hat{\mathbf{r}}}{er^2} \sum_{i\alpha} (2aS_a^{ij}), \tag{20}$$

$$g = \sum_{a>0} \left[\frac{g_0 2a}{A-B} \sum_{j} \left(S_a^{ij} - S_{-a}^{ij} \right) \right] \equiv \sum_{a>0,j} m_{ja} g_0, \tag{21}$$

$$\theta_{00} = \frac{1}{4e^2r^4} \sum_{ja} \left[2a + \sum_{k} (v_{a+1}^{kj})^2 - \sum_{k} (v_a^{jk})^2 \right]^2, \tag{22}$$

对 k 求和其实只有一项。这些结果对小群变换是不变的。

根据定义 w_s^{ik} 和 H_s^{ik} 中 i 和 k 必须同时取整数或半整数,因此除平凡表示 \mathcal{D}^0 部分(因无电荷,这部分规范场为零)外,SU(2),SU(3) 规范场和 SU(4) 规范场中的 $\mathcal{D}^{1/2}\oplus 2\mathcal{D}^0$ 与 $\mathcal{D}^{3/2}$ 表示,SU(5) 规范场中的 $\mathcal{D}^{1/2}\oplus 3\mathcal{D}^0$, $\mathcal{D}^1\oplus \mathcal{D}^{1/2}$, $\mathcal{D}^{3/2}\oplus \mathcal{D}^0$ 与 \mathcal{D}^2 表示都属无交叠情况。对这类情况,前文[2]已证明 $u_s^{ik}=0$, $v_s^{ik}=\delta_{ik}v_s^{ij}$. 在附录中我们列举了它们全部不等价的点磁单极解。而 SU(4) 规范场的 $2\mathcal{D}^{1/2}\ominus \mathcal{D}^0$ 表示和 SU(5) 规范场的 $2\mathcal{D}^{1/2}\oplus \mathcal{D}^0$ 与 $\mathcal{D}^1\oplus 2\mathcal{D}^0$ 表示则可能包含交叠项,在附录中对这些表示用星号标记,只列出它们全部不准等价的点磁单极解。

 v_a^{ik} 相等,而仅仅 S_a^{ii} 全部反号,因此磁荷 B 也反号的解一般与原来解不等价,这类解没有列入附录的表中,但计入独立(不等价或不准等价)解的数目中.

四、Higgs 场的拓扑性质

最后,具体讨论一下在 $r \to \infty$ Higgs 真空区域 Higgs 场所属同伦类的问题,也就是 Higgs 场通过在 $r \to \infty$ 球面上连续的 SU(N) 相似变换对角化或化为标准形式的问题. 只有 当 Higgs 场有相同的拓扑性质,才能比较它们的总能量,判断其稳定性.

先用在球面上连续的小群变换把 $\hat{\phi}(x_0)$ 对角化,因为

$$\mathscr{D}(R)\phi(R^{-1}x_0)\mathscr{D}(R^{-1}) = \phi(x_0). \tag{23}$$

 $\mathscr{D}(R)$ 已经把 $\phi(x) = \phi(R^{-1}x_0)$ 对角化了,但 \mathscr{D} 在球面上有奇异性. 取 $R = R(\varphi, \theta, -\varphi)$,

$$\mathscr{D}_{ab}^{i}(\varphi,\theta,-\varphi)=e^{-i(a-b)\varphi}d_{ab}^{i}(\theta).$$

$$d_{ab}^{i}(\theta) = \sum_{n} \frac{(-1)^{n} \sqrt{(j+a)!(j-a)!(j+b)!(j-b)!}}{(j-a-n)!(j+b-n)!n!(n+a-b)!} \cdot \left(\cos\frac{\theta}{2}\right)^{2j-a+b-2n} \left(\sin\frac{\theta}{2}\right)^{2n+a-b}, \tag{24}$$

其中 \mathcal{Q}_{a-a}^i 中包含有 $\left(\sin\frac{\theta}{2}\right)^{2i}e^{-2ia\varphi}$ 的项,在 $\theta=\pi$ (南极)处不连续. 为了消除此奇异性,再作变换

其余为零. 它使 $X\mathcal{D}(R)$ 中所有含 φ 的项都含有 $\sin\theta$ 的因子, 在 $\theta=0$, π 处都为零, 从而在球面上处处连续. 令

$$\tilde{\phi}(x) = \tilde{\phi}(R^{-1}x_0) = (X\mathcal{D})\hat{\phi}(x)(X\mathcal{D})^{-1} = X\hat{\phi}(x_0)X^{-1},$$

$$\tilde{\phi}_{a_ja_j} = S_a^{ij}c^2 + S_{-a}^{ij}s^2, \qquad s \equiv \sin\frac{\theta}{2},$$

$$\tilde{\phi}_{a_j-a_j} = \pm \left[S_a^{ij} - S_{-a}^{ij}\right]sce^{-i2a\varphi}, \quad a \ge 0, \quad c \equiv \cos\frac{\theta}{2}.$$
(26)

 S_a^{ij} 是 $\hat{\phi}(x_0)$ 的对角元,可取 A 或 B. 当 $S_a^{ij} = S_a^{ij}$ 时,这部分已对角化,它们对总磁荷的贡献 $m_{ja}g_0 = 0$. 当 $S_a^{ij} = A$, $S_a^{ij} = B$ 时,它们对总磁荷的贡献 $m_{ja}g_0 = 2ag_0$. 当 $S_a^{ij} = B$, $S_a^{ij} = A$ 时,它们对总磁荷的贡献 $m_{ja}g_0 = -2ag_0$,对这部分 $\tilde{\phi}(x)$ 再作相似变换 $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$,则 $\tilde{\phi}(x)$ 中相应 $m_{ia} \geq 0$ ($S_a^{ij} \geq S_a^{ij}$) 的部分可统一表为

$$\begin{pmatrix} Ac^2 + Bs^2, & (A-B)sc e^{-im_{j}a^{\varphi}} \\ (A-B)sc e^{im_{j}a^{\varphi}}, & As^2 + Bc^2 \end{pmatrix}$$
 (27)

的形式. 对于两个这种形式矩阵的直和 $(m_{ia}$ 分别取 m_1 和 m_2),可通过在球面上连续的么正相似变换

$$U = \begin{pmatrix} c^{3} + s^{3} & (c - s)sce^{-im_{1}\varphi} & -(c + s)sce^{-im_{1}\varphi} & (c - s)sce^{-i(m_{1} + m_{2})\varphi} \\ (c - s)sce^{i(m_{1} + m_{2})\varphi} & (c + s)sce^{im_{2}\varphi} & (c - s)sce^{im_{2}\varphi} & -c^{3} - s^{3} \\ sce^{im_{1}\varphi} & s^{2} & c^{2} & sce^{-im_{2}\varphi} \end{pmatrix}$$

$$(28)$$

化为

$$\begin{pmatrix} Ac^{2} + Bs^{2} & (A - B)sc e^{-i(m_{1} + m_{2})\varphi} & 0 & 0\\ (A - B)sc e^{i(m_{1} + m_{2})\varphi} & As^{2} + Bc^{2} & 0 & 0\\ 0 & 0 & A & 0\\ 0 & 0 & 0 & B \end{pmatrix}$$
(29)

形式. 以此类推,最后 $\hat{\phi}(x)$ 可通过在球面上连续的 SU(N) 变换化为标准形式

$$\tilde{\phi}(x) = \begin{pmatrix} Ac^2 + Bs^2 & (A - B)sc e^{-ig\varphi/g_0} \\ (A - B)sc e^{ig\varphi/g_0} & As^2 + Bc^2 \\ & & & A \\ & & & & B \end{pmatrix}$$
(30)

$$g = \sum_{i} \sum_{a>0} m_{ia}g_{0}, \qquad (31)$$

g=0 时, $\tilde{\delta}$ 明显可通过相似变换 $\binom{c}{s}$, $\binom{s}{s}$ 对角化. $g \approx 0$ 时,它不再能通过在球面上连续的 SU(N) 变换对角化. 这样,我们具体证明了,在 $r \to \infty$ 的球面上,Higgs 场所属同伦类完全由总磁荷 g 决定. 对于 Higgs 场的每一同伦类,可以找到若干组不同的 Higgs 场和不同的点源解 W,以它们为边值条件,利用 'tHooft 的变分方法,计算各组正则解的总能量,其中能量最低的解是稳定的.

作者感谢胡宁、朱洪元、谷超豪和胡和生教授的鼓励和有益的讨论。

附录 $SU(N)(N \leq 5)$ 不等价或不准等价的点磁单极解

在表 1—4 中,对无交叠的情况(SU(2)、SU(3) 规范场和 SU(4) 规范场中 $\mathcal{Q}^{1/2} \oplus 2\mathcal{Q}^{0}$ 与 $\mathcal{Q}^{3/2}$ 表示、

表 1 SU(2) 规范场不等价的点磁单极解

$$(n=1, A=-B=\frac{1}{2}, q_0=\frac{e}{2}, g_0=\frac{4\pi}{e})$$

表 示	v_a^{jk}	θ 00	S_a^{ij}	g	独立解数目
Ø ¹ / ²	$v_{j}^{ij}=0, j=1/2$	2	A B	1	2
<i>₩</i>	1 或 -1	0		0	

表 2 SU(3) 规范场不等价的点磁单极解

$$(n=2, A=\frac{1}{2\sqrt{3}}, B=-\frac{1}{\sqrt{3}}, q_0=\frac{e}{2\sqrt{3}}, g_0=\frac{2\sqrt{3}}{e}\pi)$$

表 示	v_a^{jk}	θ 00		$S_a^{\dagger \dagger}$		g	独立解数目
			A	А	В	0	
@1/2(1) @0	$v^{ij}_{j}=0, j=1/2$	2	\boldsymbol{A}	\boldsymbol{B}	A	1 1	6
$\mathscr{Q}^{1/2} \oplus \mathscr{Q}^0$			В	\boldsymbol{A}	A	-1	
	i 或1	0	A	A	В	0	4
		8	A	A	В	2	
	$\nu_1^{11} = 0, \nu_0^{11} = 0$		\mathcal{A}	\boldsymbol{B}	\boldsymbol{A}	0	6
			В	A	\boldsymbol{A}	-2	
Ø1	±1, 0	6	Λ	A	В	2	4
	0, ±1	6	В	A	A	-2	4
	$\pm\sqrt{2}$, $\pm\sqrt{2}$	0				0	

SU(5) 规范场中 $\mathscr{Q}^{1/2} \oplus 3\mathscr{Q}^0$, $\mathscr{Q}^1 \oplus \mathscr{Q}^{1/2}$, $\mathscr{Q}^{3/2} \oplus \mathscr{Q}^0$ 与 \mathscr{Q}^2 表示的情况) 列出全部不等价的静态球对称点磁单

$$\left(1. \ n = 3, \ A = \frac{1}{2\sqrt{6}}, \ B = -\frac{3}{2\sqrt{6}}, \ q_0 = \frac{\epsilon}{2\sqrt{6}}, \ g_0 = \frac{2\sqrt{6}}{\epsilon} \frac{2}{3} \pi; \right)$$

$$2. \ n = 2, \ A = -B = \frac{1}{2\sqrt{2}}, \ q_0 = \frac{\epsilon}{2\sqrt{2}}, \ g_0 = \frac{2\sqrt{2}}{\epsilon} \pi\right)$$

表示	v_a^{jk}	θ_{00}	Sįj	g	独立解数目
Ø ¹/²⊕2 Ø ⁰	$\nu_j^{ij}=0, j=1/2$	2	A A A B A B A A B A A A A A B B A B A B	0 1 -1 0 1	10
ع/²⊕2ذ	1 或 -1	0	A A A B A A B B	0	7
$ \begin{array}{c} 2\mathscr{D}^{1/2} \\ j = (1/2)_1 \\ k = (1/2)_2 \\ *) \end{array} $	$v_a^{ij} = 0, \ v_a^{ik} = 0,$ $v_a^{ki} = 0, \ v_a^{kk} = 0,$ $a = 1/2$	4	A A A B A A B A A A B B A B A B	1 -1 0 2	7
&₁⊕&º *)	$v_1^{11} = 0, v_0^{11} = 0,$ $v_1^{10} = 0, v_0^{01} = 0$	8	A A A B A A B A B A A A A A B B A B A B	0 2 -2 2 0	10
	1, 0, 0, 0	6	A A A B A A B A A A B B	0 2 2	6
	0, 1, 0, 0	6	A A A B B A A A A B B A	0 -2 2	6
	1, 0, 0, 1	4	A A B B	2	2
Ø ^{3/2}	$v_{3/2}^{ij} = 0, v_{1/2}^{ij} = 0,$ $v_{1/2}^{ij} = 0,$ $1 = 3/2$	20	A A A B A A B A A B A A A B B A A A B B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B B A B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B B A B B B B A B B B B A B B B B A B	3 1 -1 -3 4 2	14
	±1, 0, 0	18	A A A B A A B A A B B	3 1 4	12
	0, ±1, 0	18	A A A B B A A A A B B A	-3 -3 0	12
	0, 0, ±1	18	A B A A B A A A A A B B	-1 -3 4	12
	±1, 0, ±1	16	A A B B	4	8
	$\pm\sqrt{2}$, $\pm\sqrt{2}$, 0	12	A A A B	3	8
	$0, \pm \sqrt{2}, \pm \sqrt{2}$	12	B A A A	-3	8
·	$\pm\sqrt{3}$, ± 2 , $\pm\sqrt{3}$	0		0	

表 4 SU(5) 规范场不等价或不准等价的点磁单极解

$$\left(1. \ n = 4, \ A = \frac{1}{2\sqrt{10}}, \ B = -\frac{2}{\sqrt{10}}, \ q_0 = \frac{e}{2\sqrt{10}}, \ g_0 = \frac{2\sqrt{10}}{e} \frac{\pi}{2}; \right)$$

$$2. \ n = 3, \ A = \frac{1}{\sqrt{15}}, \ B = -\frac{3}{2\sqrt{15}}, \ q_0 = \frac{e}{2\sqrt{15}}, \ g_0 = \frac{2\sqrt{15}}{e} \frac{\pi}{3}$$

表示	υj k d	θ_{00}	S_a^{ij}	g	独立解数目
ع/2⊕3ذ	$\nu_j^{ij} = 0, j = 1/2$	2	A A A A B A B A A A A B A A B B A B A A B B A A A B B B A A A A	0 1 -1 0 1 -1 0	14
	1 或 -1	0	A A A A B A A A B B B B A A A	0 0 0	10
2 <i>@</i> ½⊕@° *)	$v_a^{ij} = 0, \ v_a^{jk} = 0,$ $v_a^{kj} = 0, v_a^{kk} = 0;$ $j = (1/2)_1, \ k = (1/2)_2$ $a = 1/2$	4	A A A B B A A A B B A A B B A B A B A B	0 1 -1 1 -1 0 2 -2	16
1 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1	$v_1^{11} = 0, v_0^{11} = 0,$ $v_1^{10} = 0, v_1^{10'} = 0,$ $v_0^{01} = 0, v_0^{0'1} = 0$	8	A A A A B A A B A A B A A A A A A B B A A B A B	0 2 -2 0 2 -2 0	14
	1, 0, 0, 0, 0	6	A A A A B A A B A A A A B B B A A B A B B B A A A	0 2 0 2 -2	10
	0, 1, 0, 0, 0, 0	6	A A A A B B A A A B B A A A B B A A A B B A A A B A B B A A	0 -2 0 -2 2	10
	1, 0, 0, 0, 1, 0	4	A A A A B A A B B A B B A A A	0 2 -2	6
$\mathscr{Q}^1 \oplus \mathscr{Q}^{1/2}$	$v_1^{11} = 0, v_0^{11} = 0,$ $v_k^{t,k} = 0, k = 1/2$	10	A A A B B A A A B B A A A B B A A B B A A B B A A B B A A B B A A B B B A A B B B A A B B B A A B B A B A B B A B A B B A B A B B A B A B B A B A B B A B A B B A B A B B A B A B B A B A B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A B B B A A B B A B A B B A B A B B A B A B B A B A B A B B A B A B A B B A B A B A B B A B A B A B A B B A A B B A B A B A B A B A B	1 -1 2 0 -2 0 3 1 -1 1 -1 -3 2 0 -2	30

续表 4

表示	<i>t'a</i>	θ_{00}	S ₄ ¹ /	g	独立解效目
	±1, 0, -1	6	A A B A A A A A B B B B A A A	2 0 -2	12
$\mathscr{L}^1 \oplus \mathscr{D}^{1/2}$	0, ±1, -1	6	B A A A A A A A A A A B B A A B B A A	-2 0 2	12
	±1, 0, 0	8	A A A B A A A B A A A A B B A A A B B A B A B A B B A B B A B B A B B A A A A A B B B A B B A A A A A B B B A A B B B A A B B B A B B A B B A B B B A B B A B B A B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B B A B B B B A B	1 -1 2 0 3 1 -2	23
	0, ±1, 0	8	A A A B B A A B B B A A B B A A B B A A A B A A B B B A A A B A A B B A A A B B B A A A B B B A A B B B A A B B B A A B B B A A B B B A A A B B B B A B B B A B B B B A B	1 -1 -2 0 -1 -3 2	28
	0, 0, -1	8	A A B A A A B A A A B A A A A B A A A B B A B B A A B B A A A B B A A A	2 0 -2 0 2 0 -2	14
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	A A A A B A A A B A A A A B B	1 -1 0	18
	$ \begin{array}{c c} -\sqrt{2}, \pm \sqrt{2}, -1 \\ \hline \cancel{x} & \sqrt{2}, -\sqrt{2}, -1 \end{array} $	0	A A A B B	0	6
Ø ³/÷⊕ Ø ⁰	$v_{5/2}^{ij} = 0, v_{1/2}^{ij} = 0,$ $v_{2/2}^{ij} = 0,$ $j = 3/2$	20	A A A B B A A A B B A A A B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B A A B B B A A B B A A B B B A A B B B A A B B A A B B B A A B B A B A B A B A B B A A B B B A A B B B A A B B A B A B A B A B B A B A B A B B A B A B A B B A B A B B A B A B A B B A B A B B A B A B A B B A B A B A B A B A B B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B	0 3 1 -1 -3 3 1 -1 -3 4 2 0 0 -2 -4	30
	±1, 0, 0	18	A A A B B A A A B B A A A B B A A B B A B B A A A B B B A B B A A A A B B B A B B A A A A B B B A A A B B B A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A A B B B A A B B B A A B B B A B B A B B A B B A B B A B B A B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B B A B B B B A B	0 3 1 3 1 4 -4	28
	0, ±1, 0	18	A A A A B A A A B A B A A A A A A B B	0 3 -3 3	28

44	-	
刉	- ₹-	- 4

					续表 4
表示	v_a^{jk}	θ_{00}	S_p^{ij}	8	独立解数目
2	0, ±1, 1		B A A A B B A A B A A B B A A	-3 0 0	28
Ø ^{1/2} ⊕ذ	0, 0, ±1	18	A A A A B A B A A A B A A B B A A A B B A A B B A A A B B B A A A B A A B B A A A	0 -1 -3 -1 -3 -4 4	28
	±1, 0, ±1	16	A A A B B A B B A A A B	0 4 -4	24
	$\pm\sqrt{2}$, $\pm\sqrt{2}$, 0	12	A A A A B A A A B A A A A B B	0 3 3	24
	$0, \pm \sqrt{2}, \pm \sqrt{2}$	12	A A A A B B A A A A B B A A A B	0 -3 -3	24
	±√3, ±2, ±√3 (不全取正号)	0	A A A A B	0	14
ز	$v_1^{22} = 0, v_1^{22} = 0,$ $v_0^{22} = 0, v_{-1}^{22} = 0$	40	A A A B B A A A B B A A B A A B B A A B B A A B B A A B B A B A B B A A B B A B B A A B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A A B B B A A A B B B A A A A B B B A A A B B B A A A A B B B A A B B A B A B B A A B B A B A B B A B A B B A B B A B A B B B A B B A B B A B B A B B A B B A B B A B B A B B B A B B A B B A B B B A B B A B B B A B B A B B B A B B A B B A B B B A B B A B B B A B B A B B B A B B A B B B A B B A B B B A B	4 2 0 -2 -4 6 4 2 0 2 0 -2 -2 -2 -4 -6	30
	±1, 0, 0, 0	38	A A A B B A A A B B A A A B B A B A B B A A A B B B A A A B B B A B B A B B A B B A B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A B B A B B A B B A B B A A A B B B A A A B B B A B B A B B A B B A B B A B B B A B B B A B B B A B B B A B B B A B B B B A B	4 2 0 6 4 2 -6	28
	0, ±1, 0, 0	38	A A A B B A B B B A A B B A A B B A A A B A A B B B A A A B A A B A A B B A A B B A A B B A A B B B A A B B B A A B B B A A B B B A A B B B A B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B B A A A B B B B A B B B A B B B B A B	4 2 -4 6 0 -2 -2	28
	0, 0, ±1, 0	38	A A A A B A B A A A B A A A B B A A A B B B A A A B B B A A A B B B B A A A	4 -2 -4 2 0 -6 2	28

续表 4

表示	v_s^{ik}	θ 00	S _a ;	8	独立解数目
\mathscr{Q}^2	0, 0, 0, ±1	38	A A B A A A B A A A B A A A A B A A A B B A B B A A B B A A A B B A A A	0 -2 -4 6 -2 -4 -6	28
	±1, 0, 0, ±1	36	A A B A A A A A B B B B A A A	0 6 -6	24
	$\pm 1, 0, \pm 1, 0$	36	A A A A B A A B B A B B A A A	4 2 -6	24
	0, ±1, 0, ±1	36	B A A A A A A A A A A B B A B B A A	-4 6 -2	24
	$\pm\sqrt{2}$, $\pm\sqrt{2}$, 0, 0	32	A A A A B A A A B A A A A B B	4 2 6	24
	$0, \pm \sqrt{2}, \ \pm \sqrt{2}, 0$	32	A A A A B B A A A A B B A A A B	4 -4 0	24
	$0, 0, \pm \sqrt{2}, \ \pm \sqrt{2}$	32	A B A A A B A A A A B B A A A	-2 -4 -6	24
	$\pm\sqrt{2}$, $\pm\sqrt{2}$, 0, ±1	30	A A A B B	6	16
	$\pm 1.$ 0, $\pm \sqrt{2}$, $\pm \sqrt{2}$	30	B B A A A	-6	16
	$\pm\sqrt{3}$, ±2 , $\pm\sqrt{3}$, 0	20	A A A A B	4	16
	$0, \pm \sqrt{3}, \pm 2, \pm \sqrt{3}$	20	B A A A A	- 4	16
	± 2 , $\pm \sqrt{6}$, $\pm \sqrt{6}$, ± 2	0		0	

极解,对可能有交叠项的情况 (SU(4) 规范场中 $20^{1/2}$ 与 0^{1} 0^{1} 0^{2} 0^{2} 表示,SU(5) 规范场中 $20^{1/2}$ 0^{2} 0^{2} 0^{2} 0^{2} 0^{2} 表示的情况,在表中以星号标记),列出全部不准等价的静态球对称点磁单极解。表中 θ_{00} 表无穷远处能量密度,以 ($4e^{2}r^{4}$) $^{-1}$ 为单位;总磁荷 θ 以 θ_{0} 为单位; θ 按表中给出的次序排列; θ 的对角元, θ 按表中给出次序排列,在 θ 内 θ 由大而小排列;独立解数目表不等价或不准等价(有星号的表示)的点源解数目,包括表上省略的 θ 和 θ 反号的那些解。

w全为零的解是嵌入的 SU(2) 吴-杨解。所有 $w = \Gamma_a$ 而其余为零的解是"真空解", $W_\mu = 0$,它又准等价于 $W_\mu \neq 0$,但 $G_{\mu\nu} = 0$ 的所谓"纯规范解"。如果 $\mathscr O$ 是不可约表示,不存在对应这些"真空解"的 Higgs 真空。当然,所有这些点源解都是能量有限的正则解的标准微分环路位相因子在无穷远处的渐近形式。

注意带有星号表示的情况,如果解中对应某不可约子表示的部分是"真空解",它可能等价于对应其它表示的解。如 SU(4) 规范场中 $2^{Q^{1/2}}$ 表示, $v_s^{A}=0001$ (次序见表 3) 等价于 $Q^{1/2}\oplus 2^{Q^0}$ 表示的吴-杨解(若它们的 Higgs 场相同)。前者在表 3 中被略去,但在找所有不等价点源解时,仍需要从这解出发,通过 $2^{Q^{1/2}}$ 的小群变换得到不等价的点源解。

参考文献

- [1] 谷超豪,复旦学报(自然科学版),1976,2:51;1977,2:30.
- [2] 马中骐,中国科学,1982,5:421.
- Wu, T. T. & Yang, G. N., Properties of Matter under Unusual Conditions (Ed. Mark, H. & Fernbach, S.), New York: Interscience, 1969, 344; Phys. Rev., D12(1975), 3843.
- [4] 'tHooft, G., Nucl. Phys., B79(1974), 276; Polyakov, A. M., JETP Lett., 20(1974), 194.
- [5] Prasad, M. K. & Sommerfield, C. M., Phys. Rev. Lett., 35(1975), 760.
- [6] Coleman, S., Parke, S., Neveu, A. & Sommerfield, C. M., Phys. Rev., D15(1977), 544.
- [7] Julia, B. & Zee, A., Phys. Rev., D11(1975), 2227.
- [8] Goddard, P. & Olive, D. I., Rep. Prog. Phys., 41(1978), 1357.
- [9] 李华钟、冼鼎昌、郭硕鸿,物理学报,25(1976),507;中国科学,1979,3:247。
- [10] 谷超豪, 复旦学报(自然科学版), 1976, 3-4: 161.
- [11] Wilkinson D. & Bais, F. A., Phys. Rev., D19(1979), 2410; Bais, F. A. & Weldon, H. A., Phys. Rev. Lett., 41(1978), 601.
- [12] Li, L. F., Phys. Rev., D19(1974), 1723; Ruegg, H., SLAC-PUB-2518, 1980.
- [13] 侯伯字、段一士、葛墨林, 兰州大学学报 (自然科学版), 1975, 2:26; Arafune, J., et al., J. Math. Phys., 16 (1975).
- [14] Wilkinson, D. & Goldhaber, A. S., Phys. Rev. D16(1977), 1221.