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Abstract The anonymity mechanism of bitcoin is favored by the society, which promotes its usage and

development. An adversary should not be able to discover the relation between bitcoin addresses and bitcoin

users to ensure effective privacy. However, the relation among bitcoin transactions can be used to analyze

the bitcoin privacy information, which seriously jeopardizes the bitcoin anonymity. Herein, we describe the

vulnerabilities associated with the anonymity mechanism of bitcoin, including the relation among bitcoin

addresses and the relation among bitcoin users. Further, we demonstrate that the existing methods do not

guarantee the comprehensiveness, accuracy, and efficiency of the analysis results. We propose a heuristic

clustering method to judge the relation among bitcoin addresses and employ the Louvain method to discover

the relation among bitcoin users. Subsequently, we construct an address-associated database of historical

transactions and implement real-time updates. Extensive experiments are used to demonstrate the compre-

hensiveness, accuracy, and efficiency of the proposed scheme. Specifically, the proposed scheme reveals the

privacy vulnerability associated with the blockchain technology. We expect that our scheme can be applied

to improve the blockchain technology.
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1 Introduction

Typically, bitcoin addresses [1] are generated by users, and no third party can determine the correspond-

ing relation among addresses and the user identity information. Furthermore, each user can generate

countless addresses, and users can assign different addresses to different transactions, making it consider-

ably difficult to infer identity information based on transaction rules. Thus, the bitcoin addresses exhibit

stronger anonymity when compared with that exhibited by the traditional centralized systems. However,

the relation among the bitcoin transactions can be used to analyze the bitcoin privacy information. The

bitcoin transactions are stored in a public global ledger; therefore, an adversary can obtain the transac-

tion information in a relatively easy manner. By analyzing the relation among transactions, an adversary

can gradually reduce the anonymity of the blockchain addresses and can even find anonymous addresses

corresponding to the user’s true identity information.

*Corresponding author (email: liehuangz@bit.edu.cn, shenmeng@bit.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-9900-9&domain=pdf&date_stamp=2020-2-11
https://doi.org/10.1007/s11432-019-9900-9
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-9900-9
https://doi.org/10.1007/s11432-019-9900-9


Zheng B K, et al. Sci China Inf Sci March 2020 Vol. 63 132101:2

Bitcoin address clustering can aggregate the addresses of a single user by analyzing the transaction

data, which can help to infer the identity information corresponding to the addresses. If the identity

information of a single address in the clustering set is obtained, the identity information of the remaining

addresses in the same clustering set can be inferred. Further, we can use the clustering addresses to

obtain comprehensive transaction data with respect to specific users, allowing us to obtain considerably

detailed transaction rules. As the amount of comprehensive clustering information increases, it becomes

easier for anonymous users associated with the address set to describe the identity.

Bitcoin user clustering can be used to analyze the relation among bitcoin users, which can reflect the

degree of closeness among bitcoin users. The bitcoin technology constantly changes the user ownership

according to the user’s transaction chain, which makes it difficult to determine the whereabouts of bitcoin.

We can cluster close users to discover user relations and improve the accuracy of identity recognition.

Several recent studies have investigated the relation among bitcoin addresses [2–10]. In these studies,

the authors have adopted heuristic methods to analyze the relation among bitcoin addresses. However,

the clustering rules in these methods are observed to be insufficient. When compared to the studies

that investigate the relation between bitcoin addresses, the relation among bitcoin users has received less

attention.

This study attempts to understand the traceability of bitcoin transactions and to recognize anonymous

users according to the specific user behaviors in bitcoin network. Most importantly, we believe that the

results of this study reveal vulnerabilities in the anonymity mechanism of bitcoin such that the blockchain

technology can be improved to some extent in the future.

The primary contributions of this study can be summarized as follows.

• We propose an address clustering heuristic algorithm that can aggregate different addresses of the

same user. This algorithm investigates four rules, i.e., coinbase transactions, multi-input transactions,

change address, and mining pool addresses. The clustering results are more comprehensive and accurate

when compared with the existing algorithms.

• We employ the Louvain community discovery algorithm to analyze the relation among users. The

algorithm can partition the community based on hierarchical clustering, which can partition the trans-

action addresses closely related to a community and identify the bitcoin user relations. Furthermore, we

have improved the original algorithm to increase the efficiency. In addition, address clustering combined

with user clustering can improve the accuracy of identity prediction.

•We propose an incremental clustering algorithm based on historical clustering that can realize address

clustering for large datasets. We construct an address-associated database of historical transactions

and implement real-time updates. The comprehensive clustering results can be obtained by combining

historical clustering with incremental clustering. If the data queried by the user is already in the historical

clustering database, it can be quickly fed back to the user.

• Address and user clustering are implemented in the bitcoin public network. Further, we have verified

the comprehensiveness, accuracy, and efficiency of the proposed method by conducting a large number

of experiments. The results reveal that the proposed algorithms outperform the existing clustering

algorithms.

• We reveal the vulnerabilities of the anonymity mechanism of bitcoin using address clustering. In

addition, we indicate the manner in which our proposed method can be applied to blockchain research

such that the blockchain technology can be applied well in various fields.

When compared with our previous work [11], in this study, we implemented the algorithms of the theo-

retical model and provided extensive experimental evaluations to prove the comprehensiveness, accuracy,

and efficiency of the proposed clustering method.

The remainder of this study is organized as follows. We present the preliminaries in Section 2. Further,

we provide definitions and describe the proposed system model in Section 3. We discuss the measurement

methodology and implementation in Section 4. The performance analysis is presented in Section 5, and

the related work and conclusions are presented in Sections 6 and 7, respectively.
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2 Preliminaries

Bitcoin is a type of digital currency that relies on a global shared, distributed, and trusted ledger system.

The ledger system comprises a series of complex computer-generated code. A bitcoin can be sent by

anyone to any other person, regardless of the location. The bitcoin addresses are anonymous. In this

section, we discuss the bitcoin addresses, bitcoin transactions, and the Louvain algorithm.

2.1 Bitcoin address

In a blockchain system, an address is a pseudonym used when a user is participating in a transaction [12].

Typically, addresses are generated using user-controlled public-key encryption algorithms such as elliptic

curve cryptography. The generated public key will be used for generating the input or output address.

The secret private key is used to sign a digital transaction. The blockchain address is user-generated and

does not include the user identification information.

A bitcoin address comprises numbers and letters. Such addresses are essentially converted using a

key pair (Pk, Sk) generated by a user using an asymmetric encryption algorithm. The public key Pk is

formatted and converted to the address format Addr specified by the bitcoin protocol. The address is

considered the user’s account. The private key Sk, used to sign the transactions, is maintained secret

by the user to ensure that only legitimate users can use a given address. The addresses in the bitcoin

system are hexadecimal strings of 26–34 bits that can be processed using the hash160 algorithm and

base58 encoding mechanism of the public key [13].

In addition, the address space that generates a blockchain address is considerably large, and the

likelihood of duplicate addresses is low. Users can use different addresses for different transactions,

enhancing the anonymity of user addresses. The private key space of the bitcoin address is 2256, which is

1077 in decimal, and the visible universe is estimated to contain only 1080 atoms [13]. Thus, the bitcoin

system contains sufficient address space to support a one-time address strategy.

The blockchain addresses exhibit better anonymity when compared with that exhibited by the addresses

in a centralized system such as a bank card number. First, a user creates a blockchain address using the

blockchain open-source program. The creation process does not require any third-party participation.

The created address is a string not related with the user identity information. Therefore, no third-

party organization can directly obtain the identity information corresponding to the address. Second,

the blockchain address capacity is usually close to infinity; thus, a user can generate a different address

for each transaction to hide the transaction rules and increase the difficulty of an attacker guessing the

address identity information by analyzing the transaction data.

2.2 Bitcoin transaction

Typically, transactions represent the core business of a blockchain system, as depicted in Figure 1. A

transaction involves reliable data transmission between addresses.

2.2.1 Transaction types

The blockchain transaction types can be categorized as coinbase, script hash, and pubkey hash transac-

tions [14].

• Coinbase transaction. Each block corresponds to a coinbase transaction that does not contain input

addresses, and the new coin is the source of all the remaining coins.

• Script hash transaction. Here, the receiving address is a synthetic address rather than the actual

address. A synthetic address requires the generation of several pairs of public and private keys. In the

generation process, the number of private and public key signatures that consume the coins in the address

can be specified.

• Pubkey hash transaction. This transaction comprises N input addresses and M output addresses

and is the most common type of transaction.
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Figure 1 Bitcoin transaction. (a) Bitcoin transaction diagram; (b) multi-input transaction diagram; (c) coinbase trans-

action diagram; (d) change address diagram.

2.2.2 Transactions

Typically, a bitcoin transaction involves the transaction details, including the addresses of both the

parties and the transaction amount. The sender’s address can be referred to as the input address, and

the recipient’s address can be referred to as the output address. A transaction may contain one or more

input and output addresses, and the sender’s remaining coins are stored in a special address that can be

referred to as the change address. The input address of a transaction is derived from the output of the

previous transaction, which is used as the input of other transactions, as depicted in Figure 1(a).

However, there are some defects in the anonymity of blockchain addresses that allow the attackers

to infer the relation between the addresses and the actual identity of a user [15–17]. There are three

common defects.

• Address relation in a transaction. A blockchain transaction represents the data interaction between

two or more users. We can infer that multiple addresses belonging to the same user or addresses of

different users in a transaction exhibit an interactive relation by analyzing the transaction data. In case

of the blockchain digital currency applications, multiple addresses in a transaction exhibit a close relation

because of the particularity of the transaction format. For example, in a bitcoin system, each transaction

must be provided with a signature for each input address involved in the transaction. Therefore, multiple

input addresses created by the bitcoin wallet in a transaction must belong to the same user.

• Address relation among transactions. Although users can generate different addresses for each

blockchain transaction, these addresses may be related because of the relation among transactions. For

example, in a blockchain digital currency system, transaction fees must be paid while creating a transac-

tion, indicating that the blockchain address usually requires pre-order transactions to obtain the necessary

coins. The clusters comprising pre-order transactions will reveal the relation among multiple addresses.

• Relation among blockchain addresses and real identities. Although a blockchain address does not

require third-party participation during creation or use, in actual practice, there are multiple touch points

between the blockchain address and the user’s true identity. For example, a user may reveal the identity

information or a website that can leak information while accepting an off-chain service using a blockchain

address.

2.3 Louvain algorithm

The Louvain [18] algorithm is a community discovery algorithm that can discover a hierarchical com-

munity structure. The advantages and disadvantages of network community partitioning are measured

using the module degree of the Louvain algorithm. The advantages and disadvantages of network com-

munity division are measured by comparing the difference in connection density between the existing

network and the benchmark network under similar community division. Here, the benchmark network is

a random network exhibiting the same degree sequence as that exhibited by the original network. The

Louvain algorithm initially makes each node a separate community. For each node i, its neighbor node

j is considered. The node i is moved to the community with the largest revenue, where j is located.



Zheng B K, et al. Sci China Inf Sci March 2020 Vol. 63 132101:5

Parse

Crawl

Relationship between   

addresses

Relationship between   
users

Analyze

Known

   bitcoin address

Results

Known

   bitcoin address
Web

Blockchain

Data acquisition   Data analysis  Data presentation 

Figure 2 (Color online) System model of transaction analysis.

The process is iterated for each node, which may involve several iterations. When the modularity is the

local maximum, i.e., no single node can move and improve the modularity, the first stage will stop. In

the second stage, the nodes are continuously aggregated into new nodes, and the weights of the new

connections are continuously recalculated.

In the Louvain algorithm, modularity (denoted as Q) and delta modularity (denoted as ∆Q) are the

two main parameters. The modularity Q can describe the tightness of the internal nodes of the divided

community. Here, the value range is [0, 1]. Q can be calculated as follows:

Q =
1

2m

∑

[

Aij −
kikj

2m

]

σ(ci, cj), (1)

where Aij represents the edge weight between nodes i and j, ki and kj represent the edge weights between

all the nodes and nodes i and j, respectively,
kikj

2m represents the average edge weight, c represents the

community, ci and cj represent the communities in which any node i and j are located, respectively, and

m represents the total number of edges in the network. σ represents the same community. When nodes

i and j belong to the same community, σ = 1; otherwise, σ = 0.

While partitioning a community, the Louvain algorithm must recalculate the modularity of a com-

munity after adding a new node. After the new node joins the community, the change in community

modularity ∆Q is expressed as follows:

∆Q =

[

∑

in +ki,in

2m
−

(∑

tot +ki

2m

)2
]

−

[

∑

in

2m
−
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2m

)2

−

(

ki

2m

)2
]

, (2)

where
∑

in and
∑

tot represent the sum of edge weights inside the community and all the edge weights

connected to the community, respectively, and ki,in represents the sum of weights when any node i joins

community c.

3 System model

3.1 Model

The transaction analysis denoted in Figure 2 denotes three processes, i.e., data acquisition, data analysis,

and data representation. In the data acquisition process, we obtain all the bitcoin transaction data and

the open bitcoin addresses from the public network. In the data analysis process, we analyze the bitcoin

address relation and bitcoin user relation. In the data presentation process, we visualize the relation

among bitcoin addresses and the relation among bitcoin users.
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3.2 Definitions

Definition 1 (Address attribution). U = {u1, u2, . . . , un}, A = {a1, a2, . . . , an}, and T = {t1, t2, . . . , tn}

represent the user, address, and transaction sets, respectively. Input(t) and Output(t) represent the inputs

and outputs of a transaction, respectively.

Definition 2 (Change address). In bitcoin transactions, there is sometimes a surplus after a user

consumes. A new bitcoin address will be automatically created by the bitcoin client to maintain the

balance, which can be referred to as the change mechanism of bitcoin. The user automatically spends

bitcoin at the address as required.

Definition 3 (Transaction matrix). G = (V,E) represents the user’s transaction data matrix, used to

present data. Here, V is a set of vertices transferred from the user addresses, and E is a set of edges

transferred through the relation between transactions.

4 Measurement methodology and implementation

In this section, we discussed the implementation of the theoretical model. The experimental data use the

addresses of the bitcoin blackmail virus CryptoLocker, which was observed in 2013.

4.1 Data acquisition

4.1.1 Bitcoin transaction data

Here, the transactions are confirmed transactions from the genesis block from January 3, 2009, to January

1, 2019. Note that the bitcoin transaction data (approximately 210 GB) are in the .dat format. In

addition, the improved BitcoinDatabaseGenerator1) tool is used to parse the transaction data into an

SQLserver database.

4.1.2 Tracing data

We use Scrapy2) to crawl the open bitcoin address on the web. The improved Scrapy algorithm is

presented in Algorithm 1. We crawl 5 CryptoLocker blackmail addresses using Scrapy.

Algorithm 1 Scrapy web spider

Input: User URL seeds S = {s1, s2, . . . , sn}, k 6 n;

Output: Bitcoin addresses.

1: Initialize S = {s1, s2, . . . , sn};

2: for k ∈ [1, n] do

3: Acquire sk page data;

4: if page data contains the addresses then

5: Store the addresses;

6: end if

7: Find the associated URL from the user’s URL;

8: Save URL of page to S;

9: end for

10: return Addresses.

4.2 Data analysis

4.2.1 Bitcoin address relation

(1) Bitcoin address clustering rules. In the subsection, we propose a heuristic bitcoin address clustering

algorithm containing four rules. Combining a variety of heuristic rules can effectively improve the com-

prehensiveness of clustering and provide better basic rules for inferring the correlation associated with

transactions. The rules can be described as follows.

1) BitcoinDatabaseGenerator. https://github.com/ladimolnar/BitcoinDatabaseGenerator/releases.
2) Scrapy. https://scrapy.org.

https://github.com/ladimolnar/BitcoinDatabaseGenerator/releases
https://scrapy.org
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• Multi-input transaction address clustering (MITAC). In a bitcoin transaction, the user u will select

multiple bitcoin addresses from the wallet and match the value of their aggregation to achieve multi-input

transactions, which avoids the transaction costs incurred by multiple transactions, if the balance in one

user’s bitcoin addresses is insufficient. The bitcoin in each address requires a separate signature; thus,

all the input addresses in the transaction are controlled by the same user, as depicted in Figure 1(b).

The rule should be very strict; however, mixing coins also exist in multi-input and multi-output

transactions. This rule deals with transactions having only a single output. In other words, this rule does

not consider multi-output transactions because several multi-output transactions are so-called shared

send mixing coin transactions, which are performed by multiple users to cause confusion with respect to

the transaction history.

• Coinbase transaction address clustering (CTAC). A coinbase transaction creates bitcoin tokens, and

each block of a bitcoin blockchain corresponds to a coinbase transaction. This type of transaction only

contains output addresses. At the source of the bitcoin transaction, the newly created token, i.e., the

output addresses in the transaction, is sent to the miner as a reward. Therefore, all the output addresses

in the transaction are controlled by the same user set, as depicted in Figure 1(c).

• Change address clustering (CAC). The core objective of the algorithm is to identify the change

address in the output address. The characteristics of this algorithm include: it as the output address

is usually only once, it does not appear at the same time in the input address and the output address,

the output address cannot contain only change the address, as depicted in Figure 1(d). In this rule, it is

important that the transaction t contains exactly two outputs but not two inputs because it may be a

mixing coin transaction if there are two inputs and two outputs.

• Mining pool address clustering (MPAC). If the number of output addresses in a transaction exceeds

100 and one of the output addresses belongs to a known mining pool, we consider the transaction as an

associated mining pool and mark all the output addresses as belonging to the miner. In other words, the

output addresses belong to the same set. This rule can only be verified by the mining pool; however, this

rule is relatively safe given the operational structure of the bitcoin mining pools [19].

(2) Clustering algorithm for specific addresses. Generally, we analyze the different addresses of a user

based on specific addresses. The algorithm for specific address is given in Algorithm 2.

Algorithm 2 Confirmation of the bitcoin address incidence relation

Input: Inquiry addresses;

Output: Addresses in the same cluster.

1: Initialize address set A = {a1, a2, . . . , an}, k 6 n;

2: Initialize transaction set T = {t1, t2, . . . , tn};

3: Acquire data of the address transaction to save to A;

4: for k ∈ [1, n] do

5: Acquire sk page data;

6: if t is coinbase transaction then

7: Addresses outputted to save to A;

8: else if one of Output(t) belongs to a known mining pool and number of Output(t) > 100 then

9: Addresses outputted to save to A;

10: else

11: Addresses inputted to save to A;

12: Judge change address to save to A;

13: end if

14: end for

15: return Addresses.

(3) Historical and incremental clustering. We can build a database of addresses and clustering relations

such that we do not need to repeatedly analyze the transaction data. We can directly query the results

from the clustering database when we want to query the clustering information of a specified address.

The algorithm for clustering the historical transaction data is provided in Algorithm 3.

As the number of bitcoin transactions continues increasing, incremental clustering performs address

clustering based on the existing clustering results. Therefore, there is no need for performing addi-
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Algorithm 3 Clustering of the historical transaction data

Input: Historical transaction data;

Output: Addresses in the same cluster.

1: Initialize transaction data set txLsit;

2: Initialize a mapping set of address and cluster labels addr label;

3: Initialize temporary address set tempList and temporary label tempLabel = 0;

4: Take the transaction TXn out of txList;

5: for k ∈ [1, n] and tempLabel = 0 do

6: if TXn is coinbase transaction then

7: Extract all output addresses from TXn and add them to the collection tempList;

8: end if

9: for k ∈ [1, n] do

10: Take an undetected address from tempList;

11: if the same address can be found in tempList then

12: The label corresponding to this address is written to tempLabel;

13: else

14: The address is written back to tempList;

15: end if

16: end for

17: Write all the addresses in tempList to addr label and assign the same label to those addresses;

18: addr label++;

19: end for

20: return Addresses.

tional analysis of the transaction information processed by historical clustering, which can significantly

reduce the address clustering workload, achieve real-time address clustering, and satisfy the clustering

performance requirements.

The historical transaction data are divided into several shards. Here, each shard uses Algorithm 3 to

process the data, and the clustering results are fused and written to the clustering database. This process

creates a cluster label for all the addresses in a given historical transaction. When incremental clustering

is required, we only need to extract the address set with the same clustering label from the clustering

database based on the specified address. Comprehensive clustering results can be obtained by combining

the historical and incremental clustering techniques. Note that the clustering process for large quantities

of historical data is performed in advance; thus, only a small number of the latest transactions need to

be clustered based on address. This significantly reduces the clustering time.

The blockchain data disclosure characteristics allow the cluster analysis of blockchain transaction data

to have sufficient data and time and can be used to analyze the correlation among blockchain addresses

from different perspectives. Algorithm 2 analyzes the address information related to a specific address

in the specified data, suitable for analyzing specific tasks. Algorithm 3 analyzes the relation between

all the addresses in the blockchain data and can obtain a comprehensive association relation for the

addresses within a specific transaction data range, conducive for performing further operations on this

data.

4.2.2 Bitcoin user relation

In addition to the relation among bitcoin addresses, there is also a close relation among bitcoin users. We

use the Louvain algorithm to find the relation among bitcoin users. Here, the address dataset comprises

addresses of the bitcoin blackmail virus CryptoLocker found by Algorithms 1–3. Based on [20], we have

improved the time complexity and optimal modulus.

• Node pretreatment. In a bitcoin transaction network, a node represents a bitcoin user address, and

an edge represents a transaction between the bitcoin addresses. If there is only one link between addresses

i and j, the addresses i and j should divide into the same community. If they are in the same community,

they should belong to the same userset, as follows:

Qi→C(j) =
∑

(Aij)− a2j . (3)
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The formula for calculating the increment of corresponding modularity is

∆Qi→C(j) =

∑

i.j

2m2
(2m− kj). (4)

Conversely, if they are in two different communities, i.e., Qi→C(j) 6 0, 2m < kj . Therefore, if node

i is the one link to node j, they should be placed in the same community. We classify them prior to

performing community partitioning, which can reduce the modularity Q calculation of a certain number

of nodes, improving the community partitioning efficiency.

The node pretreatment algorithm is presented in Algorithm 4.

Algorithm 4 G = (V, E) pretreatment

Input: G = (V, E) using adjacency list;

Output: The result of division of G(V, E).

1: Initialize G;

2: Calculate the module value Q1, Q0 = Q1;

3: Q2 = Q1;

4: for k ∈ [1, N ] do

5: if Vi == 1 then

6: Put vertex Vi to the community connected with it;

7: else

8: Take vertex Vi out of original community;

9: Put Vi to community with largest ∆Q;

10: end if

11: end for

12: Calculate the module value Q1;

13: if Q2 > Q1 then

14: Go to step 2;

15: end if

16: Combine the various communities into one hyperdot.

• Optimized modularity. In the coarsening inverse operation optimization process, the properties of

the community nodes connected to the outside world are reconfirmed by the K-medoids algorithm [21]

based on [20]. The K-medoids algorithm can improve the efficiency because the number of Vi and Vj is

limited.

The algorithm is presented in Algorithm 5.

Algorithm 5 G = (V, E) coarseness inverse operation optimization

Input: G = (V, E);

Output: The result of division of G(V, E).

1: Initialize G;

2: Check node Vi of every community connecting outside;

3: Check node Vj with highest degree in every community;

4: Adopt K-medoids algorithm;

5: Calculate distance value Dij of every Vi and every Vj ;

6: Calculate minimum value of Dij ;

7: Vi save to community of Vj .

4.3 Data presentation

We use Gephi3) to visualize the relation among bitcoin addresses and users.

4.3.1 Visualizing the address relation

Consider a CryptoLocker blackmail address (1AEoiHY23fbBn8QiJ5y6oAjrhRY1Fb85uc) as an example

(The same below, and Algorithms 2 and 4 only iterate twice; the test results are used for presentation).

3) Gephi. https://gephi.org.

https://gephi.org
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Figure 3 (Color online) Address transaction relationship diagram.

The address incidence relation diagram is acquired as depicted in Figure 3. Here, the maximum vertex is

the bitcoin blackmail address that has been previously mentioned. The addresses acquired by Algorithm 2

belong to the same user.

4.3.2 Presentation of the user relation

We convert the CryptoLocker blackmail address set into matrices, where the addresses represent the

vertices and the transactions between the addresses represent the edges. The improved Louvain algorithm

identifies the addresses of different users using different colors, and 17 different subcommunities can be

observed in the CryptoLocker network. We observe that their coins are gathered at the central node. We

adopt Algorithms 4 and 5 to recluster subcommunities based on the shared addresses and virus active

time, as depicted in Figure 4.

5 Performance analysis

In our experiment, the transaction data of the bitcoin public network are selected as the data source,

and these data can be used to cluster specific bitcoin addresses and output the clustering results. First,

BitcoinDatabase Generator, an open-source bitcoin data parsing tool, is used to import approximately

210 GB of the bitcoin transaction data in the .dat format into the SQLserver database. Further, we

use the Java and SQL languages to develop address clustering and transaction clustering programs. The

server configuration used by the clustering program is Intelr Xeonr CPU (2.60 GHZ) with 256 G RAM

running Linux release 8.0.

5.1 Comprehensiveness and accuracy

The effect of address clustering is evaluated relative to the recall and accuracy rates. Here, recall refers

to the ratio of the number of accurate addresses found by the clustering scheme to the total number of

real addresses, as obtained using (5). Accuracy represents the ratio of the number of accurate addresses

found by the clustering scheme to the total number of real clustering addresses (Eq. (6)).

Recall rate =
CN

TN1
, (5)

Accuracy rate =
CN

TN2
. (6)
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Related addressRelated address

Figure 4 (Color online) The user incidence relation diagram (different colored addresses belonging to different subcom-

munities).

In (5) and (6), CN denotes the number of accurate addresses. TN1 denotes the total number of real

addresses, and TN2 denotes the total number of real clustering addresses.

Our experimental data are the public bitcoin network transaction data; we use Walletexplorer4), which

provides a clustering service for the public bitcoin network data, as a reference for obtaining the clustering

results.

We extract three sets of clustering results from this website.

• Data group 1. Number of addresses in the address clustering set is less than 10.

• Data group 2. Number of addresses in the address clustering set is greater than 10 and less than

100.

• Data group 3. Number of addresses in the address clustering set is greater than 100 and less than

500.

Data are extracted from the three datasets and clustered by using the clustering algorithm. Figure 5

compares the clustering results obtained using the three datasets. The recall rates of the three datasets are

100%, indicating that the scheme can obtain comprehensive clustering information using three clustering

rules. Note that an increased number of addresses results in reduced accuracy, primarily because the

rules based on the change address may cause false positives. In addition, the probability of occurrence

of false positives increases with increasing number of addresses.

We found 2118 CryptoLocker blackmail addresses, 795 transactions, and 1128.40 bitcoin values using

Algorithms 1–3 with the virus outbreak time and bitcoin transaction volume.

To take a CryptoLocker blackmail address (1AEoiHY23fbBn8QiJ5y6oAjrhRY1Fb85uc) as an example

to carry out test, and our heuristic method iterates tenth. The test results include 232 addresses, as

depicted in Figure 6. The proposed heuristic method is iterated once to obtain a certain number of

addresses associated with the target address. The original target address and the newly obtained address

participate in the next iteration to search for the address associated with them again. Note that the

number of addresses in the search increases as the number of iterations increases, which results in highly

associated addresses and comprehensive results.

We use the following method to compare the effect of clustering user addresses.

4) Walletexplorer. https://www.walletexplorer.com.

https://www.walletexplorer.com
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Figure 5 (Color online) Different data group results.
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Figure 6 (Color online) Different iteration results.

• Method 1 (MITAC). The clustering rule only adopts multi-input transaction address clustering.

• Method 2 (MITAC + CTAC). The clustering rules adopt multi-input transaction address clustering

and coinbase transaction address clustering.

• Method 3 (MITAC + CTAC + CAC). The clustering rules adopt multi-input transaction address

clustering, coinbase transaction address clustering, and change address clustering.

• Method 4 (MITAC + CTAC + CAC + MPAC). The clustering rules adopt multi-input transaction

address clustering, coinbase transaction address clustering, change address clustering, and mining pool

address clustering.

Using these four methods, we obtain results for 123, 181, 224, and 232 addresses, respectively, as

depicted in Figure 7. Note that each method involves different heuristic conditions and that these

heuristic conditions are independent of each other; thus, with more number of heuristic conditions, more

results can be obtained. The result is very close to the data provided by Walletexplorer. We conclude

that more comprehensive results can be obtained as more factors are considered. During the test, as the

number of iterations increased, the test results also increased.

5.2 Efficiency

In this subsection, we verify the efficiency of the improved Louvain algorithm. We uses the 2118 Cryp-

toLocker blackmail addresses and 795 transactions that have been estimated as the dataset. We visualize

these as graphs, where the vertices represent the addresses and the edges represent the transactions. In

Figure 8, the average runtimes for different amounts of data are presented, and Figure 9 denotes the

change in ∆Q. The results demonstrate that the runtime is reduced by approximately 4.533% and that
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Figure 7 (Color online) Different heuristic method results.
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Figure 8 (Color online) Runtime comparison between the Louvain and improved Louvain algorithms.

∆Q increases from 0.003 to 0.013 when compared with the original algorithm. Therefore, the improved

Louvain algorithm exhibits obvious advantages when compared with the original Louvain algorithm.

6 Related work

Many researches have studied security and privacy in various fields [22–31], and bitcoin privacy issues

have attracted significant attention. Here, a study related to the bitcoin address relation and Louvain

algorithm is introduced.

6.1 Bitcoin address relation

Many studies have denoted the privacy vulnerability of the bitcoin system. For example, Reid et al. [6]

set up transaction and user networks to analyze the user balance, source of coins, and capital flow of

the bitcoin address published by WikiLeaks. Meiklejohn et al. [4] used a heuristic clustering method to

analyze the bitcoin transaction data for identifying different addresses belonging to the same user. They

analyzed the public addresses of the Silk Road that is a black market and addresses associated with some

thefts, and they observed many associated addresses. Ron et al. [7] examined the statistics of bitcoin

transactions. They observed that large-value transactions use several methods to spread coins across

different addresses, including long-chain trading models, forked merge and loop modes, storage account
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Figure 9 (Color online) Increase of △Q with the improved Louvain algorithm.

models, and binary tree models. Androulaki et al. [2] designed simulation experiments in schools where

students used bitcoin as the daily trading currency and analysts used behavior-based clustering techniques

to analyze the related bitcoin transaction data. They observed that 40% of the student identity and

blockchain address can be matched even if the user adopts the bitcoin-recommended privacy protection

method (i.e., the one-time address method). Zhao et al. [9] and Spagnuolo et al. [8] implemented input

address and change address clustering. Monaco [5] abstracted the user transaction rules and proposed

12 parameters to identify the users. The methods could find the user’s real identity corresponding to the

anonymous bitcoin addresses with a recognition accuracy of 62% and error rate of less than 10.1%. In

addition, Liao et al. [3] studied the process of ransomware for extortion, classified addresses received by

ransom using clustering methods, and tracked the ransom addresses.

6.2 Louvain algorithm

The Louvain algorithm [18] is a community discovery algorithm that can discover a hierarchical commu-

nity structure. It is primarily used for conducting social network research. We employ this algorithm to

classify bitcoin addresses closely related to the community. Gach et al. [20] used a multi-level approach

to maximize modularity for improving the Louvain algorithm. Meo et al. [32] optimized the modularity

of the Louvain algorithm to improve the work efficiency. The optimized modularity helps to achieve the

maximum network modularity by calculating the path from the central point to its connected nodes.

6.3 Difference from our previous work

Compared to our previous work [11], we have implemented the theoretical model and enriched the al-

gorithm and have conducted experimental verification of each part of the model. In particular, we have

described the algorithm for address clustering and user clustering in detail, and we have established a

database that can be queried for address relation. To obtain better performance evaluation, we used dif-

ferent datasets to test our methods, compared the results obtained using different methods, and provided

extensive experimental evaluation.

7 Conclusion

This study has proposed a heuristic method to cluster the incidence relation among bitcoin addresses. In

addition, we have confirmed the incidence relation among users using the Louvain algorithm. However,

the proposed heuristic method may generate certain errors while evaluating a change address with consid-

erably large test datasets. In future, the Louvain algorithm must be further improved for ensuring more

efficient implementation. The different iteration frequencies of the methods may lead to different quanti-

ties. However, a large iteration frequency results in low efficiency. Thus, studies should be conducted in

the future to examine such problems.
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