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Abstract A smooth curve on a homogeneous manifold G/H is called a Riemannian equigeodesic if it is

a homogeneous geodesic for any G-invariant Riemannian metric. The homogeneous manifold G/H is called

Riemannian equigeodesic, if for any x ∈ G/H and any nonzero y ∈ Tx(G/H), there exists a Riemannian

equigeodesic c(t) with c(0) = x and ċ(0) = y. These two notions can be naturally transferred to the Finsler

setting, which provides the definitions for Finsler equigeodesics and Finsler equigeodesic spaces. We prove

two classification theorems for Riemannian equigeodesic spaces and Finsler equigeodesic spaces, respectively.

Firstly, a homogeneous manifold G/H with a connected simply connected quasi compact G and a connected H

is Riemannian equigeodesic if and only if it can be decomposed as a product of Euclidean factors and compact

strongly isotropy irreducible factors. Secondly, a homogeneous manifold G/H with a compact semisimple G is

Finsler equigeodesic if and only if it can be locally decomposed as a product, in which each factor is Spin(7)/G2,

G2/SU(3) or a symmetric space of compact type. These results imply that the symmetric space and the strongly

isotropy irreducible space of compact type can be interpreted by equigeodesic properties. As an application,

we classify the homogeneous manifold G/H with a compact semisimple G such that all the G-invariant Finsler

metrics on G/H are Berwald. It suggests a new project in homogeneous Finsler geometry, i.e., to systematically

study the homogeneous manifold G/H on which all the G-invariant Finsler metrics satisfy a certain geometric

property.
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1 Introduction

A Riemannian manifold is called a geodesic orbit (or simply g.o.) space, if each maximally extended

geodesic is homogeneous, i.e., it is the orbit of a one-parameter subgroup of isometries. This notion

was introduced by Kowalski and Vanhecke [24] in 1991. Since then, it has been extensively studied in

homogeneous Riemannian geometry and homogeneous pseudo-Riemannian geometry [2,3,9,14,16,17,31,
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32] (more references can be found in [7]). Recently, Yan and Deng [46] defined the g.o. property in

homogeneous Finsler geometry (see [41, 42,47] for some recent progress).

In this paper, we are motivated by the following question.

Question. Can we define an analog of the g.o. property with the homogeneous geodesic replaced by

the equigeodesic?

Here, an equigeodesic is a smooth curve on a homogeneous manifold G/H, which is a homogeneous

geodesic for any G-invariant Finsler metric, or any G-invariant Finsler metric in a preferred subclass,

e.g., Riemannian, Randers, (α, β), etc. As we have different types of equigeodesics, we specify them

as Finsler equigeodesics, Riemannian equigeodesics, Rander equigeodesics, (α, β) equigeodesics, etc. The

equigeodesic was firstly introduced by Cohen et al. [10] in 2011. Until now, only Riemannian equigeodesics

have been studied on some special homogeneous manifolds [18,35,39]. In this paper, we are only concerned

with Riemannian equigeodesics and Finsler equigeodesics (see [36] for some progress on other types of

equigeodesics).

Using the pattern of the g.o. property, we define the Riemannian or Finsler equigeodesic space as

follows. A homogeneous manifold G/H is called Riemannian or Finsler equigeodesic, if for any x ∈ G/H

and any nonzero y ∈ Tx(G/H), there exists a equigeodesic c(t) of the specified type satisfying c(0) = x

and ċ(0) = y. When G/H has an orthogonal reductive decomposition g = h+m with respect to a fixed

Ad(G)-invariant inner product ⟨·, ·⟩bi on g, G/H is Riemannian or Finsler equigeodesic if and only if each

u ∈ m\{0} is a Riemannian or Finsler equigeodesic vector, respectively.

Compared with the mixed nature of the homogeneous geodesic and the g.o. property, which is half

algebraic and half geometric, equigeodesics and equigeodesic spaces are totally algebraic properties, and

they are much stronger. So it looks more likely that equigeodesics and equigeodesic spaces can be

explicitly described or completely classified, without too much calculation. This thought is justified by

the main theorems of this paper, which partially classify Riemannian and Finsler equigeodesic spaces.

For the Riemannian equigeodesic space, we have the following theorem.

Theorem A. Let G/H be a simply connected homogeneous manifold on which the connected simply

connected quasi compact Lie group G acts almost effectively. Then G/H is a Riemannian equigeodesic if

and only if it is a product of Euclidean factors and strongly isotropy irreducible factors.

Here, a product decomposition G/H = G1/H1 × · · · × Gm/Hm for a homogeneous manifold means

that

G = G1 × · · · ×Gm, H = H1 × · · · ×Hn

with Hi = H ∩Gi for each i.

Theorem A is a reformulation of Theorem 3.5. Firstly, it provides a new description for compact

strongly isotropy irreducible spaces and their products (see [5] or [6, Theorem 27]). Secondly, it reduces the

classification for some connected simply connected Riemannian equigeodesic spaces to that for compact

strongly isotropy irreducible spaces [25, 27–29, 40]. Finally, it implies that the Riemannian equigeodesic

space property for G/H depends not only on Lie algebras but also on Lie groups (see Remark 3.6), so

our knowledge on the Riemannian equigeodesic space which is not connected or not simply connected is

still quite limited.

For the Finsler equigeodesic space, we have the following theorem.

Theorem B. Let G/H be a homogeneous manifold on which the compact semisimple Lie group G acts

almost effectively. Then G/H is Finsler equigeodesic if and only if it can be locally decomposed as

G/H = G1/H1 × · · · ×Gm/Hm,

in which each Gi/Hi is Spin(7)/G2, G2/SU(3) or a symmetric space of compact type.

Here, the local product decomposition for a homogeneous manifold G/H means a product decomposi-

tion for the universal cover for a connected component G0/G0 ∩H of G/H, or equivalently the following

direct sum decompositions in the Lie algebra level:

g = g1 ⊕ · · · ⊕ gm, h = h1 ⊕ · · · ⊕ hm = (h ∩ g1)⊕ · · · ⊕ (h ∩ gm).
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Theorem B reduces the classification for Finsler equigeodesic spaces of compact type to that for

symmetric spaces [19]. Compared with Theorem A, the proof of Theorem B is harder, but the classification

result is much cleaner and more complete.

The strategy for proving Theorem B is the following. Firstly, we prove two criteria for the Finsler

equigeodesic vector and the Finsler equigeodesic space, respectively (see Theorem 4.2 and Lemma 4.9).

It turns out that the Finsler equigeodesic space is a property which only depends on the Lie algebras.

So secondly, we can use Theorem A (notice that a Finsler equigeodesic space must be Riemannian

equigeodesic) to locally decompose a Finsler equigeodesic space G/H to a product of compact strongly

isotropy irreducible factors. By Lemma 4.10, each factor is also Finsler equigeodesic. Then we need to

apply the criterion to each G/H in the classification list for compact nonsymmetric strongly isotropy

irreducible spaces. This would be a terribly long journey. Fortunately, we find the short cut. Roughly

speaking, if G/H is Finsler equigeodesic, then dim g/dim h cannot be too small, and for the orthogonal

reductive decomposition g = h + m with respect to an Ad(G)-invariant inner product ⟨·, ·⟩bi on g, each

vector in m has a relatively large centralizer in g (see (1) and (3) in Lemma 5.2). It is very easy to check

that these numerical properties cannot be simultaneously satisfied by most compact strongly isotropy

irreducible G/H (see Theorem 5.1).

Theorems A and B provide new interpretations for the strong isotropy irreducibility and symmetric

space. Though in this paper, we have only studied the equigeodesic space from the compact side, we

guess that those noncompact ones are also interesting and may share some similar phenomena.

Moreover, Theorem B starts a new project in homogeneous Finsler geometry, i.e., to classify the

homogeneous manifold G/H on which each G-invariant Finsler metric satisfies a certain geometric

property. For example, we may consider the following problem.

Problem 1.1. Classify all the homogeneous manifolds G/H such that all the G-invariant Finsler

metrics on G/H are Berwald.

We prove that a homogeneous manifold G/H with a compact G is Finsler equigeodesic if and only

if it has a reductive decomposition for which each G-invariant Finsler metric is naturally reductive (see

Lemma 4.8), and if and only if the property in Problem 1.1 is satisfied (see Theorem 6.1), so Theorem B

has the following application, which helps us solve Problem 1.1 partially.

Theorem C. Let G/H be a homogeneous manifold on which the compact semisimple Lie group G

acts almost effectively. Then it satisfies the condition that each G-invariant Finsler metric on G/H is

Berwald if and only if it can be locally decomposed as

G/H = G1/H1 × · · · ×Gm/Hm,

in which each Gi/Hi is Spin(7)/G2, G2/SU(3) or a symmetric space of compact type.

It seems promising that Theorem C might be generalized for noncompact G.

We may naturally generalize [7, Question 5.12.25] and consider the following problem.

Problem 1.2. Classify all the homogeneous manifolds G/H such that all the G-invariant Finsler

metrics on G/H are the geodesic orbits (or have vanishing S-curvature with respect to a G-invariant

measure).

It seems that Problem 1.2 is a much harder problem.

The rest of this paper is organized as follows. In Section 2, we summarize some basic knowledge on

general and homogeneous Finsler geometry and on the flag manifold, which is necessary for our later

discussion. In Section 3, we introduce the Riemannian equigeodesic space and prove Theorem A (i.e.,

Theorem 3.5). In Section 4, we introduce the Finsler equigeodesic and the Finsler equigeodesic space,

and partially prove Theorem B. In Section 5, we discuss the compact strongly isotropy irreducible Finsler

equigeodesic space, and finish the proof of Theorem B. In Section 6, we prove Theorem C.



132 Xu M et al. Sci China Math January 2024 Vol. 67 No. 1

2 Preliminaries

2.1 The Minkowski norm, the Finsler metric and the geodesic

A Minkowski norm on a real vector space V (dimV = n) is a continuous function F : V → R>0 satisfying

(1) the positiveness and smoothness, i.e., F |V \{0} is a positive smooth function;

(2) the positive 1-homogeneity, i.e., F (λy) = λF (y) for every λ > 0;

(3) the convexity, i.e., for any y ∈ V \{0},

⟨u, v⟩Fy =
1

2

∂2

∂s∂t

∣∣∣∣
s=t=0

F 2(y + su+ tv)

defines an inner product on m.

A Finsler metric on a smooth manifoldM is a continuous function F : TM → R>0 such that F |TM\{0}
is smooth, and for each x ∈ M , F (x, ·) is a Minkowski norm. We also call (M,F ) a Finsler manifold or

a Finsler space [4].

If each F (x, ·) is a Euclidean norm, i.e., F (x, y) = ⟨y, y⟩1/2 for some inner product ⟨·, ·⟩ on TxM , we

say F is a Riemannian metric. A Minkowski norm (or a Finsler metric) F is Euclidean (or Riemannian)

if its Cartan tensor

CF
y (u, v, w) =

1

4

∂3

∂r∂s∂t

∣∣∣∣
r=s=t=0

F 2(y + ru+ sv + tw)

vanishes everywhere.

The geodesic on a Finsler manifold (M,F ) can be similarly defined as in Riemannian geometry, which

is a smooth curve satisfying the locally minimizing principle for the arch length functional. Practically,

we always assume that a geodesic has positive constant speed, i.e., F (c(t), ċ(t)) ≡ const > 0. Then a

smooth curve c(t) is a geodesic if and only if its lifting (c(t), ċ(t)) in TM\{0} is an integral curve of the

geodesic spray

G = yi∂xi − 2Gi∂yi , in which Gi =
1

4
gil([F 2]xkylyk − [F 2]xl).

Locally a geodesic c(t) is a solution of the ordinary differential equation (ODE) system

c̈i(t) + 2G(c(t), ċ(t)) = 0, ∀ i

(see [4, 34] for more details).

2.2 The homogeneous Finsler space and the invariant Finsler metric

A Finsler manifold (M,F ) is homogeneous if its isometry group I(M,F ) acts transitively on M . Since

I(M,F ) is a Lie transformation group, we can present M as a homogeneous manifold M = G/H for any

Lie subgroup G ⊂ I(M,F ) which acts transitively on M , and the homogeneous metric F is also called

a G-invariant metric [11]. In this definition, G must act effectively on (G/H,F ). However, on most

occasions, the almost effectiveness, i.e., h does not contain a nonzero ideal of g, is enough. So we choose

another way to introduce homogeneous Finsler geometry and its basic algebraic setups.

In this paper, we use G/H to denote a homogeneous manifold, set g = Lie(G) and h = Lie(H), and

always assume the following:

(1) G acts almost effectively on G/H;

(2) H is compactly imbedded in G, i.e., Adg(H) has a compact closure in Autg.

The assumption (2) guarantees a reductive decomposition for G/H, i.e., an Ad(H)-invariant decom-

position g = h + m. With respect to the given reductive decomposition, we denote by prh : g → h and

prm : g → m the corresponding linear projections, and define uh = prh(u) and um = prm(u) for any u ∈ g.

The subspace m can be naturally viewed as the tangent space To(G/H) at the origin o = eH with the

Ad(H)-action on m identified with the isotropy H-action on To(G/H).

The assumption (2) also guarantees the existence of G-invariant Riemannian and Finsler metrics on

G/H. By the homogeneity, a G-invariant Riemannian metric on G/H is one-to-one determined by an
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Ad(H)-invariant inner product ⟨·, ·⟩ on m = Te(G/H). Similarly, a G-invariant Finsler metric F on G/H

can be uniquely determined by F (o, ·), which can be any arbitrary Ad(H)-invariant Minkowski norm on

m. For simplicity, we still use the same F to denote it. Recall that the Hessian of 1
2F

2 provides a family

of inner products on m, i.e., ⟨·, ·⟩Fy (y ∈ m\{0}).
In homogeneous Finsler geometry, the following fundamental result is well known.

Lemma 2.1. For a homogeneous Finsler manifold (G/H,F ) with a reductive decomposition g = h+m,

we have

⟨[v, w1], w2⟩Fy + ⟨w1, [v, w2]⟩Fy + 2CF
y (w1, w2, [v, y]) = 0, ∀ v ∈ h, w1, w2 ∈ m, y ∈ m\{0}.

In the later discussion, we sometimes replace the assumption (2) with the following even stronger

assumption: Adg(G) is compact. Then we can find, and then fix an Ad(G)-invariant inner product ⟨·, ·⟩bi
on g. For simplicity, we also call the pair (G, ⟨·, ·⟩bi) a quasi compact Lie group. In this situation, the

reductive decomposition g = h + m is chosen to be the ⟨·, ·⟩bi-orthogonal one, which is simply called an

orthogonal reductive decomposition, and any G-invariant Riemannian metric, determined by the inner

product ⟨·, ·⟩ on m, one-to-one determines the metric operator Λ : m → m by

⟨u, v⟩ = ⟨u,Λ(v)⟩bi, ∀u, v ∈ m,

which exhausts all the Ad(H)-invariant ⟨·, ·⟩bi-positive definite linear endomorphisms on m.

2.3 The homogeneous geodesic

A geodesic c(t) on a Finsler manifold (M,F ) is called homogeneous, if it is the orbit of a one-parameter

subgroup of isometries [46]. For a homogeneous Finsler space (G/H,F ), as the isometry subgroup G has

been specified, a homogeneous geodesic is then required to have the form c(t) = exp tu · x for some u ∈ g

and x ∈ M . In particular, when c(t) = exp tu · o is a homogeneous geodesic, we call the vector u ∈ g

a geodesic vector for (G/H,F ). The following lemma in [26] is a well-known criterion for the geodesic

vector.

Lemma 2.2. For a homogeneous Finsler space (G/H,F ) with a reductive decomposition g = h + m,

u ∈ g is a geodesic vector if and only if u /∈ h and it satisfies

⟨um, [m, u]m⟩Fum
= 0. (2.1)

When F is a G-invariant Riemannian metric, determined by the Ad(H)-invariant inner product ⟨·, ·⟩
on m, this criterion for the geodesic vector is still valid [24], and we may simplify (2.1) as

⟨um, [m, u]m⟩ = 0.

2.4 The homogeneous Berwald space and the naturally reductive Finsler space

A Finsler manifold (M,F ) is called Berwald if its geodesic spray G = yi∂xi − 2Gi∂yi is affine, i.e., all the

coefficients Gi = Gi(x, y) are quadratic for its y-entry [34].

For a homogeneous Finsler manifold (G/H,F ) with a reductive decomposition g = h+m, its Berwald

property can be described by using the spray vector field η introduced by Huang [21, 22], i.e., a smooth

map η : m\{0} → m satisfying

⟨η(y), u⟩y = ⟨y, [u, y]m⟩y, ∀u ∈ m.

Lemma 2.3. A homogeneous Finsler manifold (G/H,F ) with a reductive decomposition g = h+m is

Berwald if and only if its spray vector field η : m\{0} → m is a quadratic map.

Proof. It has been pointed out in [43, Section 5] that the geodesic spray G of (G/H,F ) can be

decomposed as G = G0 − H, where G0 is the spray structure for the Nomizu connection on G/H,

with respect to the given reductive decomposition, and H is a G-invariant vector field on T (G/H)\{0}
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which is tangent to each Tx(G/H) and H |To(G/H)\{0}=m\{0} = η. Since the Nomizu connection is a linear

connection on G/H [23], its corresponding spray structure G0 is affine. So G is affine if and only if H is

quadratic when restricted to each slit tangent space Tx(G/H)\{0}, and by the G-invariance of H, if and

only if η = H |To(G/H)\{0} is quadratic.

Naturally reductive Finsler manifolds are a special class of homogeneous Berwald metrics [12, 26]. A

homogeneous Finsler manifold (G/H,F ) is called naturally reductive with respect to a given reductive

decomposition g = h + m if each curve c(t) = exp tu · o with u ∈ m\{0} is a geodesic, or equivalently it

has a vanishing spray vector field η : m\{0} → m [12].

2.5 Classification for flag manifolds

Let G be a compact connected semisimple Lie group. Then for any vector u ∈ g, the adjoint orbit

Ad(G)u ⊂ g is called a flag manifold.

A flag manifold Ad(G)u can be presented as a homogeneous manifold G/CG(u). To determine the Lie

algebra

Lie(CG(u)) = cg(u) = c(cg(u))⊕ [cg(u), cg(u)],

we only need to determine its central summand c(cg(u)) and its semisimple summand [cg(u), cg(u)] as

follows [1].

Let t be a Cartan subalgebra, for which we have the root system ∆g of g and a prime root system

{α1, . . . , αn}, where n = dim t is the rank. We usually use an Ad(G)-invariant inner product ⟨·, ·⟩bi on g

to identify t with t∗, and then the roots are viewed as vectors in t. Obviously, cg(u) contains t, so cg(u) is

a regular subalgebra of g, i.e., each root or root space of cg(u) is also a root or root space of g, respectively.

By the suitable G-conjugation or the Weyl group action, we may assume that u satisfies ⟨αi, u⟩bi > 0

for each i. Suppose that we have ⟨αi, u⟩bi = 0 for 1 6 i 6 k and ⟨αi, u⟩bi > 0 for k < i 6 n. Then the

central summand c(cg(u)) in cg(u) is (n − k)-dimensional, linearly spanned by αi with k < i 6 n. For

the semisimple summand [cg(u), cg(u)], {α1, . . . , αk} provides a prime root system, i.e., each root of g

belongs to [cg(u), cg(u)] if and only if it is a linear combination of αi with 1 6 i 6 k. To get the Dynkin

diagram for [cg(u), cg(u)], we may start with the Dynkin diagram for g and then delete all the dots for

αi with k < i 6 n and all the edges connected to these dots.

3 The Riemannian equigeodesic and the Riemannian equigeodesic space

3.1 The Riemannian equigeodesic and the Riemannian equigeodesic vector

A smooth curve c(t) on a homogeneous manifold G/H is called a Riemannian equigeodesic, if it is a

homogeneous geodesic for any G-invariant Riemannian metric on G/H. A vector u ∈ g is called a

Riemannian equigeodesic vector if c(t) = exp tu · o is a Riemannian equigeodesic.

Now suppose that (G, ⟨·, ·⟩bi) is quasi compact and g = h + m is the corresponding orthogonal

reductive decomposition for G/H. Using Lemma 2.2, we can easily deduce the following criterion for the

Riemannian equigeodesic vector.

Lemma 3.1. Let G/H be a homogeneous manifold with a quasi compact (G, ⟨·, ·⟩bi) and the

corresponding orthogonal reductive decomposition g = h + m. Then u ∈ g is an equigeodesic vector

for G/H if and only if u /∈ h and [Λ(um), u]m = 0 for every metric operator Λ.

Since we can choose Λ = id, Lemma 3.1 provides [um, uh] = [um, u]m = 0 when u is a Riemannian

equigeodesic vector, i.e., u and um generate the same Riemannian equigeodesic

c(t) = exp tu · o = exp tum exp tuh · o = exp tum · o.

To summarize, the discussion for Riemannian equigeodesics on G/H with a quasi compact (G, ⟨·, ·⟩bi)
and the corresponding orthogonal reductive decomposition g = h + m can be reduced to that for

Riemannian equigeodesic vectors in m\{0}, i.e., c(t) = exp tv · x is a Riemannian equigeodesic passing

x = g · o if and only if (Ad(g−1)v)m is a Riemannian equigeodesic vector.
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3.2 The Riemannian equigeodesic space

Now we define the Riemannian equigeodesic space.

Definition 3.2. We call a homogeneous manifold G/H Riemannian equigeodesic or a Riemannian

equigeodesic space if for each x ∈ G/H and each nonzero y ∈ Tx(G/H), there exists a Riemannian

equigeodesic c(t) with c(0) = x and ċ(0) = y.

When G is quasi compact, we can use Lemma 3.1 and the observation in the last paragraph of

Subsection 3.1 to give the following equivalent description for the Riemannian equigeodesic space (the

proof is easy and skipped).

Lemma 3.3. Let G/H be a homogeneous manifold with the quasi compact (G, ⟨·, ·⟩bi) and the

corresponding orthogonal reductive decomposition g = h + m. Then G/H is Riemannian equigeodesic

if and only if each nonzero u ∈ m is a Riemannian equigeodesic vector, i.e., [Λ(u), u]m = 0 for each

u ∈ m\{0} and every metric operator Λ.

For example, an isotropy irreducible G/H with a compact G is Riemannian equigeodesic. A connected

Abelian Lie groupG = G/{e} is Riemannian equigeodesic. More generally, we have the following example.

Example 3.4. Suppose that

G/H = (G0 × · · · ×Gk)/(H0 × · · · ×Hk) = G0/H0 ×G1/H1 × · · · ×Gk/Hk,

in which G0 is a connected Abelian Lie group, H0 = {e}, and for each i > 0, Gi and Hi are compact and

Gi/Hi is isotropy irreducible. Applying the Schur lemma, we see that any metric operator for G/H has

the form Λ = Λ0 ⊕ c1id |m1 ⊕ · · · ⊕ ckid |mk
, in which Λ0 is an endomorphism on g0. Using Lemma 3.3,

we can easily see that G/H is a Riemannian equigeodesic space.

The following theorem indicates that the Riemannian equigeodesic space is such a strong condition

that Example 3.4 becomes a typical model.

Theorem 3.5. Let G/H be a homogeneous manifold on which G acts almost effectively. Suppose that

G is connected, simply connected and quasi compact, and H is a connected. Then G/H is Riemannian

equigeodesic if and only if we have the decompositions G = G1 × · · · ×Gm and H = H1 × · · · ×Hm such

that each Gi/Hi is one of the following:

(1) a real line, i.e., Gi = R and Hi = {0};
(2) a strongly isotropy irreducible Gi/Hi with compact connected semisimple Gi and connected Hi.

Recall that a homogeneous manifold G/H is isotropy irreducible if the isotropic H-action is irreducible,

and it is strongly isotropy irreducible if the isotropy action is irreducible when restricted to H0. Compact

strongly isotropy irreducible spaces and compact isotropy irreducible spaces have been classified in

[25, 27–29, 40] and [38], respectively. There exist many examples of isotropy irreducible G/H, which

is not strongly isotropy irreducible.

Proof of Theorem 3.5. Firstly, we assume that G/H is Riemannian equigeodesic and prove the

decompositions.

Let ⟨·, ·⟩bi be an Ad(G)-invariant inner product on g and g = h + m be the corresponding orthogonal

reductive decomposition. We further Ad(H)-equivariantly decompose m as m = m1 + · · ·+mm such that

each mi is irreducible.

Claim 1. [mi,mj ] ⊂ h when i ̸= j.

For any ui ∈ mi and uj ∈ mj , we apply Lemma 3.3 to u = ui + uj and Λ = id |mi ⊕ 2id |∑
l̸=i ml

, and

get [ui, uj ]m = [Λ(u), u]m = 0, which proves Claim 1.

Claim 2. [mi,mi] ⊂ h+mi for each i.

By the Ad(G)-invariance of ⟨·, ·⟩bi,

⟨[mi,mi],mj⟩bi ⊂ ⟨[mi,mj ],mi⟩bi ⊂ ⟨h,mi⟩bi = 0, ∀ j ̸= i.

So we have [mi,mi] ⊂ h+mi, which proves Claim 2.
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Claim 3. [mi,mj ] = 0 when i ̸= j.

By the almost effectiveness of the G-action on G/H, we only need to prove that [mi,mj ] with i ̸= j is

an ideal of g contained in h.

It is obvious that [mi,mj ] is an ideal of h, i.e., [[mi,mj ], h] ⊂ [mi,mj ]. When i ̸= j ̸= k ̸= i, we have

[[mi,mj ],mk] = 0 because by Claim 1, [[mi,mj ],mk] ⊂ [h,mk] ⊂ mk on the one hand, and

[[mi,mj ],mk] ⊂ [[mi,mk],mj ] + [mi, [mj ,mk]] ⊂ mj +mi

on the other hand. The subspace [[mi,mj ],mi] ⊂ [h,mi] ⊂ mi vanishes because

⟨[[mi,mj ],mi],mi⟩bi = ⟨[mi,mj ], [mi,mi]⟩bi = ⟨[mj , [mi, [mi,mi]]]⟩bi
⊂ ⟨mj , [mi, h+mi]⟩bi ⊂ ⟨mj , h+mi⟩bi = 0,

where we have used Claim 2. For the same reason, [[mi,mj ],mj ] also vanishes. Summarizing the above

argument, we see that [mi,mj ] ⊂ h with i ̸= j is an ideal of g. Then Claim 3 is proved.

Claim 4. We have Lie algebra direct sum decompositions g = g1 ⊕ · · · ⊕ gm and h = h1 ⊕ · · · ⊕ hm, in

which gi = [mi,mi] +mi and hi = [mi,mi]h.

By Claims 2 and 3, each gi ⊂ g is an ideal of g with gi ∩ m = mi. So we have a Lie algebra direct

sum decomposition g = g1 ⊕ · · · ⊕ gm ⊕ g′, in which the ideal g′ is the ⟨·, ·⟩bi-orthogonal complement of

g1 ⊕ · · · ⊕ gm. Obviously, m ⊂ g1 ⊕ · · · ⊕ gm, so the ideal g′ of g is contained in h, which must vanish by

the almost effectiveness. So we get the decomposition for g. Meanwhile Claim 2 implies that each gi is

compatible with the orthogonal reductive decomposition, i.e., gi = hi+mi, in which hi = gi∩h = [mi,mi]h
and mi = gi ∩ g. The decomposition for h follows immediately. Now Claim 4 is proved.

Finally, we consider the corresponding decompositions for G, H and G/H.

Since G is connected and simply connected, Claim 4 provides the Lie group product decomposition

G = G1 × · · · × Gm, in which each Gi is a connected simply connected quasi compact Lie subgroup

generated by gi. In each Gi, we have a connected Lie subgroup Hi with Lie(Hi) = hi. Then

H = H1 × · · · ×Hn because both sides are connected Lie groups generated by the same Lie subalgebra.

Obviously, Hi = H∩Gi. By the closeness and connectedness of H, each Hi is a closed connected subgroup

of Gi. The almost effectiveness of the G-action on G/H implies the almost effectiveness of the Gi-action

on Gi/Hi. In the decomposition G/H = G1/H1 × · · · ×Gm/Hm, each Gi/Hi has a strongly irreducible

isotropy representation. The classification in [40] indicates that Gi must be compact and semisimple,

unless Gi = R and Hi = {0}.
To summarize, the above argument proves Theorem 3.5 in the one direction. The other direction is

obvious by the discussion for Example 3.4.

This proof is self-contained. It can be simplified by using some results in [33, Section 5]. Another

possible proof is to verify that each G-invariant Riemannian metric on G/H is normal and then use an

analog of the main theorem in [5].

Remark 3.6. Theorem 3.5 only classifies some simply connected Riemannian equigeodesic spaces.

The universal cover of a Riemannian equigeodesic space may not be Riemannian equigeodesic any more.

For example, G/H = SU(3)/T 2Z3 is isotropy irreducible, so it is Riemannian equigeodesic. Its universal

cover SU(3)/T 2 is not Riemannian equigeodesic by Theorem 3.5, because it is not strongly isotropy

irreducible. Using the classification work in [38], we can find many other similar examples.

4 The Finsler equigeodesic and the Finsler equigeodesic space

4.1 The Finsler equigeodesic and the Finsler equigeodesic vector

The definitions for the Finsler equigeodesic and the Finsler equigeodesic vector were proposed in [36].

Definition 4.1. A smooth curve on G/H is called a Finsler equigeodesic if it is a homogeneous geodesic

for any G-invariant Finsler metric on G/H. A vector u ∈ g is called a Finsler equigeodesic vector if it

generates an equigeodesic c(t) = exp tu · o on G/H.
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Equivalently speaking, u is a Finsler equigeodesic vector if and only if it is a geodesic vector for any G-

invariant Finsler metric on G/H. Obviously, any Finsler equigeodesic is also a Riemannian equigeodesic.

So the Finsler equigeodesic is a stronger algebraic property than the Riemannian equigeodesic. For the

Finsler equigeodesic vector, the observation is similar.

4.2 A criterion and some examples

Let G/H be a homogeneous manifold with a compact (G, ⟨·, ·⟩bi) and the corresponding orthogonal

irreducible decomposition g = h + m. By the observation in Subsection 3.1, the discussion for Finsler

equigeodesics can be reduced to that for Finsler equigeodesic vectors in m\{0}.
For any vector u ∈ m\{0}, we set Hu = {g ∈ H | Ad(g)u = u}, and denote by Vu the ⟨·, ·⟩bi-orthogonal

complement of [h, u] in m. Then the Ad(Hu)-action preserves Vu. So we can further decompose Vu as

Vu = Vu,0+Vu,1, in which Vu,0 is the fixed point set of the Ad(Hu)-action and Vu,1 is the ⟨·, ·⟩bi-orthogonal
complement of Vu,0 in Vu.

With the above settings, the criterion for u to be a Finsler equigeodesic vector is as follows.

Theorem 4.2. Keep all the above assumptions and notations, and then any vector u ∈ m\{0} is a

Finsler equigeodesic vector if and only if it satisfies

[u,m]m ⊂ [u, h] + Vu,1. (4.1)

Proof. We first assume that u ∈ m\{0} satisfies (4.1) and prove that it is a Finsler equigeodesic.

Let F be any G-invariant Finsler metric on G/H. Denote by Wu,F = {w ∈ m | ⟨u,w⟩Fu = 0} the

subspace of all the directions in which the derivative of F vanishes at u.

By Lemma 2.1 and the property CF
u (u, ·, ·) ≡ 0 for the Cartan tensor, we immediately get

⟨u, [h, u]⟩Fu = 0, i.e., [h, u] ⊂ W F
u .

Let w be any vector in Vu,1. Since the Minkowski norm F = F (o, ·) on m is Ad(H)-invariant, for any

g ∈ Hu, we have

⟨Ad(g)w, u⟩Fu = ⟨Ad(g)w,Ad(g)u⟩FAd(g)u = ⟨w, u⟩Fu . (4.2)

Since G is compact, H and Hu are also compact. So we can integrate (4.2) over Hu and get⟨∫
g∈Hu

Ad(g)wdvolHu , u

⟩F

u

= vol(Hu) · ⟨w, u⟩Fu ,

where dvol is a bi-invariant measure on Hu and vol(Hu) =
∫
Hu

dvolHu ∈ (0,+∞). Since∫
g∈Hu

Ad(g)wdvolHu ∈ Vu,1,

and it is fixed by all the Ad(Hu)-actions, i.e., it is also contained in Vu,0, we get∫
g∈Hu

Ad(g)wdvolHu = 0

and then ⟨w, u⟩Fu = 0.

To summarize, we combine the above arguments and (4.1), and then we see that

[m, u]m ⊂ [h, u] + Vu,1 ⊂ W F
u .

It implies that ⟨u, [m, u]m⟩Fu = 0, i.e., u is a geodesic vector for (G/H,F ). Since F is chosen arbitrarily,

u is a Finsler equigeodesic vector. This ends the proof of Theorem 4.2 in the one direction.

We then prove the other direction, i.e., a Finsler equigeodesic u must satisfy (4.1).

Assume conversely that the Finsler equigeodesic vector u ∈ m\{0} does not satisfy (4.1). Lemma 2.2

implies [m, u]m ⊂
∩

F W F
u , where the intersection is taken for all the G-invariant Finsler metrics on G/H.

So we only need to prove that [u, h] + Vu,1 =
∩

F W F
u .
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In the above argument, we have already proved [u, h]+Vu,1 ⊂
∩

F W F
u . To prove the inverse inclusion,

we consider any nonzero vector w ∈ Vu,0 and look for a G-invariant Finsler metric on G/H with w /∈ W F
u .

The construction of F is the following.

Without loss of generality, we may assume ⟨u, u⟩bi = 1. By the slice theorem [30], the compact

Ad(H)-action on the unit sphere S = {u | ⟨u, u⟩bi = 1, u ∈ m} ⊂ m provides an orbit type stratification

S = S1

⨿
· · ·

⨿
SN . For each i, Si is an imbedded submanifold in S with a smooth fiber bundle structure,

in which each fiber is an Ad(H)-orbit of the same type. We may assume Ad(H)u ⊂ S1, and then

we can find a sufficiently small Ad(H)-invariant open neighborhood U of Ad(H)u in S1 such that the

quotient map π : U → U/H ∼= Rk is a smooth fiber bundle, and the fibers are the Ad(H)-orbits

parametrized as Ox1,...,xk
for (x1, . . . , xk) ∈ Rk with O0,...,0 = Ad(H)u. Since Vu,0 is tangent to U and

Vu,0 ∩ Tu(Ad(H)u) = 0, we may adjust the parameter space Rk such that π∗(w) coincides with ∂
∂x1

at

the origin. We can find a smooth real function φ on Rk with ∂
∂x1

φ(0, . . . , 0) ̸= 0 and a sufficiently small

compact support. The function φ ◦ π is viewed as an Ad(H)-invariant smooth function S1 which only

takes zero value outside U .
Next, we thicken U to an Ad(H)-invariant neighborhood U ′ of Ad(H)u in S. The function φ ◦ π can

be further extended to a compactly supported smooth function ψ on U ′. By the averaging process for

the Ad(H)-action, the Ad(H)-invariance of ψ can be achieved.

Finally, with the above preparations, we are ready to construct the G-invariant Finsler metric. For

any sufficiently small ϵ > 0,

F (y) = ⟨y, y⟩1/2bi ·
(
1 + ϵ · ψ

(
y

⟨y, y⟩1/2bi

))
(4.3)

induces an Ad(H)-invariant Minkowski norm on m. The derivative of F at u does not vanish in the

direction of w. So for the G-invariant Finsler metric F determined by this Minkowski norm, we have

w /∈ W F
u .

This ends the proof of Theorem 4.2 in the other direction.

As immediate applications of Theorem 4.2, we have the following examples.

Example 4.3. Let G/H be a symmetric space of compact type with the Cartan decomposition

g = h+m. Then any vector u ∈ m\{0} is a Finsler equigeodesic vector.

Here, we call the homogeneous manifold G/H a symmetric space of compact type if G is compact

semisimple, and G/H has a Cartan decomposition, i.e., a reductive decomposition g = h + m satisfying

[m,m] ⊂ h. Notice that the Cartan decomposition is orthogonal with respect to the Killing form Bg of

g and we may take ⟨·, ·⟩bi = −Bg(·, ·). So the Cartan decomposition is the corresponding orthogonal

reductive decomposition. By Theorem 4.2, each u ∈ m\{0} is a Finsler equigeodesic vector for G/H

because [m, u]m = 0 in this situation. This example motivates us to study Finsler equigeodesic spaces

(see Subsection 4.3).

Example 4.4. Let G/H be a homogeneous manifold with a compact semisimple G and rkG = rkH

(here rk is the dimension of the maximal torus subgroup). Then the set of Finsler equigeodesic vectors

is nonempty.

More precisely, [44, Lemma 5.3] provides the following Finsler equigeodesic vectors. Let t be a Cartan

subalgebra of g which is contained in h. Then the reductive decomposition g = h+m for G/H is unique,

and we have the following root plane decompositions:

g = t+
∑

α∈∆g

g±α, h = t+
∑

α∈∆h

g±α, m =
∑

α∈∆g\∆h

g±α,

where ∆g and ∆h are the root systems of g and h, respectively. Then for any α ∈ ∆g\∆h, any vector

u ∈ g±α\{0} ⊂ m is a Finsler equigeodesic vector. This fact can be explained by Theorem 4.2, because

on this occasion we have

[g±α,m]m ⊂
∑

α ̸=β∈∆g\∆h

g±β ⊂ Vu,1.
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Example 4.5. For a compact Lie group G, u ∈ g\{0} is a Finsler equigeodesic vector for G = G/{e}
if and only if u ∈ c(g). So in this case, the Riemannian equigeodesics (resp. Riemannian equigeodesic

vectors) and the Finsler equigeodesics (resp. Finsler equigeodesic vectors) are the same.

4.3 The Finsler equigeodesic space and a criterion

As an analog of Definition 3.2, we define a Finsler equigeodesic space as follows.

Definition 4.6. We call a homogeneous manifold G/H Finsler equigeodesic or a Finsler equigeodesic

space if for each x ∈ G/H and each nonzero y ∈ Tx(G/H), there exists a Finsler equigeodesic c(t) with

c(0) = x and ċ(0) = y.

Let G/H be a homogeneous manifold with a compact (G, ⟨·, ·⟩bi) and the corresponding orthogonal

reductive decomposition g = h+m. Then by the observation in Subsection 3.1, the Finsler equigeodesic

space can be equivalently described as follows.

Lemma 4.7. A homogeneous manifold G/H with a compact (G, ⟨·, ·⟩bi) and a corresponding orthogonal

reductive decomposition g = h + m is Finsler equigeodesic if and only if each u ∈ m\{0} is a Finsler

equigeodesic vector.

The Finsler equigeodesic property for G/H with a compact G can be described by natural reductiveness

as follows.

Lemma 4.8. Let G/H be a homogeneous manifold with a compact (G, ⟨·, ·⟩bi). Then we have the

following:

(1) if it has a reductive decomposition g = h + m′, with respect to which all the G-invariant Finsler

metrics on G/H are naturally reductive, then G/H is a Finsler equigeodesic space;

(2) if G/H is a Finsler equigeodesic space, then any G-invariant Finsler metric on G/H is naturally

reductive with respect to the orthogonal reductive decomposition g = h+m.

Proof. (1) By the description for Finsler natural reductiveness in [12] or Subsection 2.4, each nonzero

vector in m′ is a Finsler equigeodesic vector for G/H. The projection prm : g → m is a linear isomorphism

when restricted to m′. By the discussion after Lemma 3.1, each nonzero vector in m is Finsler equigeodesic.

So G/H is Finsler equigeodesic by Lemma 4.7.

(2) Let F be any G-invariant Finsler metric on G/H. Lemma 4.7 indicates that each nonzero vector

u ∈ m generates a geodesic c(t) = exp tu · o on (G/H,F ). By the description in [12] or Subsection 2.4,

(G/H,F ) is naturally reductive with respect to the orthogonal reductive decomposition g = h+m.

By Theorem 4.2 and Lemma 4.7, we have the following criterion for Finsler equigeodesic spaces.

Lemma 4.9. A homogeneous manifold G/H with a compact (G, ⟨·, ·⟩bi) and the corresponding

orthogonal reductive decomposition g = h+m is Finsler equigeodesic if and only if

there exists a conic open dense subset U of m\{0} satisfying [m, u]m ⊂ [h, u], ∀u ∈ U . (4.4)

Proof. Assume thatG/H is Finsler equigeodesic. Then we can take U to be the union of all the principal

Ad(H)-orbits in m. By the slice theorem for a linear group action [20,30], U is a conic open dense subset

of m. For any u ∈ U , Ad(H) acts trivially on the ⟨·, ·⟩bi-orthogonal complement of Tu(Ad(H)u) = [h, u]

in m, i.e., Vu,1 = 0. So Theorem 4.2 provides [m, u]m ⊂ [h, u].

Assume [m, u]m ⊂ [h, u] for each u in a conic dense open subset U ⊂ m\{0}. Then for any G-invariant

Finsler metric F on G/H, we have (2.1), i.e., ⟨u, [v, u]m⟩Fu = 0, ∀ v ∈ m. By the continuity, (2.1) is

satisfied for all u ∈ m\{0}. Since F is arbitrarily chosen, we see that G/H is Finsler equigeodesic.

The criterion Lemma 4.9 reveals an interesting phenomenon for the Finsler equigeodesic property, i.e.,

it is only relevant to Lie algebras. So we have the following immediate consequences.

Lemma 4.10. A homogeneous manifold G/H = (G1 × G2)/(H1 × H2) = G1/H1 × G2/H2 with a

compact G is Finsler equigeodesic if and only if each Gi/Hi is Finsler equigeodesic.
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Proof. The proof repeatedly uses Lemma 4.9. Assume that G/H is Finsler equigeodesic, which provides

U ⊂ m\{0}. Denote by pri : m → mi the linear projection according to m = m1 + m2. Then we can

take Ui = pri(U\(m1 ∪ m2)) for Gi/Hi. Assume that each Gi/Hi is Finsler equigeodesic, providing

Ui ⊂ mi\{0}. Then we can choose U = U1 × U2 for G/H.

Lemma 4.11. Let G/H be a homogeneous manifold with a compact semisimple G. Then the following

statements are equivalent:

(1) G/H is Finsler equigeodesic;

(2) G0/(G0 ∩H) is Finsler equigeodesic, in which G0 is the identity component of G;

(3) G/H0 is Finsler equigeodesic, in which H0 is the identity component of H;

(4) G̃0/H̃0 is Finsler equigeodesic, in which G̃0 is the universal cover of G0 and H̃0 is the connected

subgroup in G̃0 covering H0.

Proof. Since G is compact, G0 and G̃0 are also compact, i.e., Lemma 4.9 is applicable for each in

(1)–(4). The homogeneous manifolds in (1)–(4) of Lemma 4.11 share the same g and h, so they also share

the same statement (4.4) in Lemma 4.9.

4.4 The proof of Theorem B

Now we prove Theorem B by the following steps, in which the details for Step 3 are postponed to Section 5.

Step 1. We can use Lemma 4.11 to replace G/H by G̃0/H̃0, i.e., we may assume that G is compact,

connected and simply connected, and H is connected.

Step 2. The Finsler equigeodesic space G/H is also Riemannian equigeodesic, so Theorem 3.5 can be

applied to decomposing G/H as G/H = G1/H1×· · ·×Gm/Hm, in which each Gi/Hi is strongly isotropy

irreducible. By Lemma 4.10, G/H can be replaced by each Gi/Hi, i.e., we may further assume that

G/H is a compact strongly isotropy irreducible space on which the compact semisimple G acts almost

effectively.

Step 3. In Section 5, we classify the strongly isotropy irreducible compact Finsler equigeodesic space

G/H in the Lie algebra level (see Theorem 5.1), i.e., locally, G/H must be one of the following:

Spin(7)/G2, or G2/SU(3), or a symmetric space of compact type. (4.5)

To summarize, the above steps provide a local decomposition G/H = G1/H1×· · ·×Gm/Hm, in which

each Gi/Hi satisfies (4.5).

Step 4. We prove that if a homogeneous manifold G/H with a compact semisimple G has a local

decomposition G/H = G1/H1 × · · · ×Gm/Hm in which each Gi/Hi satisfies (4.5), then G/H is Finsler

equigeodesic. Obviously, S7 = Spin(7)/G2 and S6 = G2/SU(3) are Finsler equigeodesic because the

invariant Finsler metric on each of them is unique up to a scalar, i.e., a Riemannian metric with

positive constant curvature. In Example 4.3, we see that a symmetric space of compact type is Finsler

equigeodesic. Using Lemmas 4.10 and 4.11, we see that G/H is Finsler equigeodesic.

This ends the proof of Theorem B.

5 The strongly isotropy irreducible compact Finsler equigeodesic space

The goal of this section is to prove the following classification result.

Theorem 5.1. Let G/H be a Finsler equigeodesic space on which the compact connected semisimple

G acts almost effectively with a strongly irreducible isotropy representation. Then the pair (g, h) is

(so(7), G2), (G2, su(3)), or a symmetric pair.

To prove this theorem, we need two preparations. Firstly, the numerical properties of a Finsler

equigeodesic space in the following lemma are crucial for the later case-by-case discussion.
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Lemma 5.2. Let G/H be a homogeneous manifold with a compact connected semisimple (G, ⟨·, ·⟩bi)
and the corresponding orthogonal reductive decomposition g = h + m. Suppose that G/H is Finsler

equigeodesic. Then we have the following:

(1) dim cg(u) > dim g− 2 dim h for any each u ∈ m;

(2) dimAd(G)u+ dim c(cg(u)) > dimm, in which u ∈ m satisfies

dim c(cg(u)) = max
v∈m

c(cg(v));

(3) 2 dim h+ rkg > dimm.

Proof. (1) Lemma 4.9 provides a conic dense open subset U ⊂ m\{0}. Let u be any vector in U . Then
[m, u]m ⊂ [h, u].

On the one hand, we claim that the image of prm |cg(u) : cg(u) → m is the kernel of the linear map

l(·) = [·, u]h |m : m → h.

For any w′ ∈ h and w ∈ m, we have

[w′ + w, u] = [w′, u] + [w, u]m + [w, u]h,

where the first two summands on the right-hand side are contained in m and the third is contained in h.

So [w′ + w, u] = 0 implies [w, u]h = 0, i.e., w ∈ ker l.

For any w ∈ ker l, the property of u provides a vector w′ ∈ h such that [w, u]m = −[w′, u]. Then

v = w′ + w satisfies

[v, u] = [w′, u] + [w, u]h + [w, u]m = −[w, u]m + [w, u]m = 0,

i.e., there exists a vector v ∈ cg(u) with vm = w. This ends the proof of our claim.

On the other hand, we see the obvious fact that the kernel of prm |cg(u) is ch(u).
Summarizing the above two observations, we get

dim cg(u) = dim ch(u) + dimker l, (5.1)

which implies

dim cg(u) > dimker l > dimm− dim h = dim g− 2 dim h.

This proves (1) for u ∈ U .
Notice that dim cg(u) depends semicontinuously on u ∈ m, i.e.,

dim cg

(
lim

n→∞
un

)
> limn→∞ dim cg(un).

This semicontinuity implies that (1) is valid on U = m.

(2) Suppose that maxv∈m dim c(cg(v)) is achieved at u ∈ m. Denote by t any Cartan subalgebra

containing u, and by g = S1

⨿
· · ·

⨿
SN the orbit type stratification for the Ad(G)-action. We assume

that S1 contains u. Then the quotient map π : S1 → S1/G is a smooth fiber bundle satisfying the

following:

(1) each fiber is an Ad(G)-orbit with same orbit type as Ad(G)u;

(2) locally around u, S1 ∩ t is the section for this fiber bundle and it is a linear subspace of dimension

dim c(cg(u)), which is the intersection of some Weyl walls.

On the other hand, by the classification of flag manifolds (see [1] or Subsection 2.5), for any w ∈ g\S1

which is sufficiently close to u, we have

dim c(cg(w)) > dim c(cg(u)).

So the assumption dim c(cg(u)) = maxv∈m dim c(cg(v)) implies that there exists a neighborhood of u in

m which is contained in S1.
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To summarize, we have

dimS1 = dimAd(G)u+ dim c(cg(u)) > dimm,

which proves (2).

(3) For the vector u ∈ m provided by (2), we have

dim c(cg(u)) 6 dim t = rkg (5.2)

which is obvious, and

dim(Ad(g)u) = dim g− dim cg(u) 6 2 dim h (5.3)

by Lemma 5.2(1). Inputting (5.2) and (5.3) into the equality in Lemma 5.2(2), we get

2 dim h+ rkg > dimm. (5.4)

So to prove (3), we only need to verify that the equality in (5.4) cannot happen.

Assume conversely 2 dim h+ rkg = dimm. Then u is a regular vector, i.e.,

dim cg(u) = dim c(cg(u)) = rkg. (5.5)

On the other hand, Lemma 5.2(1) indicates

dim cg(u) > dim g− 2 dim h = dim h+ rkg. (5.6)

Comparing (5.5) and (5.6), we get

dim h = 0 and rkg = dim g,

i.e., g is Abelian. This leads to a contradiction.

Secondly, we need the classification list in [40] for a nonsymmetric strongly isotropy irreducible G/H

on which a compact connected G acts almost effectively. We list their Lie algebra pairs in Table 1.

Remark 5.3. The pair (so(4n), sp(1) ⊕ sp(n)) in Table 1 is a symmetric pair when n = 2. Using a

graph automorphism for so(8), we can change it to the standard symmetric pair (so(8), so(3)⊕ so(5)) for
a real Grassmannian.

Proof of Theorem 5.1. Let G/H be a nonsymmetric strongly isotropy irreducible homogeneous mani-

fold on which the compact connected semisimple G acts almost effectively. Then (g, h) is listed in Table 1.

We check each case in Table 1 and see that Lemma 5.2(3) is only satisfied when (g, h) = (so(7), G2),

(g, h) = (G2, su(3)) or (g, h) is in Table 2.

So to prove Theorem 5.1, we only need to conversely assume that G/H is each one in Table 2, and

check case by case for contradictions. In the upcoming case-by-case discussion, we apply the following

conventions in [45]. We choose a Cartan subalgebra t of g such that t ∩ h is a Cartan subalgebra of h.

Using ⟨·, ·⟩bi, we see that the root systems ∆g for g and ∆h for h are viewed as subsets in t and t ∩ h,

respectively. The inner product ⟨·, ·⟩bi and the orthonormal basis {e1, . . . , en} are suitably chosen such

that ∆g and ∆h can be canonically presented. All the roots and all the root planes are with respect to t

or its intersection with the specified subalgebras.

Case 1. (g, h) = (su(6), su(2)⊕ su(3)).

In this case, we have the root system

∆g = {±(ei − ej), ∀ 1 6 i < j 6 6},

and t∩ h is spanned by e1+e3+e5−e2−e4−e6 from the su(2)-summand and e1+e2−e3−e4, e3+e4−e5−e6
from the su(3)-summand. So t∩m consists of all the vectors of the form ae1−ae2+ be3− be4+ ce5− ce6,
∀ a, b, c ∈ R with a+b+c = 0. A generic vector in t∩m, for example, u = e1−e2+2e3−2e4−3e5+3e6, is

a regular vector in g. Then dim cg(u) = 5 does not satisfy Lemma 5.2(1), which leads to a contradiction.
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Case 2. (g, h) = (sp(2), so(3)).

Table 1 Lie algebra pairs for compact nonsymmetric strongly isotropy irreducible spaces

g dim g h dim h Conditions

su(pq) p2q2 − 1 su(p)⊕ su(q) p2 + q2 − 2 p > q > 2, pq > 4

su(16) 255 so(10) 45

su(27) 728 E6 78

su(
n(n−1)

2
)

n2(n−1)2

4
− 1 su(n) n2 − 1 n > 5

su(
n(n+1)

2
)

n2(n+1)2

4
− 1 su(n) n2 − 1 n > 3

sp(2) 10 so(3) 3

sp(7) 105 sp(3) 21

sp(10) 210 su(6) 35

sp(16) 528 so(12) 66

sp(28) 1,596 E7 133

so(20) 190 su(4) 15

so(70) 2,415 su(8) 63

so(n2 − 1)
(n2−1)(n2−2)

2
su(n) n2 − 1 n > 3

so(16) 120 so(9) 36

so(2n2 + n)
(2n2+n)(2n2+n−1)

2
so(2n+ 1) n(2n+ 1) n > 2

so(2n2 + 3n)
(2n2+3n)(2n2+3n−1)

2
so(2n+ 1) n(2n+ 1) n > 2

so(42) 861 sp(4) 36

so(2n2 − n− 1)
(2n2−n−1)(2n2−n−2)

2
sp(n) 2n2 + n n > 3

so(2n2 + n)
(2n2+n)(2n2+n−1)

2
sp(n) 2n2 + n n > 3

so(128) 8,128 so(16) 120

so(2n2 − n)
(2n2−n)(2n2−n−1)

2
so(2n) n(2n− 1) n > 4

so(2n2 + n− 1)
(2n2+n−1)(2n2+n−2)

2
so(2n) n(2n− 1) n > 4

so(7) 21 G2 14

so(14) 91 G2 14

so(26) 325 F4 52

so(52) 1,326 F4 52

so(78) 3,003 E6 78

so(133) 8,778 E7 133

so(248) 30,628 E8 248

G2 14 so(3) 3

G2 14 su(3) 8

F4 52 so(3)⊕G2 17

F4 52 su(3)⊕ su(3) 18

E6 78 su(3) 8

E6 78 G2 14

E6 78 su(3)⊕G2 22

E6 78 su(3)⊕ su(3)⊕ su(3) 24

E7 133 su(3) 8

E7 133 sp(3)⊕G2 35

E7 133 su(2)⊕ F4 55

E7 133 su(3)⊕ su(6) 43

E8 248 G2 ⊕ F4 66

E8 248 su(9) 80

E8 248 su(3)⊕ E6 86

sp(n) 2n2 + n sp(1)⊕ so(n)
n(n−1)

2
+ 3 n > 3

so(4n) 2n(4n− 1) sp(1)⊕ sp(n) 2n2 + n+ 3 n > 3



144 Xu M et al. Sci China Math January 2024 Vol. 67 No. 1

Table 2 Lie algebra pairs in Table 1 which satisfy Lemma 5.2(3)

No. g dim g h dim h

1 su(6) 35 su(2)⊕ su(3) 11

2 sp(2) 10 so(3) 3

3 F4 52 su(2)⊕G2 17

4 F4 52 su(3)⊕ su(3) 18

5 E7 133 so(3)⊕ F4 55

6 E7 133 su(3)⊕ su(6) 43

7 E8 248 su(3)⊕ E6 86

8 so(12) 66 sp(1)⊕ sp(3) 24

9 so(16) 120 sp(1)⊕ sp(4) 39

This G/H is in fact the Berger space Sp(2)/SU(2) in the classification for positively curved

homogeneous manifolds [8, 13]. We have the root system ∆g = {±e1,±e2,±e1 ± e2}, and t ∩ m is

spanned by u = (e1 + e2)− (−e1) = 2e1 + e2. This u is a regular vector in g. So dim cg(u) = 2 does not

satisfy Lemma 5.2(1), which leads to a contradiction.

Case 3 or Case 4. (g, h) = (F4, su(2)⊕G2) or (F4, su(3)⊕ su(3)).

By Lemma 5.2(1), dim cg(u) > 18 or dim cg(u) > 16. By the classification for flag manifolds (see [1] or

Subsection 2.5, same below), we see dim c(cg(u)) = 1 for any u ∈ m\{0} with Ad(G)u = F4/Spin(7)U(1)

or Ad(G)u = F4/Sp(3)U(1). Then by Lemma 5.2(2),

31 = dimAd(G)u+ dim c(cg(u)) > dimm = 35

or

31 = dimAd(G)u+ dim c(cg(u)) > dimm = 36

provides a contradiction.

Case 5. (g, h) = (E7, F4 ⊕ su(2)).

Let u′ be a generic vector in t∩m. Then cg(u
′) = so(8)⊕R3. This observation needs more explanation,

which is put in Appendix A.

We can find a vector u ∈ m such that u is sufficiently close to u′ and Ad(H)u is a principal orbit. Then

u is contained in a conic open dense subset U indicated by Lemma 4.9. The centralizer cg(u) must be

isomorphic to cg(u
′), because otherwise by the classification for flag manifolds, we have dim c(cg(u)) > 4

and dim cg(u) 6 19, which contradicts Lemma 5.2(1).

As indicated by the table in [40, Theorem 11.1], the Ad(H)-action on m is the tensor product between

the natural SO(3)-action on R3 and the isotropy representation for the symmetric space E6/F4. So the

Ad(H)-action on m is faithful. On the other hand, it is not in [20, Table B], i.e., any principal Ad(H)-orbit

in m has the same dimension as H. So we have ch(u) = 0.

Now we consider the linear map l(·) = [u, ·]h |m from m to h, which appears in the proof of Lemma 5.2.

For any w ∈ m, we have ⟨[u,w], h⟩bi = ⟨w, [h, u]⟩bi, so ker l is the ⟨·, ·⟩bi-orthogonal complement of [h, u]

in m. Because ch(u) = 0, dimker l = dimm− dim h = 23.

Finally, (5.1) can be applied to this u ∈ U , which provides dim cg(u) = 23. This contradicts the

previous observation cg(u) = so(8)⊕ R3.

Case 6. (g, h) = (E7, su(3)⊕ su(6)).

By Lemma 5.2(1), we have

dim cg(u) > 47 and dimAd(G)u 6 86 (5.7)

for any u ∈ m. By the classification for flag manifolds, if dim c(cg(u)) > 3, dim cg(u) 6 31 with the equality

achieved when Ad(G)u = E6/Spin(8)T
3. So we have maxv∈m dim c(cg(v)) 6 2, and by Lemma 5.2(2)
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and the second inequality in (5.7), for a generic u ∈ m,

88 > dimAd(G)u+max
v∈m

dim c(cg(v)) > m = 90.

This is a contradiction.

Case 7. (g, h) = (E8, su(3)⊕ E6).

On the one hand, by Lemma 5.2(1), we have dim cg(u) > 76 for each u ∈ m. By the classification of

flag manifolds, we must have

dim c(cg(u)) 6 2, ∀u ∈ m, (5.8)

and otherwise dim cg(u) 6 48 with the equality achieved when Ad(G)u = E8/Spin(10)T
3.

On the other hand, there is a k = E7 in g which contains the E6-summand h1 in h and intersects the

su(3)-summand h2 in h at a line. The pair (k, k∩h) = (E7, E6⊕R) is a symmetric pair. Denote by m′ the

⟨·, ·⟩bi-complement of k∩h in k. Then k = (k∩h)+m′ is a Cartan decomposition. The rank of E7/E6U(1)

is 3 (see [19]), i.e., we have found a 3-dimensional commutative subspace t′ in m′, from which we can find

a vector u with dim c(cg(u)) > 3. Since rkg = rkh and k = E7 is regular in g = E8 (i.e., each root plane

of k is a root plane of g), m′ and m are both sums of root planes of g, so we have m′ ⊂ m. The previously

mentioned u ∈ m′ ⊂ m satisfies dim c(cg(u)) > 3. This contradicts (5.8).

Case 8. (g, h) = (so(12), sp(1)⊕ sp(3)).

In this case, the root system ∆g = {±ei ± ej , ∀ 1 6 i < j 6 6}, and the subspace t ∩ h is linearly

spanned by e1+ · · ·+e6 from the sp(1)-summand and e1−e2, e3−e4, e5−e6 from the sp(3)-summand. So

t∩m consists of all the vectors of the form ae1+ae2+be3+be4+ce5+ce6, ∀ a, b, c ∈ R with a+b+c = 0.

For the vector u = e1 + e2 + 2e3 + 2e4 − 3e5 − 3e6 ∈ t ∩m, the dimension of

cg(u) = su(2)⊕ su(2)⊕ su(2)⊕ R3

is 12. This contradicts Lemma 5.2(1).

Case 9. (g, h) = (so(16), sp(1)⊕ sp(4)).

In this case, the root system ∆g = {±ei±ej ,∀ 1 6 i < j 6 8}, and the subspace t∩h is linearly spanned

by e1 + · · ·+ e8 from the sp(1)-summand and e1 − e2, e3 − e4, e5 − e6, e7 − e8 from the sp(4)-summand.

So t∩m consists of all the vectors of the form ae1 + ae2 + be3 + be4 + ce5 + ce6 + de7 + de8, ∀ a, b, c, d ∈ R
with a+ b+ c+ d = 0.

For the vector u = e1 + e2 + 2e3 + 2e4 + 3e5 + 3e6 − 6e7 − 6e8 ∈ t ∩m, the dimension of

cg(u) = su(2)⊕ su(2)⊕ su(2)⊕ su(2)⊕ R4

is 16. This contradicts Lemma 5.2(1).

This ends the proof of Theorem 5.1.

6 The homogeneous manifold on which all the invariant metrics are Berwald

In this section, we prove Theorem C, which classifies the homogeneous manifold G/H with a compact

semisimpleG, on which all theG-invariant metrics are Berwald. It is an immediate corollary of Theorem B

and the following theorem.

Theorem 6.1. Let G/H be a homogeneous manifold with a compact (G, ⟨·, ·⟩bi). Then G/H is a

Finsler equigeodesic space if and only if each G-invariant Finsler metric on G/H is Berwald.

Proof. Firstly, we assume that G/H is Finsler equigeodesic and prove each G-invariant Finsler metric

F on G/H is Berwald. By Lemma 4.8, F is naturally reductive with respect to the orthogonal reductive

decomposition g = h + m. It has a vanishing spray vector field, so by Lemma 2.3, it is Berwald. This

proves one side of Theorem 6.1.
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Next, we assume that each G-invariant Finsler metric on G/H is Berwald and prove that G/H is

Finsler equigeodesic. Denote by

S = {u | u ∈ m, |u|bi = ⟨u, u⟩1/2bi = 1}

the unit sphere in m. By Lemma 4.7, we just need to prove that each u ∈ S is a Finsler equigeodesic

vector. We may assume Ad(H)u ̸= S, and otherwise G/H is a compact rank-one Riemannian symmetric

space [37], which is obviously Finsler equigeodesic.

Let F be any G-invariant Finsler metric on G/H. We use the same F = F (o, ·) to denote the Ad(H)-

invariant Minkowski norm on m. We can find two sufficiently small Ad(H)-invariant open neighborhoods

U1 and U2 of the orbit Ad(H)u in S with U1 ⊂ U2, and an Ad(H)-invariant smooth cut-off function

f : S → [0, 1] satisfying f(U1) = 1 and f(S\U2) = 0. Notice that S\U2 contains a nonempty open subset

of S. For t ∈ R which is sufficiently close to 0,

Ft(y) =

√
⟨y, y⟩bi + tf

(
y

|y|bi

)
F (y)2

defines a smooth family of Ad(H)-invariant Minkowski norms on m. We use the same Ft to denote the

corresponding G-invariant Finsler metrics on G/H.

Denote by ⟨·, ·⟩y and ⟨·, ·⟩Ft
y the fundamental tensors of the Minkowski norms F and Ft, respectively.

Let ηt : m\{0} → m be the spray vector field of Ft and ω = d
dt |t=0ηt. Then we have the following

observations. Notice that F0 = | · |bi, so ⟨·, ·⟩F0
y = ⟨·, ·⟩bi and η0 = 0. For y ∈ m\R>0U2, ⟨·, ·⟩Ft

y = ⟨·, ·⟩bi,
and for y ∈ R>0U1,

d
dt ⟨·, ·⟩

Ft
y = ⟨·, ·⟩y. Since each Ft is Berwald, by Lemma 2.3, each ηt is quadratic, and

then ω is also quadratic.

The definition of spray vector field provides

⟨ηt(y), w⟩Ft
y = ⟨y, [w, y]m⟩Ft

y , ∀ y ∈ m\{0}, w ∈ m. (6.1)

By the observations in the previous paragraph, the derivative of (6.1) for the t-variable which is evaluated

at t = 0 can be presented as

⟨ω(y), w⟩bi =
d

dt

∣∣∣∣
t=0

⟨y, [w, y]m⟩Ft
y , ∀ y ∈ m\{0}, w ∈ m. (6.2)

The left-hand side of (6.2) is quadratic for y, and the right-hand side vanishes for y ∈ m\R>0U2. So both

sides of (6.2) vanish for all y ∈ m\{0}. In particular, for y = u ∈ R>0U1, we have

d

dt

∣∣∣∣
t=0

⟨u, [w, u]m⟩u = ⟨u, [w, u]m⟩u = 0, ∀u ∈ m.

To summarize, u ∈ S ⊂ m\{0} is a geodesic vector for any G-invariant Finsler metric F , so u is a

Finsler equigeodesic vector. Since u is arbitrary, G/H is Finsler equigeodesic. This proves the other side

of Theorem 6.1.
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Appendix A Some discussion for the algebraic structure of (g,h) = (E7, su(2)
⊕F4)

For simplicity, we denote by h1 and h2 the su(2)- and F4-summands in h, respectively.

Notice that t ∩ h1 is a line and its centralizer in g = E7 has a semisimple summand g′ = E6. The

subalgebra h2 = F4 is contained in g′ = E6 such that E6/F4 is a symmetric space. We can expand a

Cartan subalgebra of h2 = F4 first to g′ and then to g, which provides a Cartan subalgebra t such that

t ∩ h1, t ∩ h2 and t ∩ g′ are Cartan subalgebras for h1, h2 and g′, respectively. The roots and root planes

with respect to these specified Cartan subalgebras can be arranged as follows. Using ⟨·, ·⟩bi, we see that

the roots are viewed as vectors in t rather than t∗.

The root system ∆g of g consists of the following roots:

±ei ± ej , ∀ 1 6 i < j 6 6, ±
√
2e7,

±1

2
e1 ± · · · ± 1

2
e6 ±

√
2

2
e7 with even +

1

2
-coefficients.

It has a prime root system

α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4, α4 = e4 − e5,

α5 = e5 − e6, α6 = e5 + e6, α7 = −1

2
(e1 + · · ·+ e6 +

√
2e7).

The subset {α2, . . . , α7} is the prime root system of g′ = E6.

The subalgebra h2 = F4 is the fixed point set for the involutive automorphism σ of g′, which maps each

αi to α9−i for i = 2, 3, 6, 7, and fixes α4 and α5. So t∩h2 is spanned by α4, α5, α3+α6 = e3−e4+e5+e6
and α2 + α7 = 1

2 (−e1 + e2 − 3e3 − e4 − e5 − e6 −
√
2e7).

The subspace t ∩ h1 in h1 = su(2) commutes with each root plane of h2 = F4, so it commutes with

each root plane of g′ = E6. Then we see that t ∩ h1 is ⟨·, ·⟩bi-orthogonal to t ∩ g′, i.e., it is spanned by

2e1 −
√
2e7.

The above description is enough for us to calculate t∩m, which is linearly spanned by e3− e4− e5− e6
and e1 + 3e2 +

√
2e7.

Let u′ be a generic vector in t∩m. For example, we can choose u′ = 7(e1+3e2+
√
2e7)+5(e3−e4−e5−e6).

The centralizer cg(u
′) has the following roots:

±(e3 + e4), ±(e3 + e5), ±(e3 + e6), ±(e4 − e5), ±(e4 − e6), ±(e5 − e6),

±1

2
(e1 − e2 +

√
2e7)±

1

2
(e3 − e4 + e5 + e6),

±1

2
(e1 − e2 +

√
2e7)±

1

2
(e3 + e4 − e5 + e6),

±1

2
(e1 − e2 +

√
2e7)±

1

2
(e3 + e4 + e5 − e6),

which provide a root system of so(8). So cg(u
′) = so(8)⊕ R3.

Remark A.1. Another description for (E7, su(2)⊕ F4) can be found in [15, Table 35].
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