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Covalent organic frameworks (COFs) are a potential platform for carbon dioxide (CO2) conversion owing to their periodic
permanent porosity, adjustable structure, and chemical stability. For good catalytic performance in CO2 conversion, collaborative
multifunctions should be strategically integrated into the catalytic system design and construction. In this study, a four-in-one
high-efficiency catalyst was synthesized and tested for CO2 cycloaddition to form cyclic carbonate. The obtained Tp-MPB-Br-
COF had a high nitrogen content, which enhanced its CO2 affinity through substantial Lewis acid-base or dipole-quadrupole
interactions; moreover, the acid (protons transferring from oxygen (–OH) to nitrogen (–NH)), hydrogen bond donor (hydroxyl
group), and Br− (nucleophile group) served as three active sites, further improving the catalyst activity. These results provide a
basis for designing efficient and stable CO2-conversion catalysts.
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1 Introduction

Massive emissions of the greenhouse gas carbon dioxide
(CO2) have led to global warming and glacier melting, thus
attracting extensive research attention [1–3]. CO2 fixation,
i.e., the catalytic conversion of CO2 into value-added che-
micals, is an attractive sustainable approach that has become
a research hotspot compared with CO2 capture and seques-
tration; in particular, the chemical fixation of CO2 into cyclic
carbonate is an effective and atomically economical ap-
proach for C1 resource utilization [4–12]. So far, researchers
have explored various catalytic systems for CO2 cycloaddi-

tion, including homogeneous and heterogeneous catalytic
systems [13–21]. However, a rational construction of effi-
cient heterogeneous catalytic systems for CO2 conversion is
urgently required.
Crystalline porous materials (CPMs) exhibit good applic-

ability in gas adsorption [22–25] and catalysis [26–32] ow-
ing to their predictable structures. Covalent organic
frameworks (COFs) are a new type of CPMs and comprise
organic building blocks linked by reversible covalent bonds.
COFs offer excellent performance, clear and predictable
organic microporous/mesoporous architecture, good physi-
cal and chemical stability, a modifiable porous surface, and
designable structure/properties [33–42]. However, as het-
erogeneous catalysts for the cycloaddition of epoxides with
CO2, most COFs exhibit low catalytic efficiency or require
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cocatalysts [11,43–46]. Therefore, the synthesis of novel
high-capacity COF catalysts remains a major challenge as-
sociated with CO2 conversion.
Ionic liquids are organic salts comprising specific cations

and anions and are widely used as CO2-conversion catalysts
[47]. However, their fluidity hinders product purification and
recovery. Their other disadvantages include high viscosity
and low diffusivity, resulting in tedious operating procedures
and high costs. A possible solution is restricting the stable
thin layers of ionic liquids in highly porous substrates [48–
50]. The recovery performance of the resulting hybrid ma-
terial has been doubted owing to the weak interactions be-
tween the encapsulated ionic liquid and porous matrix;
moreover, accurately controlling the matching amount and
spatial position in solid space is considerably challenging
[2,45,51,52]. Thus, porous materials with active ionic groups
offer an alternative for designing highly selective catalysts.
Herein, we synthesized a neutral imine COF (Tp-MPB-

COF) modified by a C2-phenyl-substituted benzimidazole
group. By ionizing its skeleton, we obtained an ionic COF
(Tp-MPB-Br-COF) as a highly selective catalyst. First, the
modularized synthesis strategy was used to selectively and
uniformly embed the nitrogen-rich groups into the frame-
work; the CO2-philic nature of various nitrogen-rich groups,
such as amines, imidazoles, carbazoles, and triazines, can be
increased through significant Lewis acid-base or dipole-
quadrupole interactions [53]. Second, the ionized COF
structure exhibited tautomerism and acidity via proton
transfer from oxygen (–OH) to nitrogen (–NH). Moreover,
the hydrogen bond donor (hydroxyl group) and Br− (nu-
cleophile group) improved the catalytic activity with respect
to CO2 cycloaddition. Overall, we obtained a four-in-one
high-efficiency catalyst for CO2 conversion.

2 Results and discussion

Tp-MPB-COF was synthesized using C2-phenyl-substituted
benzimidazole through the route shown in Scheme 1. MPB
(0.36 mmol) and Tp (0.24 mmol) acted as a linker and knot,
respectively, in the presence of 6-M acetic acid (0.3 mL)
using N,N-dimethylacetamide/mesitylene (3 mL) as the sol-
vent; the containing tubes were vacuum sealed and heated at
120 °C for 3 days.
The X-ray diffraction (XRD) patterns of Tp-MPB-COF

exhibited an intense peak at 2θ = 2.86°, corresponding to
(100) plane reflections (Figure 1b, structural simulations in
Figure S1, and the atomistic coordinates of AA-stacking Tp-
MPB-COF were summarized in Table S1, Supporting In-
formation online). The Brunauer-Emmett-Teller (BET) sur-
face area of Tp-MPB-COF was found to be 558.6 m2 g−1

(Figure 1c, Figure S2, and Table S2). The Fourier-transform
infrared (FTIR) spectrum exhibited a strong peak at

1,587 cm−1, attributed to the stretching of the keto form
(Figure 1d). The Tp-MPB-COF isolation in the keto form
was confirmed via solid-state 13C nuclear magnetic re-
sonance (NMR) analysis, which showed the carbonyl carbon
signal at 184 ppm (Figure 1e). The powder XRD, X-ray
photoelectron spectroscopy (XPS), and electron microscopy
technology were used to investigate the stability of Tp-MPB-
COF in solvents; Tp-MPB-COF (20 mg) was separately
immersed in H2O (10 mL), 9-N HCl, 9-N NaOH, and tetra-
hydrofuran (THF) for 7 days (Figures S3–S10), indicating
remarkable stability.
Tp-MPB-Br-COF was prepared (see Supporting Informa-

tion online) by ionizing Tp-MPB-COF with bromopropane
(compared with various nucleophiles, bromopropane was
selected as the preferred nucleophile, Figure S11). It ex-
hibited an XRD pattern similar to that of Tp-MPB-COF,
suggesting that the COF crystal framework was retained
(Figure 1b, structural simulations in Figure S12, the ato-
mistic coordinates of AA-stacking Tp-MPB-Br-COF were
summarized in Table S2). However, the XRD peak intensity
decreased, probably because charge interaction might have
caused the destruction of crystal structure [54].
Nitrogen sorption measurements were conducted to verify

the pore accessibility after ionization. Tp-MPB-Br-COF
exhibited an isotherm similar to that of Tp-MPB-COF, while
the BET surface area decreased to 382.9 m2 g−1 (Figure 1c,
Figure S13, Table S2). We attribute this BET surface area
reduction to the incorporation of larger substituents in the
pore walls as well as the degradation of the crystal skeleton.
Tp-MPB-Br-COF has also underwent the same stability
verification in solvents as that of Tp-MPB-COF (Figures
S14–S22), and it also demonstrated excellent stability.
After bromination, new peaks appeared at 3,035, 2,958,

and 2,928 cm−1 in the FTIR spectra, indicating the presence
of bromopropane. The peaks observed at 1,352 and 778 cm−1

were assigned to the vibration of imidazolium cations
[55,56], confirming the existence of quaternary ammonium
groups in the Tp-MPB-Br-COF structure.
Solid-state 13C NMR was performed to analyze the struc-

tural composition of Tp-MPB-Br-COF (Figure 1e). The new
peaks detected at 25, 21, and 11 ppm were ascribed to the
propyl group in bromopropane, consistent with the FTIR
results. This further indicates that the imidazole group un-
derwent nucleophilic substitution by bromopropane.
The scanning electron microscopy images showed that Tp-

MPB-COF and Tp-MPB-Br-COF have basically the same
lamellar morphology [57] (Figure 2a, b). The transmission
electron microscopy (TEM) and high-resolution TEM (HR-
TEM) images for both COFs (Figure 2c, d) depicted ordered
lattice fringes. Furthermore, the energy-dispersive X-ray
spectroscopy map of Tp-MPB-Br-COF (Figure S23) re-
vealed that Br− was homogeneously distributed in the COF
structure.
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The thermal stabilities of both COFs were also in-
vestigated using thermogravimetric analysis. The results
showed that their thermal decomposition temperatures re-
mained higher than 440 °C (Figure S24), suggesting their
good thermal properties. After bromination, the thermal
stability of the Tp-MPB-Br-COF reduced slightly than that
of Tp-MPB-COF owing to the presence of charged Im
groups [58].
The successful formation of Tp-MPB-Br-COF was in-

vestigated via XPS (Figure 2e–g). The N 1s spectrum of Tp-
MPB-COF showed two types of nitrogen species, free sec-
ondary amine (–N–) at 400.3 eV and imidazole N (=N–) at

398.5 eV [59]. Similarly, the XPS spectrum of Tp-MPB-Br-
COF revealed three nitrogen species: imidazolium N (=N+–)
at 401.6 eV, which formed owing to the bromination of the
imidazolium N by bromopropane; free secondary amine
(–N–) at 400.0 eV; and imidazole N (=N–) at 398.5 eV [59].
The O 1s spectrum of Tp-MPB-COF exhibited two peaks at
532.7 and 530.9 eV, attributable to the ketone and enol
oxygenatoms of the keto form, respectively. The same peaks
were observed in the O 1s spectrum of Tp-MPB-Br-COF
(Figure 2f) [60], indicating that the keto form was not da-
maged after bromination. Besides, the Br 3d XPS spectra of
Tp-MPB-Br-COF (Figure 2g) showed the characteristic band

Figure 1 (a) Top view of the AA stacking mode of Tp-MPB-Br-COF. (b) XRD patterns, (c) N2 adsorption isotherms, and (e)
13C NMR spectra of Tp-MPB-

COF and Tp-MPB-Br-COF. (d) FTIR spectra of MPB, Tp, Tp-MPB-COF, and Tp-MPB-Br-COF (color online).

Scheme 1 Synthetic scheme of catalyst Tp-MPB-Br-COF (color online).
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at 68.6 eV (Br 3d5/2) and 67.6 eV (Br 3d3/2), confirming the
presence of bromide anion in the Tp-MPB-Br-COF [45].
After determining the Tp-MPB-Br-COF structure, attributed
to its clear pore structure, dense active sites, and excellent
stability, we studied the CO2 adsorption performance of Tp-
MPB-COF and Tp-MPB-Br-COF at 273 and 298 K. As il-
lustrated in Figure 3a, Tp-MPB-COF exhibits the highest
CO2 adsorption performance with 75.2 cm

3 g−1 at 273 K and
1.0 bar, while Tp-MPB-Br-COF performs poorly with
51.0 cm3 g−1. The relatively decreased CO2 adsorption ca-
pacity for the latter is mainly due to partial filling of pores
and decrease in the specific surface area upon introducing
bromopropane. The CO2 uptake amount of both COFs re-
duced evidently at 298 K and 1.0 bar (Figure 3b). However,
at 273 and 298 K, although the BET surface area of Tp-
MPB-Br-COF (382.9 m2 g−1) was lower than that of Tp-
MPB-COF (558.6 m2 g−1), the higher content of imidazolium
N and Br− in the pores of Tp-MPB-Br-COF could efficiently
improve the CO2 affinity and increase the CO2 adsorption
capacity of Tp-MPB-Br-COF at low pressure region. Briefly,
the BET surface area and acid-base site content have a sy-
nergistic effect on CO2 adsorption.
The isosteric heat of adsorption calculated according to the

Clausius-Clapeyron equation was plotted against CO2 up-
take, obtaining the curves presented in Figure 3c, d. As
shown in Figure 3d, the adsorption heat value of Tp-MPB-
Br-COF for CO2 was 16.51 kJ mol

−1, suggesting that CO2

sorption in Tp-MPB-Br-COF is physisorption (<40 kJ mol−1)
rather than chemisorption [61]. The adsorption heat value of
Tp-MPB-Br-COF for CO2 decreased as the CO2 uptake in-

creased, indicating that the interaction between CO2 and the
adsorbent underwent a progressive decrease with CO2

loading. Thus, Tp-MPB-Br-COF exhibits affinity with CO2

and high CO2 adsorption capacity (Table S4), which is
conducive to the subsequent CO2 cycloaddition reaction.
To demonstrate the catalytic performance of Tp-MPB-Br-

COF with respect to the cycloaddition of CO2, its advantages
were investigated through various controlled experiments
(Table S5) and the catalysis kinetics were studied using
epichlorohydrin as the substrate; the catalytic yield was
surprisingly 99.7% at 120 °C for 24 h. Notably, the catalyst
content was only 1.5 wt% and no solvent, metal, or cocata-
lyst was used. Subsequently, the conversion of styrene oxide
(a larger substrate) using CO2 into styrene carbonate was
selected as a typical reaction. The catalytic yield of Tp-MPB-
Br-COF was twice that of Tp-MPB-COF under the same
conditions (Figure 3e), indicating the key role of Tp-MPB-
Br-COF in the reaction. The reaction time was extended to
48 h, and the conversion rate obtained was 98.5%. In the
CO2 cycloaddition experiment, the imidazolium N and Br−

play a more important role as catalytic active sites than the
BET surface area. Compared with Tp-MPB-COF, Tp-MPB-
Br-COF has more Lewis acid-base ion pairs, resulting in
improved catalytic capacity. This also validates our synthesis
strategy and confirms that the synergistic effect of acidity,
hydrogen bonding, and Br− precise active sites in the catalyst
result in considerably improved reactivity when compared
with other catalysts (Table S6).
Recovery capability is an important intrinsic characteristic

of heterogeneous catalysts from the perspective of industrial

Figure 2 SEM images of (a) Tp-MPB-COF and (b) Tp-MPB-Br-COF with scale bar of 100 nm. TEM images of (c) Tp-MPB-COF and (d) Tp-MPB-Br-
COF (inset: HR-TEM image and the lattice distance). High-resolution XPS spectra: (e) N 1s of Tp-MPB-Br-COF and Tp-MPB-COF. The fitted peaks
correspond to imidazolium N (purple), secondary amine N (dark green), and imidazole N (orange). (f) O 1s of Tp-MPB-Br-COF and Tp-MPB-COF. The
fitted peaks correspond to carbonyl O (blue) and enol O (yellow). (g) Br 3d of Tp-MPB-Br-COF. The fitted peaks correspond to Br 3d5/2 (dark blue) and
Br 3d3/2 (pink) (color online).
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applications. Therefore, the cycle catalytic stability of the
Tp-MPB-Br-COF was studied. As shown in Figure 3f, Tp-
MPB-Br-COF undergoes five cycles of catalysis and the
yields of the product remain unchanged, indicating that the
catalytic ability was well maintained. Clearly, the high cyclic
stability of Tp-MPB-Br-COF can be attributed to the high
chemical stability of the Tp-MPB-Br-COF. Overall, Tp-
MPB-Br-COF is a heterogeneous catalyst for the cycload-
dition of epoxides and CO2, which exhibits excellent cata-
lytic performance and high stability.
The Tp-MPB-Br-COF catalyst was then recovered to test

its chemical stability; there was no substantial difference in
its SEM image (Figure S25), TEM image (Figure S26), FTIR
(Figure S27), and solid-state 13C NMR spectra (Figure S28).
Moreover, the (100) peak intensity and position remained
unchanged (Figure S29), indicating that C2 benzimidazo-
lium substitution by phenyl groups effectively improved the
COF chemical stability. The catalytic performance of Tp-
MPB-Br-COF in CO2 cycloaddition with more epoxides was
successively investigated (Table S7). In these catalytic sys-
tems, Tp-MPB-Br-COF exhibited excellent catalytic per-
formance and proved its superior universality.
To better understand how the imidazolium N and Br− of the

Tp-MPB-Br-COF synergistically catalyze the reaction of
epoxy compounds with CO2, a possible catalytic mechanism
[52,62] was proposed (Figure 4). For Tp-MPB-Br-COF, the
–OH (enol form) and –NH (keto form) groups can activate

the C–O bonds of the epoxides through hydrogen bonding
interactions. Moreover, the high-nucleophilicity Br− and in-
termediate O− attack the epoxy carbon atoms with low steric
hindrance to open the epoxy ring. Finally, CO2 molecules are
inserted into the C–O bonds to form intermediates. The in-
tramolecular ring-closing reaction produces cyclic carbo-

Figure 3 Adsorption isotherms of CO2 at (a) 273 and (b) 298 K of Tp-MPB-COF and Tp-MPB-Br-COF. (c) Fitting of CO2 adsorption equilibrium
isotherms at 273 and 298 K of Tp-MPB-Br-COF. (d) Isosteric heats of adsorption for CO2 on Tp-MPB-Br-COF. (e) Cycloaddition of CO2 and styrene oxide
under different conditions (a reaction condition: styrene oxide (10 mmol), COFs (20 mg, 1.5 wt%), 1 MPa CO2, 120 °C, 24 h;

b 1 atm CO2;
c 48 h).

(f) Catalytic experiment of 5 cycles of CO2 cycloaddition of Tp-MPB-Br-COF with styrene oxide (styrene oxide, 10 mmol, COFs, 1.5 wt%, 1 MPa CO2,
120 °C, 24 h) (color online).

Figure 4 Scheme of possible catalytic mechanism for the reaction of
epoxides and CO2 into cyclic carbonates catalyzed by Tp-MPB-Br-COF
(color online).
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nate. Subsequently, the regenerated Tp-MPB-Br-COF cata-
lyst can be used for the next catalytic reaction.

3 Conclusions

We synthesized a neutral imine COFmodified by C2-phenyl-
substituted benzimidazole (Tp-MPB-COF) and obtained an
ionic COF for CO2 cycloaddition. This four-in-one Tp-MPB-
Br-COF catalyst has abundant multiple active sites and
precise spatial locations, which improve its heterogeneous
cocatalytic ability with various epoxides in CO2 fixation
under metal-, solvent- and cocatalyst-free conditions. This
study will provide a new strategy for the rational design of
CO2-conversion catalysts without metals, solvents, and co-
catalysts.
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