SCIENCE CHINA Chemistry ·ARTICLES· June 2023 Vol.66 No.6: 1854–1859 https://doi.org/10.1007/s11426-023-1613-x # Electrosynthesis of ¹⁵N-labeled amino acids from ¹⁵N-nitrite and ketonic acids Yongmeng Wu^{1†}, Mengyang Li^{1†}, Tieliang Li¹, Jinghui Zhao¹, Ziyang Song¹ & Bin Zhang^{1,2*} ¹Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China; ²Tianjin Key Laboratory of Molecular Optoelectronic Science, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China Received January 20, 2023; accepted May 2, 2023; published online May 10, 2023 15 N isotope-labeled amino acids (15 N-amino acids) are crucial in the fields of biology, medicine, and chemistry. 15 N-amino acids are conventionally synthesized through microbial fermentation and chemical reductive amination of ketonic acids methodologies, which usually require complicated procedures, high temperatures, or toxic cyanide usage, causing energy and environmental concerns. Here, we report a sustainable pathway to synthesize 15 N-amino acids from readily available 15 N-nitrite (15 NO₂ $^{-}$) and biomass-derived ketonic acids under ambient conditions driven by renewable electricity. A mechanistic study demonstrates a 15 N-nitrite→ 15 NH₂OH→ 15 N-pyruvate oxime→ 15 N-alanine reaction pathway for 15 N-alanine synthesis. Moreover, this electrochemical strategy can synthesize six 15 N-amino acids with 68%–95% yields. Furthermore, a 15 N-labeled drug of 15 N-tiopronin, the most commonly used hepatitis treatment drug, is fabricated using 15 N-glycine as the building block. Impressively, 15 N sources can be recycled by the electrooxidation of 15 NH₄ $^+$ to 15 NO₂ $^-$ with a method economy. This work opens an avenue for the green synthesis of 15 N-labeled compounds or drugs. green synthesis, ¹⁵N-labeled amino acids, electrosynthesis, C-N bond, isotope labeling Citation: Wu Y, Li M, Li T, Zhao J, Song Z, Zhang B. Electrosynthesis of ¹⁵N-labeled amino acids from ¹⁵N-nitrite and ketonic acids. *Sci China Chem*, 2023, 66: 1854–1859, https://doi.org/10.1007/s11426-023-1613-x ### 1 Introduction ¹⁵N isotope-labeled amino acids (¹⁵N-amino acids) provide a safe and effective tracer tool for studying the synthesis of natural products, protein metabolism, and disease diagnosis and treatment in living organisms [1–3]. For instance, Meselson and Stahl [4] used ¹⁵N-amino acids to demonstrate the semiretention replication mechanism of DNA in *Escherichia coli*. Moreover, ¹⁵N-amino acids can serve as essential building blocks to synthesize ¹⁵N-labeled drugs, creating opportunities for lowering the degree of epimerization, reducing the administration dosage, and unveiling the me- chanism of action [5,6]. Currently, ¹⁵N-amino acids are mainly synthesized through a microbial fermentation method, which usually includes strain breeding, strain culture, and product separation procedures (Figure S1a) [7,8]. Although this method has made continuous advances, it still suffers from low efficiency, high cost for microbial culturing, and complicated procedures for product isolations. In addition, a strain usually produces only one amino acid, making this method poorly universal. Accordingly, thermochemical synthesis *via* ketone acid-reductive ammoniation has been explored for ¹⁵N-amino acid synthesis, in which ketonic acids, ¹⁵N-ammonia (¹⁵NH₃), and BH₃CN⁻ or HCOO⁻ react to produce ¹⁵N-amino acids in organic solvents at elevated temperature (Figure S1b) [9,10]. However, this strategy causes energy and environmental [†]These authors contributed equally to this work. ^{*}Corresponding author (email: bzhang@tju.edu.cn) concerns because it relies on fossil energy, the emission of CO₂, and/or the use of highly toxic cyanide. Therefore, it is highly desirable to develop an alternative strategy to achieve the sustainable and efficient synthesis of ¹⁵N-amino acids under ambient conditions. Electrochemical transformation using renewable electricity as the driving force has emerged as a green and powerful strategy in synthetic chemistry [11–17]. Recently, the electrochemical reduction of nitrite/nitrate (NO₃-/NO₂-) has provided a sustainable route for NH₂ production [16,17]. During the reaction, several nitrogen-containing intermediates, such as NO*, NH₂OH*, NH₂*, have been proven. Due to the high activity of these species, the in-situ utilization of these nitrogen-containing intermediates offers great potential for constructing organonitrogen compounds via the coupling or condensation process with other reaction partners. Electrochemical C-N coupling was revealed by Jiao, Wang et al. [18–26] to be a powerful strategy for constructing organonitrogen compounds (e.g., methylamine, amide, urea) by using nitrate or ammonia as the N source. Inspired by these advances, an electrochemical C-N coupling method is supposed to be applied for synthesizing ¹⁵N-amino acids. The main challenges of this strategy lie in seeking economical ¹⁵N- and C-containing feedstocks and designing a C⁻¹⁵N coupling step of the two precursors to produce ¹⁵Namino acids. Compared to gaseous ¹⁵N-ammonia, solid ¹⁵Nnitrite is more easily operated, which might be electrochemically reduced to a nucleophilic ¹⁵NH₂OH intermediate. We speculate that the strong nucleophilic ¹⁵NH₂OH can attack the electrophilic carbon in ketonic acids to generate ¹⁵Noximes, which can be further electroreduced to ¹⁵N-amino acids [27-31]. Additionally, ketonic acids can be derived from lignocellulosic biomass and are a nonfood-competing chemical feedstock. Therefore, the electrochemical synthesis of ¹⁵N-amino acids from ¹⁵N-nitrite and biomass-derived ketonic acids is of great interest from the perspectives of economy and sustainability. Herein, we report an electrochemical method to synthesize ¹⁵N-amino acids from ¹⁵N-nitrite and ketonic acids over a commercial nickel foam (NF) cathode in an aqueous solution under ambient conditions (Figure 1). ¹⁵N-alanine with a 93% yield is achieved. Impressively, ¹⁵N-ammonium, the major byproduct, can be electrooxidized to ¹⁵N-nitrite with a yield of 93%, realizing the recycling property and atomic economy **Figure 1** Schematic diagram of the proposed electrosynthesis of ¹⁵N-amino acids (color online). of ¹⁵N-nitrite. A ¹⁵N-nitrite→¹⁵NH₂OH→¹⁵N-oxime→¹⁵N-amino acid pathway is revealed by a series of control experiments, *in-situ* attenuated total reflection Fourier transform infrared (*in-situ* ATR-SEIRAS) spectroscopy, and online differential electrochemical mass spectrometry (DEMS). Furthermore, our method is suitable for synthesizing six ¹⁵N-amino acids with 68%–95% yields. A hepatitis treatment drug, ¹⁵N-tiopronin is synthesized using ¹⁵N-glycine, highlighting the utility of our method. ### 2 Results and discussion We begin our study by screening electrodes from a range of commercial metallic materials commonly used in electrocatalytic reactions using pyruvate as the model substrate (unlabeled NaNO2 is used for screening optimal reaction conditions, Figure 2a and Figure S2). After galvanostatic electrolysis for 10 h, the products were identified and quantified by ¹H nuclear magnetic resonance (¹H NMR), ¹³C NMR, and liquid chromatography-high resolution mass spectrometry (LC-HRMS). Impressively, alanine is one of the products for most catalysts. Especially, the peaks at 1.2 and 3.5 ppm in the ¹H NMR spectrum and 19.3, 59.6, and 175.2 ppm in the ¹³C NMR spectrum match well with the alanine standard sample (Figure 2b and 2c, Figures S3 and S4). The molecular weight of 90.0553 (m/z) in the MS spectrum (Figure 2d) is attributed to alanine ($[C_3H_7NO_2+H]^+$). Pyruvate oxime and lactic acid are the main byproducts (Figure S4). Among all eight tested bulk catalysts, Ni foil **Figure 2** (a) Catalyst screening for alanine electrosynthesis by using pyruvate and NaNO₂ as raw materials. Reaction conditions: substrate (0.2 mmol), commercial metal electrodes (working area: 1.4 cm²), 0.5 mol L⁻¹ PBS containing 0.1 mol L⁻¹ NaNO₂ (20 mL), -30 mA cm⁻², 10 h. (b) ¹H NMR, (c) ¹³C NMR, and (d) HRMS tests of the alanine product (color online). exhibits the highest alanine yield with pyruvate oxime as the only byproduct (Figure 2a). Due to the larger surface area of NF compared with Ni foil, NF was selected as the cathode for the following experiments. Subsequently, the optimal NaNO $_2$ concentration and pH of the electrolyte are screened. pH 2 or pH 5.8 PBS electrolyte containing 0.1 mol L $^{-1}$ NaNO $_2$ is the optimum (Figure S5). Thus, the synthesis of 15 N-amino acids is conducted in pH 5.8 PBS with 0.1 mol L $^{-1}$ Na 15 NO $_2$ as the 15 N source. The linear sweep voltammetry (LSV) curves show an enhanced current density under the coexistence of pyruvic acid and Na¹⁵NO₂ compared to that of the individual existence of each (Figure 3a). Notably, the LSV curves of ¹⁵NO₂⁻ electroreduction exhibits a more negative initial potential and lower current density than that of ¹⁴NO₂⁻, indicating the more difficult electroreduction of ¹⁵NO₂⁻ (Figure S6). The ¹⁵N-alanine yield displays a volcanic shape with increasing applied current density (Figure 3b). A 91% yield and 10% FE of ¹⁵N-alanine is obtained at the optimum current density of -39 mA cm⁻², and ¹⁵N-ammonia is the major byproduct (Figure S7). ¹H and ¹³C NMR spectra of the products produced at the optimum current density are given in Figures 3c and d, Figures S8 and S9, which are similar to those of unlabeled alanine in Figure 2b and Figure S4. Notably, obvious peak splitting is clearly seen from the ¹H and ¹³C NMR spectra, which is not observed in that of unlabeled alanine, demonstrating the acquisition of ¹⁵N-labeled alanine. Additionally, the peak at approximately 33 ppm in the ¹⁵N-NMR spectrum and the molecular weight of 91.0515 (m/z)further confirm the successful synthesis of ¹⁵N-alanine (Figures 3c, Figure S10). Then, the reaction process is monitored. Pyruvate is consumed completely within 1 h, and the concentration of Na¹⁵NO₂ decreases rapidly with prolonged reaction time and runs out within 4 h (Figure S11). For the products, ¹⁵N-pyruvate oxime is first produced and remains unchanged during the first 4 h. After 4 h, ¹⁵N-alanine appears and increases with prolonged reaction time, while ¹⁵N-pyruvate oxime shows an opposite variation trend. These **Figure 3** (a) LSV curves of NF in different electrolytes. (b) Potential-dependent yields and FEs of electrolyzed products. Reaction conditions: substrate (0.2 mmol), NF electrode (working area: 1.4 cm²), 0.5 mol L⁻¹ PBS containing 0.1 mol L⁻¹ Na¹⁵NO₂ (20 mL), 8 h. (c) ¹H NMR, (d) ¹³C NMR, and (e) HRMS tests of the ¹⁵N-alanine product. (f) Time-dependent yields of electrolyzed products. (g) Durability test for ¹⁵N-alanine synthesis at −52 mA cm⁻¹ over NF (color online). results indicate that this reaction is a discontinuous cascade process and the ¹⁵N-pyruvate oxime may serve as a key intermediate product for ¹⁵N-alanine formation. Subsequently, the durability of the catalyst is assessed, and the performance is maintained well during six cyclic tests. No ¹⁵N-alanine is detected when removing electricity, Na¹⁵NO₂, and pyruvic acid, demonstrating the electrically driven process with Na¹⁵NO₂ and pyruvic acid as the ¹⁵N and C sources, respectively (Entries 1–3 in Table 1 and Figure S12). Note that the major byproduct of ¹⁵NH₄⁺ can be electrooxidized to ¹⁵NO₂⁻ with a yield of 93% (Figure S13), thus realizing the recycling of the ¹⁵N source with the methodology economy. The reaction pathway is elucidated by performing a series of control experiments, *in-situ* ATR-SEIRAS, and online DEMS tests. Commonly, ¹⁵N-pyruvate oxime, lactic acid, and ¹⁵N-alanine are the main possible products under electrochemical conditions. The side product of lactic acid is formed by the hydrogenation of pyruvate, which can be ef- ficiently inhibited by increasing the concentration of Na¹⁵NO₂ (Figure S5a). Because the yields of ¹⁵N-pyruvate oxime and ¹⁵N-alanine exhibit an opposite trend as the reaction proceeds (Figure 3f), we speculate that ¹⁵N-pyruvate oxime serves as an intermediate, which is first generated and further hydrogenated to ¹⁵N-alanine. This hypothesis is further verified by using pyruvate oxime as the initial reactant (Entry 4 in Table 1 and Figure S14). As expected, alanine is detected as the only product after the electroreduction of pyruvate oxime in pH 5.8 PBS for 5 h, further verifying that the reaction proceeded through a cascade process involving a ¹⁵N-pyruvate oxime intermediate. The mechanism of the formation of ¹⁵N-pyruvate oxime was further studied. ¹⁵NO* (1,581 cm⁻¹), ¹⁵NH₂* (1,466 cm⁻¹) and ¹⁵NH₂OH* (1,181 cm⁻¹) are detected by *insitu* ATR-SEIRAS and online DEMS (Figure 4a–4c) [32]. These wavenumbers are lower than those of unlabeled NO* (1,590 cm⁻¹), NH₂* (1,488 cm⁻¹), and NH₂OH* (1,192 cm⁻¹) Table 1 List of control experiments | Entry | N-source | C-source | j (mA cm ⁻²) (duration) | Electrolytes | Product | |-------|----------------------------------|----------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------| | 1 | / | Pyruvate | -52 (8 h) | 0.5 mol L ⁻¹ PBS+0.2 mmol pyruvate | No product | | 2 | $^{15}NO_{2}^{-}$ | / | -52 (8 h) | $0.5 \text{ mol } \text{L}^{-1} \text{ PBS+}0.1 \text{ mol } \text{L}^{-1} \text{ Na}^{15} \text{NO}_2$ | No product | | 3 | $^{15}NO_{2}^{-}$ | Pyruvate | No bias (8 h) | $0.5 \text{ mol } L^{-1} \text{ PBS+}0.1 \text{ mol } L^{-1} \text{ Na}^{15} \text{NO}_2 + 0.2 \text{ mmol pyruvate}$ | No product | | 4 | / | Pyruvate oxime | -52 (8 h) | 0.5 mol L ⁻¹ PBS+0.2 mmol pyruvate oxime | Alanine | | 5 | $^{15}NH_{4}^{+}$ | Pyruvate | -52 (8 h) | $0.5 \text{ mol } \text{L}^{-1} \text{ PBS+}0.1 \text{ mol } \text{L}^{-1} ^{15} \text{NH}_4 \text{Cl+}0.2 \text{ mmol pyruvate}$ | No product | | 6 | 15NH ₂ OH | Pyruvate | -52 (8 h) | $0.5 \text{ mol } \text{L}^{-1} \text{ PBS+0.2 mmol } ^{15} \text{NH}_2 \text{OH+0.2 mmol pyruvate}$ | ¹⁵ N-Alanine | | 7 | NO | Pyruvate | -52 (8 h) | 0.5 mol L ⁻¹ PBS+0.2 mmol pyruvate | Alanine | | 8 | ¹⁵ NH ₂ OH | Pyruvate | No bias (5 min) | $0.5 \text{ mol L}^{-1} \text{ PBS+0.2 mmol} ^{15}\text{NH}_2\text{OH+0.2 mmol pyruvate}$ | ¹⁵ N-pyruvate oxime | **Figure 4** Time-dependent *in-situ* ATR-SEIRAS using pyruvate as the C-source and (a) ¹⁵NO₂⁻ and (b) ¹⁴NO₂⁻ as the N-source. (c) Online DEMS results of ¹⁵N-nitrite electroreduction in 0.5 mol L⁻¹ PBS at -0.7 V vs. Ag/AgCl. (d) The proposed reaction pathway for the electrosynthesis of ¹⁵N-alanine from pyruvate and ¹⁵NO₂⁻ (color online). with NaNO2 as the N source. These redshifts are ascribed to the isotope effect [33]. Moreover, a new peak of $C=^{15}N$ (1,647 cm⁻¹) indexed to the -C=¹⁵N-OH group appears and is enhanced with increasing electrolysis time, further demonstrating the formation of the ¹⁵N-pyruvate oxime. Online DEMS further confirms that ¹⁵NO* (31), ¹⁵NH₃ (18), and ¹⁵NH₂OH* (34) formed during the reaction. Therefore, to verify the ¹⁵N-containing active species for oxime formation, control experiments using pyruvic acid as the C source and ¹⁵NO, ¹⁵NH₂OH, and ¹⁵NH₄ as the ¹⁵N sources were carried out. Neither ¹⁵N-pyruvate oxime nor ¹⁵N-alanine products were detected when using ¹⁵NH₄⁺ as the ¹⁵N source, excluding the involvement of ¹⁵NH₃ in ¹⁵N-pyruvate oxime formation (Entry 5 in Table 1 and Figure S15). Instead, when using ¹⁵NO or ¹⁵NH₂OH as the ¹⁵N sources, ¹⁵N-pyruvate oxime and ¹⁵N-alanine products are formed (Entries 6 and 7 in Table 1 and Figure S15). Considering that ¹⁵NH₂OH is the more reduced intermediate than ¹⁵NO in ¹⁵NO₂ RR, it is reasonable to regard ¹⁵NH₂OH as the ¹⁵N source to form ¹⁵N-pyruvate oxime. ¹⁵N-pyruvate oxime can be produced as soon as ¹⁵NH₂OH and pyruvic acid are mixed at room temperature even without electricity, suggesting a spontaneous process for the formation of oxime (Entry 8 in Table 1 and Figure S16). The fast C-N coupling kinetics due to the strong nucleophilic property of hydroxyamine inhibits the deep reduction of ¹⁵NH₂OH, thus leading to the effective formation of pyruvate oxime [19,27-29]. Based on the above discussion, the mechanism is proposed in Figure 4d. The electroreduction of ¹⁵NO₂⁻ first proceeds following the sequence of $^{15}NO_2^- \rightarrow ^{15}NO^* \rightarrow ^{15}NH_2OH^*$ on the catalyst surface. Then, the adsorbed pyruvic acid is rapidly attacked by nucleophilic ¹⁵NH₂OH to generate ¹⁵N-pyruvate oxime by losing a molecule of H₂O, which is further electroreduced to ¹⁵N-alanine (**Path I**). Because the concentration of ¹⁵NO₂⁻ is much higher than that of pyruvate, the amount of ¹⁵NH₂OH produced on the catalyst surface is greater than that of pyruvate. Thus, the unreacted ¹⁵NH₂OH is further reduced to ¹⁵NH₄⁺, which can be recycled by the electrooxidation to ¹⁵NO₂ for next wave utilization (**Path II**). To show the universality of our approach, we apply our method to the electrosynthesis of other ¹⁵N-amino acids. Delightfully, this method is suitable for synthesizing different types of ¹⁵N-amino acids (2a–2f) with good yields (68%–95%) (Figures 5a, and Figures S17–S21), and some of them are commonly used drug-building blocks [34]. For example, by employing ¹⁵N-glycine as the building block, ¹⁵N-tiopronin (30% overall isolated yield), the most efficient drug to treat hepatitis, was successfully synthesized (Figure 5b and Figure S22) [35]. It is reasonable to speculate that the incorporation of ¹⁵N in tiopronin can slow down the metabolic process due to the more stable C–¹⁵N bond than the C–N bond [5], thus increasing the effective drug duration *in vivo* and lowering the dose. These results show the application **Figure 5** Electrosynthesis of ¹⁵N-amino acids (a–f, NMR yields are reported) and ¹⁵N-tiopronin (g, an isolated yield is reported) (color online). potential of our method in ¹⁵N-labeled drug synthesis and metabolism. ### 3 Conclusions In conclusion, we demonstrate an electrochemical strategy to synthesize 15N-amino acids through the co-reduction of Na¹⁵NO₂ and ketonic acids under ambient conditions over the NF cathode. Mechanistic studies reveal that the electrochemical reaction undergoes multistep processes of ¹⁵NO₂ RR to ¹⁵NH₂OH, the condensation of ¹⁵NH₂OH and pyruvate to ¹⁵N-pyruvate oxime, and the subsequent hydrogenation of ¹⁵N-pyruvate oxime to ¹⁵N-alanine. Moreover, this electrochemical strategy can be used to synthesize other ¹⁵N-amino acids with 68%-95% yields, demonstrating the good universality of our method. Furthermore, a ¹⁵N-labeled hepatitis treatment drug of ¹⁵N-tiopronin is synthesized using ¹⁵Nglycine as the building block, which may provide an opportunity to study disease treatment and drug metabolism. Our study not only offers a strategy for the room-temperature and green synthesis of ¹⁵N-amino acids but also opens a sustainable avenue to construct ¹⁵N-labeled compounds. **Acknowledgements** This work is supported by the National Natural Science Foundation of China (22271213) and the National Postdoctoral Science Foundation of China (2022M722357). Conflict of interest The authors declare no conflict of interest. **Supporting information** The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors. - Velyvis A, Vaynberg J, Yang Y, Vinogradova O, Zhang Y, Wu C, Qin J. Nat Struct Mol Biol, 2003, 10: 558–564 - 2 Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Science, 1996, 274: 1531–1534 - 3 Ramirez B, Durst MA, Lavie A, Caffrey M. Sci Rep, 2019, 9: 12798 - 4 Meselson M, Stahl FW. Proc Natl Acad Sci USA, 1958, 44: 671-682 - Wang H, Dong Y, Zheng C, Sandoval CA, Wang X, Makha M, Li Y. Chem, 2018, 4: 2883–2893 - 6 Liu C, Chen Z, Yan H, Xi S, Yam KM, Gao J, Du Y, Li J, Zhao X, Xie K, Xu H, Li X, Leng K, Pennycook SJ, Liu B, Zhang C, Koh MJ, Loh KP. Sci Adv, 2019, 5: eaay1537 - 7 D'Este M, Alvarado-Morales M, Angelidaki I. *Biotechnol Adv*, 2018, 36: 14–25 - 8 Whittaker JW. Methods Mol Biol, 2007, 389: 175-188 - Borch RF, Bernstein MD, Durst HD. J Am Chem Soc, 1971, 93: 2897– 2904 - Ogo S, Uehara K, Abura T, Fukuzumi S. J Am Chem Soc, 2004, 126: 3020–3021 - 11 Wu Y, Liu C, Wang C, Lu S, Zhang B. Angew Chem Int Ed, 2020, 59: 21170–21175 - 12 Liu X, Liu R, Qiu J, Cheng X, Li G. Angew Chem Int Ed, 2020, 59: 13962–13967 - 13 Liu S, Cheng X. Nat Commun, 2022, 13: 425 - 14 Ko BH, Hasa B, Shin H, Zhao Y, Jiao F. J Am Chem Soc, 2022, 144: 1258–1266 - 15 Panja S, Ahsan S, Pal T, Kolb S, Ali W, Sharma S, Das C, Grover J, Dutta A, Werz DB, Paul A, Maiti D. *Chem Sci*, 2022, 13: 9432–9439 - 16 Wang Y, Yu Y, Jia R, Zhang C, Zhang B. Natl Sci Rev, 2019, 6: 730–738 - 17 Han S, Li H, Li T, Chen F, Yang R, Yu Y, Zhang B. Nat Catal, 2023, DOI:10.1038/s41929-023-00951-2 - 18 Jouny M, Lv JJ, Cheng T, Ko BH, Zhu JJ, Goddard III WA, Jiao F. Nat Chem, 2019, 11: 846–851 - 19 Wu Y, Jiang Z, Lin Z, Liang Y, Wang H. Nat Sustain, 2021, 4: 725- - 730 - 20 Tao Z, Rooney CL, Liang Y, Wang H. J Am Chem Soc, 2021, 143: 19630–19642 - 21 Rooney CL, Wu Y, Tao Z, Wang H. J Am Chem Soc, 2021, 143: 19983–19991 - 22 Li J, Zhang Y, Kuruvinashetti K, Kornienko N. Nat Rev Chem, 2022, 6: 303–319 - 23 Li J, Kornienko N. Chem Sci, 2022, 13: 3957-3964 - 24 Guo C, Zhou W, Lan X, Wang Y, Li T, Han S, Yu Y, Zhang B. J Am Chem Soc, 2022, 144: 16006–16011 - 25 Meng N, Ma X, Wang C, Wang Y, Yang R, Shao J, Huang Y, Xu Y, Zhang B, Yu Y. ACS Nano, 2022, 16: 9095–9104 - 26 Huang Y, Wang Y, Wu Y, Yu Y, Zhang B. Sci China Chem, 2021, 65: 204–206 - 27 Fukushima T, Yamauchi M. Chem Commun, 2019, 55: 14721-14724 - 28 Kim JE, Jang JH, Lee KM, Balamurugan M, Jo YI, Lee MY, Choi S, Im SW, Nam KT. *Angew Chem Int Ed*, 2021, 60: 21943–21951 - 29 Kulisch J, Nieger M, Stecker F, Fischer A, Waldvogel SR. Angew Chem Int Ed, 2011, 50: 5564–5567 - 30 Edinger C, Kulisch J, Waldvogel SR. Beilstein J Org Chem, 2015, 11: 294–301 - 31 Lips S, Waldvogel SR. ChemElectroChem, 2019, 6: 1649–1660 - 32 Pérez-Gallent E, Figueiredo MC, Katsounaros I, Koper MTM. Electrochim Acta, 2017, 227: 77–84 - 33 Zhu S, Jiang B, Cai WB, Shao M. J Am Chem Soc, 2017, 139: 15664– 15667 - 34 Pirali T, Serafini M, Cargnin S, Genazzani AA. *J Med Chem*, 2019, 62: 5276–5297 - 35 Li J, Qiu X, Guo W, Yan B, Zhang S. Med Oncol, 2015, 32: 238