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Recent seismic studies reveal a sharp velocity drop mostly at �70–100 km depth within the thick mantle
keel beneath cratons, termed the mid-lithosphere discontinuity (MLD). The common presence of the MLD
in cratonic regions indicates structural and property layering of the subcontinental lithospheric mantle
(SCLM). The nature and origin of the MLD, and many issues associated with the layering of the SCLM
are essential to understand the formation and evolution of continents, and have become frontier subjects
in the Earth sciences.
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1. Introduction

Layering is one of the basic characteristics of the Earth. It has
long been recognized that continental crust is structurally, compo-
sitionally and rheologically layered (e.g., [1,2]), and the upper and
lower crust have different properties and behaviors both in short
time periods (e.g., earthquake cycles, [1]) and during long-term
geological evolution (>1 Ma, e.g., [3,4]). However, the structural
variations with depth in the subcontinental lithospheric mantle
(SCLM) remain elusive.

Recently, growing seismic evidence is emerging for the pres-
ence of a sharp discontinuity with a velocity decrease at �60–
160 km depth beneath continents (Fig. 1a) (e.g., [7,10–14]). The
identification of this shallow mantle discontinuity has been made
possible by the rapid development of dense seismic networks
and increasing availability of numerous high-quality broadband
seismic data. In young tectonic regions where the lithosphere is
generally thin (�100 km), this discontinuity is considered to be
the lithosphere-asthenosphere boundary (LAB) (e.g., [8,10,11]).
However, beneath stable cratons where the lithosphere usually
extends to >200 km depth (e.g., [15,16]), the discontinuity is inter-
preted as a mid-lithosphere discontinuity (MLD). The MLD thus
marks the top boundary of a relatively low-velocity layer within
the cold, high velocity cratonic mantle keel (e.g., [17,18]). Its com-
mon appearance is therefore a manifestation of vertical structural
variation or layering within the cratonic SCLM (Fig. 2).
Elsevier B.V. and Science China Pr
2. Structural features of the MLD

Detailed structural information of the MLD is essential to eluci-
date the layering of the SCLM. Such information mostly comes
from seismic studies using either body waves converted at the
MLD (P- or S-receiver functions, e.g., [[22,23] and reference
therein]) or reflected off the MLD (underside reflections directly
from earthquake data, e.g., [24], or upperside reflections extracted
by seismic interferometry, e.g., [25]) or surface waves that sample
the shallow upper mantle depths (e.g., [17]), or both (e.g., [10]).
These seismic studies suggest that the majority of observed MLDs
cluster at �70–100 km depth, although in some areas it appears
shallower or deeper (Fig. 1c). Besides the relatively narrow depth
range of occurrence, the MLD is also featured as a strong seismic
velocity discontinuity. The shear-wave velocity (Vs) drop at the
MLD is constrained to range from �2% to over 10%, and generally
occurs over a depth range of no more than 30–40 km (e.g.,
[12,23]). Interestingly, both the depths and sharpness (thickness
and magnitude of velocity drop) of the MLD beneath cratons are
broadly comparable to those of the LAB in tectonic regions (e.g.,
[5,7,10,26]) (Fig. 1b and c and Fig. 2). In some cases, the cratonic
MLD and the LAB in neighboring young tectonic areas are imaged
as one apparently continuous discontinuity (e.g., [27]). The strong
MLD also appears structurally similar to the LAB of oceanic litho-
sphere (e.g., [28,29]), but differs considerably from the deeper cra-
tonic LAB that is usually a weak discontinuity or a gradual velocity
transition and thus difficult to detect (e.g., [11,12,15]).

In addition to the reduction in seismic velocity, vertical varia-
tions in physical and chemical properties were also reported at
ess. All rights reserved.
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Fig. 1. Depths to the discontinuity with a downward velocity decrease in the shallow upper mantle (�160 km) beneath continents. Observations are from teleseismic
converted wave studies, referenced in [5,6], and recent teleseismic converted wave studies, including [7–9] for eastern China, [10] for North America, and [11] for
northwestern Europe. (a) Geographic distribution of discontinuity depths. Data are averaged into 2� � 2�bins to avoid geographic sampling biases. Color indicates depth; (b)
spatial frequency of observed depths shown in (a). Histogram bins are 10 km; (c) same as (b) but only for depths of the mid-lithosphere discontinuity (MLD) beneath cratons.

Fig. 2. A schematic of a shear velocity (Vs) profile showing the relative depths of the mid-lithosphere discontinuity (MLD) and the lithosphere-asthenosphere boundary (LAB
beneath continents and oceans. Solid lines represent sharp discontinuities; dashed lines mark either weaker discontinuities or gradual transition zones, or discontinuity
structures that have not been well constrained. Question marks indicate structures with largely unconstrained features. RLVL – relatively low velocity layer bounded on top
by the MLD; TLVL – thin low velocity layer, a 10–25 km thick water- or melt-rich channel immediately below the oceanic LAB (e.g., [19–21]). Whether such a channel also
exists beneath continental lithosphere is unclear.
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MLD depths within the cratonic SCLM. For instance, the strong
velocity drop at the MLD beneath the Slave craton is accompanied
by a significant increase in electrical conductivity at similar depths,
and corresponds well with the petrologic layering of the SCLM [22].
In some cratonic regions, such as North America [30,31], South
Africa [14], and Australia [32], the presence of the MLD is at least
partially due to a change in seismic anisotropy, suggesting regional
layering of mantle deformation.
3. Origin of the MLD

An integration of the seismic structural features of the MLD
with other geophysical observations and geological, petrographic
and geochemical data offer the opportunity to investigate the nat-
ure and origin of this discontinuity and the mechanism responsible
for the layering of the SCLM. Several models or scenarios have been
put forth:

(1) Partial melts or fluids. It has been suggested that the MLD is
due to the presence of melts or fluids within the thick cra-
tonic lithosphere (e.g., [26]). However, this model cannot
explain the globally detected cratonic MLD, for it is inconsis-
tent with magnetotelluric measurements of resistivity [23].
Furthermore, the inferred temperatures in most MLD locales
(<1000 �C) are well below the solidus even with volatile-rich
compositions [33].

(2) Elastically accommodated grain-boundary sliding. This
model also involves thermal effects but mainly considers
seismic velocity reduction during the transition from elastic
to anelastic behavior of mantle mineral aggregates with the
increase of temperature (e.g., [33]). While this model may
explain the occurrence of the MLD at 900 �C and above, its
validity has not been modeled for that below 900 �C [33].
Whether this mechanism can produce a large enough veloc-
ity decrease as that observed at the MLD is also debated [23].

(3) Compositional layering. The cratonic MLD is either inter-
preted as a remnant fabric inherited from the Archean for-
mation of cratons, e.g., through lithospheric root accretion
by underthrusting or thickening (e.g., [22,34]), or is sug-
gested to result from later magmatic-metasomatic refertil-
ization of the cratonic lithosphere (e.g., [35]). In both
scenarios, accumulations of hydrous (e.g., phlogopite,
amphibole) or other volatile-rich minerals (e.g., pyroxenes,
carbonates) at MLD depths could be responsible for the
velocity reduction (and in some cases an increase in electric
conductivity) at the MLD. It is however still uncertain which
mineral (or minerals) is the most plausible candidate (e.g.,
[6,23,35]). The application of this model to a global scale is
also challenged by the lack of evidence for a large amount
of hydrous minerals in mantle xenoliths [36].

(4) Layered deformation. Recent observations of layering in
seismic anisotropy in the cratonic SCLM (e.g., [14,30–32])
are thought to represent a change in deformation fabric or
deformation geometry with depth. This model, not mutually
exclusive with the compositional layering model, also has
problems to be a global explanation for the MLD. Given the
complexity and spatial variability of seismic anisotropy
structure in the SCLM, it is unreasonable that a change in
anisotropy and hence deformation pattern can take place
at �70–100 km depth beneath most, if not all, cratonic
regions with distinctly different evolutions.

No matter which model is the most plausible, the commonly
observed MLD beneath cratons may represent either a boundary
separating two lithospheric layers that have formed in different
tectonic regimes, possibly in different geological eras, or the top
boundary of the lower lithosphere that has been considerably
altered during the long-term evolution, or both. Consequently,
the MLD and associated layering of the SCLM provide valuable
clues to the formation and evolution of the continents.
4. Important issues and future studies

The widespread presence of the MLD in cratonic regions raises
important issues. First of all, the nature and origin of the MLD itself
is closely associated with the process of generating a thick, buoy-
ant and strong cratonic root in the Archean time, and with the
long-term evolution and modification of the SCLM. The presence
of the MLD at �70–100 km depth (Fig. 1a and c) in regions of var-
ious tectonic evolutions histories indicates that ancient cratons
may share common features in their formation and/or evolution.
A comprehensive understanding of this issue requires detailed
structural information of the MLD and SCLM and integration of
multidisciplinary observations.

Secondly, the observation that the cratonic MLD and the LAB in
tectonically active regions are comparable in terms of both depth
and sharpness might reflect a genetic relationship between the
two discontinuities. It has been proposed that the MLD beneath a
craton may be the site of a future, shallower LAB after severe litho-
sphere rejuvenation [7,35], or that the MLD may represent a rem-
nant of the LAB when the lithosphere was active and young [6]. In
the latter model, the ancient LAB was thought to have developed in
a similar way as the LAB in presently active regions and then deep-
ened with time as the lithosphere cooled [6]. While the former
model awaits verification with geodynamic simulations, the latter
is questionable, as the present-day thick cratonic root in most
cases could not have developed simply by progressive cooling
and thickening from a thin lithosphere (e.g., [34]). One possibility
is that the lithosphere may have thickened from the ancient shal-
low LAB by the accretion of a highly melt-depleted, buoyant, and
viscous boundary layer produced by plume melting, as proposed
for some continental regions with significant plume impactions
in the Phanerozoic time (e.g., [37]). Again, whether this is a reason-
able explanation for the global coincidence of the depths of the cra-
tonic MLD and the LAB in active regions remain unknown. Indeed,
investigating the relationship between the two discontinuities is
helpful for gaining insights into not only the origin and evolution
of cratonic lithosphere but also the tectonic processes and nature
of the LAB in young, tectonically active regions.

Thirdly, the MLD and the underlying (relatively) low velocity
layer may indicate a mechanically weak layer within the overall
strong cratonic SCLM. A question then arises as to how such a weak
layer in the SCLM could have affected the ensuing evolution of cra-
tons? This weak layer may act as the focus of ductile deformation
at mantle depths, playing a similar role as the pre-existing laterally
weak belts that are expected to be areas of intense heating and
strain concentration in the continental lithosphere during
tectono-thermal events (e.g., [38]). Indeed, ductile deformation at
the MLD depths within the SCLM has been invoked to explain
the nucleation of some mantle earthquakes beneath continents
[39], and has been proven to be capable of leading to delamination
of the lower lithospheric mantle under compression regime [40].
On the other hand, geodynamic modeling indicates that the weak
layer does not play a dominant role in craton destruction during
lithospheric extension processes [41]. The common presence of
the MLD beneath stable cratons also suggests that it might not
have significantly affected on the long-term stability of cratons
[7]. However, detailed investigations of this mantle weak layer in
various real tectonic settings (e.g., subduction, collision, mantle
plume, etc.) and in areas with or without a weak lower crust are
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necessary in understanding of the potential roles of vertical litho-
spheric layering in continental evolution.

Finally, and most importantly, our current understanding of the
structure of the MLD and the SCLM is limited, and maybe even
biased, by the non-ideal coverage of data and limitations of study
methods. For example, the three-dimensional nature of the Earth’s
structure, being insufficiently accounted for in mapping disconti-
nuities, may cause errors in the MLD depth on the order of 10–
15 km (e.g., [7,23]). In many cases, the sharpness of the MLD and
other lithospheric discontinuities were constrained by modeling
seismic waveforms with fixed frequency contents (e.g.,
[14,23,28]), which may suffer from a trade-off between the magni-
tude of velocity reduction and thickness of the discontinuity. This,
together with the complexity of real structures, might explain the
discrepancies among MLD studies. Moreover, much less informa-
tion has been gained about the structure of the low velocity layer
below the MLD, including its thickness, the magnitude of seismic
velocity decrease within this layer, and the sharpness of its bottom
boundary compared to the MLD. Additional velocity discontinuities
or layers were also recently found within or immediately below
the lithosphere in some continental (e.g., [10,31,42]) and oceanic
regions (e.g., [19–21]) (Fig. 2). Whether these discontinuities or
layers are global phenomena or not is still a subject of speculation.
It is also unclear whether or not the depths and sharpness of these
discontinuities and the MLD are mutually dependent, and how the
discontinuity structures are related to the regional evolution his-
tory or present-day tectonic setting. Structural information of all
the discontinuities and related issues could fundamentally alter
our understanding of the nature and behavior of the lithosphere,
and how plate tectonics work beneath continents and oceans.

Overall, many issues remain about lithospheric discontinuities
and the layering of the SCLM, and their association with continen-
tal evolution, which are increasingly receiving attention and have
become frontier subjects in the Earth sciences (e.g.,
[12,23,33,35]). Tackling these issues will require improved con-
straints on the structures at depth from multidisciplinary observa-
tions and incorporation of all the constraints from laboratory
experiments and geodynamical modeling.
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