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Abstract
Immunoglobulin G (IgG) is an important serum glycoprotein and a major component of antibodies. Glycans on IgG
affect the binding of IgG to the Fc receptor or complement C1q, which in turn affects the biological activity and
biological function of IgG. Altered glycosylation patterns on IgG emerge as important biomarkers in the aging
process and age-related diseases. Key aging-related alterations observed in IgG glycosylation include reductions in
galactosylation and sialylation, alongside increases in agalactosylation, and bisecting GlcNAc. Understanding the
role of IgG glycosylation in aging-related diseases offers insights into disease mechanisms and provides oppor-
tunities for the development of diagnostic and therapeutic strategies. This review summarizes five aspects of IgG:
an overview of IgG, IgG glycosylation, IgG glycosylation with inflammation mediation, IgG glycan changes with
normal aging, as well as the relevance of IgG glycan changes to aging-related diseases. This review provides a
reference for further investigation of the regulatory mechanisms of IgG glycosylation in aging-related diseases, as
well as for evaluating the potential of IgG glycosylation changes as markers of aging and aging-related diseases.
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Introduction
Aging is a multifaceted biological process involving a gradual
overall decline in physiological function and homeostasis over time,
making individuals increasingly susceptible to a spectrum of
chronic and degenerative conditions [1]. This progressive decline
encompasses various cellular, molecular, and systemic changes,
including genomic instability, telomere shortening, epigenetic
alterations, mitochondrial dysfunction, and proteostasis and in-
flammatory pathway dysregulation [2]. Aging is jointly regulated by
a variety of genetic and epigenetic factors, including the abnormal
expressions of aging-related genes, increased DNA methylation
levels, altered histone modifications, and disrupted protein transla-
tion homeostasis [3]. This regulation exhibits significant variability,
heterogeneity, and plasticity, reflecting the complex interplay
between genetic predispositions and epigenetic influences [3].
Age-related diseases, such as Alzheimer’s disease, cardiovascular
disease, metabolic disorders, and chronic inflammation, represent
significant burdens on global health and pose formidable challenges
to healthcare systems worldwide [4]. These diseases often share
common risk factors and pathological mechanisms with aging,

suggesting intricate connections between the aging process and
disease pathogenesis [5,6].
Protein glycosylation refers to the enzymatic process of attaching

carbohydrate molecules via covalent bonds to specific functional
groups on proteins [7]. The “paracentral dogma” hypothesis, which
proposes glycosylation as a third fundamental life code after DNA/
RNA and proteins [8], underscores the crucial role of sugar codes in
co- and post-translational modifications (PTMs). Glycosylation
enhances the classical central dogma by providing an additional
layer of regulation and information that is crucial for protein folding,
stability, cell‒cell communication, and signaling. Protein glycosyla-
tion, which is influenced by both genetic and epigenetic factors, plays
a pivotal role in numerous cellular signaling and communication
events [9]. Glycomedicine refers to glycomics- and glycoproteomics-
based biomarkers and therapeutic target discovery; therefore, it has
great potential to provide a new dimension of medical science toward
better disease diagnosis and drug discovery [10].
Dysregulation of N-glycosylation has been implicated in the aging

process and age-related diseases [11‒13]. In particular, increasing
evidence has shown that significant glycan structure alterations in
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immunoglobulins (Igs) are closely associated with human aging and
various aging-related diseases [13]. Immunoglobulin G (IgG) N-
glycosylation is thought to be the link between the genetic code and
the cellular environment. The environment can strongly influence
the inflammatory properties (pro- or anti-inflammatory) of IgGs by
regulating their glycosylation. Given the high abundance and
important immune functions of IgG in the human body, elucidating
the changes in IgG glycosylation associated with aging and aging-
related diseases is crucial for obtaining a better understanding of
human aging and its associated diseases.
Several excellent reviews have summarized the role of IgG

glycosylation in the immune system [14], inflammation [15], cancer
[16], and infectious diseases [17]. A review also discussed the
potential roles of IgG glycosylation as a marker for biological aging
[18]. In this review, we further summarize recent research advances
on IgG glycosylation alterations associated with aging and aging-
related diseases (Figure 1), the effects of glycosylation on IgG

functions, and the pathogenesis of age-related diseases. In addition,
the potential of IgG glycosylation changes as biomarkers for the
diagnosis and treatment of aging and age-related diseases is
discussed. This reviewwill help readers understand the relationship
between IgG glycosylation changes and aging-related diseases and
provide important insights and directions for future research in the
field of aging glycobiology.

Overview of IgG
Immunoglobulins play an important role in the adaptive immune
response. They consist of two identical light and heavy chains
linked by disulfide bonds to form a nearly “Y”-shaped structure.
Each heavy chain contains 3‒4 constant regions (CH) and one
variable region (VH), while each light chain contains one constant
region (CL) and one variable region (VL). Each variable region
contains three highly variable ring-structured complementary
decision regions (CDRs), and six CDRs in each arm of the antibody’s

Figure 1. Overview of IgG glycosylation alterations associated with aging and aging-related diseases
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Y-shaped structure work in concert to form an antigen-binding site,
so the Y-shaped arm region of the antibody is known as the antigen-
binding region (Fab), which operates like a signal receiver. The
fragment crystallizable region (Fc), which consists of two or three
constant structural domains per heavy chain [19], transmits signals
downstream to various effector cells of the immune system. The Fab
region recognizes and binds to specific antigens, while the Fc region
interacts with different Fcγ receptors expressed on the surface of
immune effector cells to activate downstream pathways [20,21].
There are five isotypes of immunoglobulins (IgM, IgD, IgG, IgA,

and IgE) in humans, which are distinguished by the C-terminal
region of the heavy chain [22] (Figure 2A). IgG, which is normally
secreted by B cells and plasma cells and is present as a monomer, is
the predominant immunoglobulin (~75%) and the most abundant
glycoprotein (~10 mg/mL) in human serum [23,24]. There are four
subclasses or isotypes of IgG antibodies in human (IgG1–4) and
mouse (IgG1, IgG2a, IgG2b, and IgG3) [25]. IgG distribution
abundance in human serum is as follows: IgG1 (60%), IgG2
(25%), IgG3 (10%), and IgG4 (5%). The number of disulfide bonds
in the hinge region varies among IgG isoforms, with IgG1 and IgG4
containing two interchain disulfide bonds in the hinge region, IgG2
having four disulfide bonds, and IgG3 having 11 disulfide bonds
[26] (Figure 2B). Crystallographic data for the whole IgG molecule
are still limited because the flexible nature of the hinge region
prevents crystallization, unlike the cumulative crystal structure of
Fab and Fc fragments in the complex. To date, only four crystal
structures have provided entire views of the IgG structure: PDB
codes 1igt, 1igy, 1hzh, and 5dk3 for mouse IgG1, mouse IgG2a,
human IgG1, and humanized IgG4 structures, respectively [27‒30].
The biological functions of these subtypes are also different. IgG1 is
produced primarily through the induction of responses to soluble
protein antigens and membrane proteins, and a lack of IgG1 leads to
a decrease in overall IgG levels [31,32]. IgG2 is the only antibody

that can respond to bacterial capsule polysaccharide antigens.
Increased susceptibility to certain bacterial infections is associated
with IgG2 deficiency, which suggests that IgG2 plays a role in
defending against these pathogens [33]. IgG3 antibodies are
particularly effective in the induction of effector functions. As a
potent pro-inflammatory antibody, its shorter half-life may function
to limit the potential for excessive inflammatory responses [34].
IgG4 antibodies are usually formed after repeated or long-term
exposure to antigens in non-infected environments and may
become major subclasses [35]. The structure, function, antigen
binding, immune complex formation, complement activation,
effector cell triggering and half-life of the different IgG subtypes
have been described in detail in previous reviews and will not be
repeated and discussed further here [25].

IgG Glycosylation
Glycosylation, one of the most common post-translational modi-
fications in mammalian cells, impacts many biological processes,
such as cell adhesion, proliferation and differentiation. There are
two main types of glycosylation of proteins in mammals: N-
glycosylation and O-glycosylation [36]. Notably, the structure and
effector functions of IgG are regulated by N-glycosylation, including
galactosylation, sialylation, core-fucosylation, as well as bisecting
GlcNAcylation, which will be further described in details [21,37]. N-
glycosylation involves the attachment of glycans to the asparagine
(Asn) side chain nitrogen atom, specified by the consensus
sequence Asn–X–Ser/Thr (X=amino acid except proline) [23]. N-
Linked glycans can be found at the Fab and Fc fragments of all IgG
subclasses [38,39]. IgG has a conserved N-glycosylation site at
Asn297 in the CH2 domain of the Fc region. Our team previously
conducted a comprehensive characterization of the N-glycosyla-
tions of the four IgG isoforms using self-developed StrucGP
software, in which 25 N-glycan structures were identified in IgG1,

Figure 2. IgG basic structure and subclasses (A) Schematic representation of IgG. (B) Four subclasses of IgG, namely, IgG1, IgG2, IgG3, and
IgG4.
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whereas fewer N-glycan structures were identified in IgG2-4 than in
IgG1 [40]. Most of the identified site-specific glycans (84.6%) were
core fucosylated, which is consistent with previous studies [41,42]
(Figure 3). Depending on their presence and composition, antigen
binding and effector functions such as phagocytosis, complement
activation and inflammatory processes are induced with varying
effectiveness [20,43]. In addition, N- and O-linked glycans were
found in the Fc fusion protein atacicept [44]. O-glycosylation of the
amino acid serine (Ser) or threonine (Thr) is rare in IgG. O-
glycosylation has been reported for various immunoglobulins. O-
glycans are found in the hinges of human IgA1, IgD and mouse
IgG2b [45‒47]. O-glycosylation in the hinge of murine IgG2b was
found to protect against proteolytic digestion. A recent study
reported that partial O-glycans were detected on threonine residues
in the hinge zone of IgG3 [48]. There is a paucity of information
regarding IgG O-glycosylation. In this paper, we will primarily focus
on the N-glycosylation of immunoglobulin G.

Biosynthesis of N-glycans on IgG
Protein glycosylation is a complex, multistep process that involves
the use of approximately 200 glycosyltransferases that determine
which proteins are glycoproteins. IgG N-glycan attachment and
maturation occur in the endoplasmic reticulum and Golgi apparatus
with the help of glycotransferases and glycosidases [49]. N-linked
glycosylation in most eukaryotes follows a similar initial processing
pathway within the endoplasmic reticulum. In this paper, we will
provide a brief description of the biosynthesis pathway of N-glycans
on IgG. This pathway begins with the generation of a lipid linked
oligosaccharide (LLO) by multiple asparagine-linked N-glycosyla-
tion processing enzymes (ALGs). Lipoglycan precursors
(Glc3Man9GlcNAc2 oligosaccharides) are transferred to the glyco-
sylation site Asn297 of the IgG heavy chain by multisubunit
oligosaccharyltransferase (OST) of the endoplasmic reticulum.
After moving to the cis-Golgi apparatus, three mannose residues
are trimmed by α-Man I, and one GlcNAc from UDP-GlcNAc is
added to the terminal mannose residue at the α1-3 branch of the
oligosaccharide by GnT-II. In addition, FUT8 transfers the fucose
moiety from GDP-β-L-fucose to the innermost GlcNAc residue in the
N-glycan, and a “bisecting” GlcNAc can be added to the innermost
Man residue by one of many GlcNAc transferases (GNTIII) that play
a role in generating branches. These antennae are further extended
by the addition of galactose (Gal) residues via β-1,4 linkages. These
branches can be further modified in several ways, including
GlcNAc-Gal extensions (LacNAc) or the addition of a second Gal

residue in some mammals via an α-1,3 linkage, which can elicit an
immune response in humans. The β-1,4-linked Gal residues are then
often capped with sialic acid via α-2,3 or α-2,6 linkages [7,50]
(Figure 4).

Galactosylation
Galactosylation occurs in the Golgi apparatus and is mediated by
galactosyltransferase, which works by catalyzing the linkage of
galactose in uridine diphosphate galactose (UDP-Gal) to N-
acetylglucosamine. The enzyme β1,4-galactosyltransferase, also
called β-N-acetylglucosaminyl-glycopeptide β1,4-galactosyltransfer-
ase, is a trans-Golgi-resident enzyme [51]. The level of galactosyla-
tion of IgG changes slowly and progressively with aging. The
abundance of agalactosylated IgG N-glycans increased from 20% at
25 years of age to 40% by 70 years of age, peaking in >90-year-old
subjects [52‒55]. IgG galactosylation appears to be, at least in part,
driven by estrogen concentrations. This is evidenced by increased
levels during pregnancy and decreased levels after menopause. In
addition, an endocrine manipulation study confirmed that estrogen
is an in vivo regulator of IgG galactosylation in both females and
males, suggesting a gender-dependent mechanism of immune
response regulation [54,56,57].

Sialylation
Sialylation involves the addition of terminal sialic acid to cell
membrane glycoproteins and is mediated by sialyltransferases
(ST3GAL/ST6GAL α2,3/α2,6-sialyltransferase), which are involved
in embryonic development, neurodevelopment, reprogramming,
tumorigenesis and immune response processes. Sialylated Fc N-
glycans are mediators of anti-inflammatory processes; however, the
underlying mechanisms are still under discussion [58]. Studies have
shown significantly higher levels of sialylation (especially disialyla-
tion) in Fabs than in fragment crystallizable (Fc) glycans. Studies in
pediatric populations analyzing mainly Fc glycans have revealed a
decrease in the abundance of sialic acid glycans up to 10 years of
age, after which the trend may reverse, accompanied by dynamic
changes in the abundance of galactosylated glycans. One study
found no age-related differences in total IgG sialylation levels,
suggesting that age-related changes are driven by changes in Fc
chain glycan abundance [39,59].

Core fucosylation
Core fucosylation, which is catalyzed by alpha-(1,6)-fucosyltrans-
ferase 8 (FUT8), is particularly common in mammals. FUT8

Figure 3. N-Glycan structures of human IgG [40]
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transfers fucose from GDP-β-L fucose to the GlcNAc residue in the
innermost layer of the N-glycan [60]. In contrast to most other
plasma proteins that are not core fucose-modified, more than 90%
of serum IgGs contain the core fucose modification of the first N-
acetylglucosamine (GlcNAc) in the core structure of the IgG glycan
[61,62]. A slight decrease in core fucosylation on IgGs has been
reported in adolescents compared with children [59,63], implying
that alterations in core fucosylation might be associated with aging.

Bisection
Bisection refers to the attachment of a GlcNAc residue to the core
beta-mannose residue of an N-glycan with β1,4-linkage and is
catalyzed by β1,4-N-acetylglucosaminyltransferase III (also known
as GnT-III, GlcNAcT-III or MGAT3). Bisected GlcNAc plays a
regulatory role in the biosynthesis of complex and hybrid types of
oligosaccharides [64‒66]. Even though the bisecting glycans
account for only a small proportion of IgG glycans (approximately
10%–15%) [39] and no significant changes have been observed in
most age-related studies, a slightly elevated level of bisecting
linkages in adult males but not in females was reported in a study
published in 2011 [67].

Changes in IgG Glycosylation Mediate Body
Inflammation
The ability of IgG antibodies to mediate effector functions arises
from their capacity to bridge antigen binding through the Fab
domain with the recruitment of effector cells through interactions
between the Fc domain and the Fcγ receptor (FcγR) family. Within
the CH2 domain, IgG possesses recognition regions for the initial
complement protein C1q as well as the FcγR family. FcγRs are
composed of type I (FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb)
and type II receptors (DC-SIGN and CD23) [68]. The composition of
glycans in the Fc domain impacts receptor binding. Due to glycan

modifications, these two types of receptors can be distinguished by
their ability to interact with Fc domains, i.e., binding to activating
FcγRs promotes an inflammatory response, whereas binding to
inhibitory FcγRs activates an anti-inflammatory response. Differ-
ences in the N-glycosylation of IgG subclasses and CH2 structural
domains may lead to structural variation in IgG Fc structural
domains, which leads to human immune diversity through FcγR-
mediated cellular functions.
It is well known that the addition of each monosaccharide residue

to the glycan chain can significantly alter the effect of IgG. A
decrease in galactosylation has been observed in many inflamma-
tory diseases, while an increase in galactosylation is usually
associated with a decrease in inflammatory activity. This may be
due to high galactosylation of IgG by C1q binding to enhance
complement activity [69,70]. IgG sialylation has been associated
with reduced inflammation and pathological conditions. Specifi-
cally, anti-inflammatory activity is driven by antibodies modified
with α2,6-sialylation. Fc sialylation reduces binding to Type I FccRs
while enabling the engagement of Type II FccRs. In the presence of
sialylated Fc glycans, increased Type II FcγR signaling further
triggers anti-inflammatory activity [14,71] (Figure 5). A classic
example of this is the administration of high-dose intravenous
immunoglobulin (IVIg) during acute inflammatory diseases such as
immune thrombocytopenia, Kawasaki disease, chronic inflamma-
tory demyelinating polyneuropathy and Guillain–Barré syndrome.
IVIg is pooled IgG from thousands of donors, and its anti-
inflammatory activity is mediated by the minor subset of IgGs
within the pool that contain sialylated Fcs. Therefore, anti-
inflammatory activity can be enhanced by increasing the abundance
of sialylated Fc in IgG pools [72,73]. Afucosylated IgG also regulates
the inflammatory response via FcγRIIIa and FcγRIIIb. In particular,
afucosylated IgG1 has a higher affinity for FcγRIIIa and FcγRIIIb due
to an unusual, stabilizing sugar–sugar interaction. The role of

Figure 4. Brief schematic diagram of the IgG N-glycan synthesis pathway
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afucosylated Fc glycoforms in regulating inflammatory responses
has been well demonstrated in dengue infection, where antibodies
play a direct role in mediating severe diseases, dengue hemorrhagic
fever and dengue shock syndrome [14,74].
IgG glycosylation affects antibody-dependent cellular cytotoxicity

(ADCC), complement-dependent cytotoxicity (CDC), antibody-
dependent cellular phagocytosis (ADCP), and neutrophil activation,
thus demonstrating the critical role of IgG glycans in effector
functions [75]. Removal of the core fucose of IgG improves clinical
efficacy by enhancing ADCC-mediated killing. Afucosylated IgG has
a higher affinity for FcγRIIIA and FcγRIIIB, and ADCC increases 100
times more than fucosylated IgG. This phenomenon is heavily
exploited in the production of monoclonal antibodies (mAbs) that
are dependent on ADCC processes [76]. The incorporation of
bisecting GlcNAc has a similar effect on ADCC, albeit with much
weaker potency [76,77]. Increased sialylation of IgG promotes
ADCC, leading to the conversion of intravenous immunoglobulins
from a pro-inflammatory state to an anti-inflammatory state [69].

Changes in IgG Glycan with Biological Aging
In recent years, the suggestion that IgG glycans are promising
biomarkers for predicting biological age has garnered significant
attention in research and clinical fields. Several studies have
revealed reasonable correlations between specific IgG glycan
structures and an individual’s biological age, suggesting their utility
in assessing aging processes. Krištić et al. [57] observed a negative
association between age and the abundance of monosialylated and
disialylated IgG glycans in all examined groups of individuals
[57,78]. By utilizing these markers, researchers have begun to
predict biological age accurately, offering insights into an indivi-
dual’s overall aging status and susceptibility to age-related diseases.
A new glycomic age index combining one agalactosylated glycan
(GP6) and two digalactosylated glycans (GP14 and GP15) has been
developed based on the results of the study, although it predicts the
actual age with an error of 9.7 years, which is closely related to
various biochemical and physiological characteristics reflecting
biological aging. Exceptionally, IgG galactosylation is strongly
correlated with age, and the development of high-throughput
methods for glycan analysis has allowed replication of the results of
small-sample studies in cohorts involving thousands of individuals,
ultimately confirming an age-related trend in IgG galactosylation, as
evidenced primarily by an age-related decrease in digalactosylated
and galactosylated IgG glycoforms and a concomitant increase in
agalactosylated IgG glycoforms [54,79‒81]. This hypothesis is
further supported by the observed decrease in galactosylation in

some premature aging syndromes [82].
In conclusion, in both men and women, galactosylation and

sialylation of IgG decrease with age, with the latter decreasing most
dramatically during menopause but showing a transient increase
during pregnancy, suggesting hormonal regulation [78]. Studies
have shown that fluctuations in estrogen and progesterone levels
can lead to variations in the levels of galactosylation and sialylation
of IgG. For instance, increased estrogen levels during the follicular
phase are associated with increased IgG galactosylation, whereas
the luteal phase, characterized by elevated progesterone levels,
tends to decrease IgG galactosylation [78]. In addition, IgG glycomic
profiles, especially monogalactosylation profiles, are significantly
different between and within various ethnic populations [83].
Additionally, research indicates that in addition to alterations in
galactosylation and sialylation, other aspects of IgG glycosylation
remain relatively stable throughout the human lifespan. Specifi-
cally, the levels of bisecting GlcNAc, another type of glycan
modification, show minimal changes over time. Similarly, sialyla-
tion of the Fc region appears to undergo little variation across
different stages of life [80,84]. These findings suggest a nuanced
regulatory mechanism governing IgG glycosylation dynamics,
where certain modifications are influenced by hormonal fluctua-
tions, while others maintain a steady state despite aging processes.
Mouse models are widely used to study the mechanisms of
physiological and pathological conditions in humans, which can
be used to rule out genetic or environmental influences on IgG
glycosylation. An N-glycome analysis of IgG in 589 mice with
different genetic backgrounds revealed that different strains of mice
exhibited certain differences in IgG N-glycosylation [85]. The
detailed characteristics of IgG N-glycosylation in C57BL/6 mice of
different ages also provide necessary references for investigating the
function of IgG glycosylation in age-related studies [86]. Further
investigation into the specific mechanisms underlying these
glycosylation patterns using mouse models could provide valuable
insights into the interplay between hormonal regulation, aging, and
immune function.

Changes in IgG Glycan Levels in Patients with Aging-
Related Diseases
Alterations in IgG glycosylation with aging have been implicated in
the dysregulation of immune responses, impaired clearance of
harmful molecules, and altered interactions with immune cells,
thereby contributing to the pathogenesis of various age-related
diseases (Figure 6). Summarizing these IgG glycosylation altera-
tions associated with different age-related diseases could enhance

Figure 5. IgG glycosylation and inflammation
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our comprehensive understanding of the functions of IgG glycosyla-
tion in various physiological and pathological conditions.

Neurodegenerative diseases
Alterations in IgG glycosylation patterns are present in various
neurodegenerative diseases, including Alzheimer’s disease (AD)
[87], Parkinson’s disease (PD) [88], and amyotrophic lateral
sclerosis (ALS) [89]. Specifically, changes in the composition and
structure of IgG glycan molecules have been observed in the serum
and cerebrospinal fluid of affected individuals.
In Alzheimer’s disease, aberrant IgG glycosylation has been

associated with the aggregation and deposition of amyloid-beta
plaques, a hallmark pathology of the disease. Research has shown
that AD patients have an altered glycan profile, with an increase in
fucosylated glycoforms and a decrease in galactosylated and
sialylated glycoforms [87]. A case–control study revealed that
decreased sialylation and core fucosylation and increased bisecting
N-acetylglucosamine (GlcNAc) N-glycan structures were signifi-
cantly different between patients with dementia and those with
normal cognitive functioning [90]. These glycosylation changes
may affect the clearance mechanisms responsible for removing

amyloid-beta from the brain, thereby exacerbating its accumulation
and contributing to neuronal dysfunction and cognitive decline. In
addition, to determine whether serum glycopeptide analysis has the
potential to identify a new diagnosis and prognosis of AD,
researchers found that the fucosylation status of IgG was able to
distinguish AD patients from healthy controls. Specifically, an
increased abundance of non-fucosylated IgG1 and IgG2 was
observed in AD patients compared with controls [91].
In Parkinson’s disease, similar alterations in IgG glycosylation

have been linked to the misfolding and aggregation of alpha-
synuclein protein, leading to the formation of Lewy bodies, which
are characteristic pathological features of the disease. A reduced
level of sialylation, particularly monosialylation, was observed in
PD patients, with reduced relative abundances of biantennary
digalactosylated monosialylated glycans (GP17), biantennary diga-
lactosylated disialylated glycans (GP21), biantennary galactosy-
lated sialylated glycans (FGS/(FG+FGS)), biantennary
monogalactosylated monosialylated glycans (FG1S1/(FG1+
FG1S1)), and biantennary digalactosylated monosialylated glycans
(FG2S1/(FG2+FG2S1+FG2S2)). These effects lead to reduced
inhibition of Fcγ-RIIIa binding and elevated antibody-dependent

Figure 6. Changes in IgG glycosylation in aging-related diseases
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cell cytotoxicity (ADCC) activation in PD [88]. Furthermore, in
individuals with ALS, changes in IgG glycosylation have been
associated with the dysregulation of immune responses and the
activation of inflammatory pathways within the central nervous
system. Alterations in IgG glycosylation have also been reported in
patients with ALS, with reduced galactosylation and increased
bisecting GlcNAc and IgG glycosylation differing between cere-
brospinal fluid and serum [92,93]. These alterations may contribute
to the progressive degeneration of motor neurons observed in ALS
patients.

Cardiovascular disease
IgG glycans can be used to predict acute cardiovascular events, the
composition of which correlates with the risk of cardiovascular
disease (CVD). Agalactosylated, monogalactosylated, and sialy-
lated N-glycans with a bisecting GlcNAc have a positive association
with CVD, whereas sialylated glycans without a bisecting GlcNAc
have a negative association [94]. Birukov et al. [95] investigated the
IgG N-glycome composition in 2175 individuals from the EPIC-
Potsdam cohort, including 417 patients with myocardial infarction
(MI) and stroke. They discovered a sex-dependent association
between the presence of IgG glycans and the incidence of MI/
stroke. In males, a weighted score derived from FA2BG2S1 and
FA2G2S2 was linked to an increased risk of CVD. Conversely, in
females, the FA2[3]G1 structure on IgG showed an inverse
association with CVD risk [96,95].
Coronary artery disease (CAD) is the most common cardiovas-

cular disease, and previous studies have shown a significant
association between CAD and the N-glycosylation of IgG. Specifi-
cally, a sex-stratified analysis of 316 patients with coronary
atherosclerosis and 156 subjects with clean coronaries revealed
differences in the IgG N-glycome composition. Interestingly, the
most significant differences were observed in women, where the
presence of sialylated N-glycan structures was negatively correlated
with CAD [97]. Abnormal IgG glycosylation has been associated
with endothelial dysfunction, oxidative stress, and thrombotic
events in coronary artery disease. These glycosylation alterations
may influence the pro-inflammatory and pro-thrombotic properties
of IgG antibodies, contributing to the pathogenesis of CAD [97].
In atherosclerosis, changes in IgG glycosylation have been linked

to the inflammatory processes underlying plaque formation and
progression. A cross-sectional study revealed that increased levels
of bisecting GlcNAc in the IgG N-glycome were positively correlated
with the presence of atherosclerotic plaques in carotid and femoral
arteries. Conversely, sialylated glycans lacking bisecting GlcNAc
were negatively associated with each other [94]. Dysregulated
glycosylation of IgG antibodies may modulate their interactions
with immune cells and circulating lipoproteins, exacerbating
vascular inflammation and promoting atherosclerotic lesion devel-
opment. Wu et al. [98] conducted a cross-sectional study enrolling
1465 individuals aged between 40 and 70 years from the Busselton
Health and Aging Study. They employed machine learning
techniques such as recursive feature elimination and penalized
regression algorithms to systematically screen for significant
glycans and construct an IgG N-glycosylation cardiovascular age
(GlyCage) index. Notably, fucosylated N-glycans with bisecting
GlcNAc (GP6, FA2B) and bis-galactosylated N-glycans with
bifurcated GlcNAc (GP13, A2BG2) were found to make the most
substantial contributions to the index.

Metabolic disorders
The role of IgG glycosylation in metabolic diseases is increasingly
recognized. Dysregulation of IgG glycosylation has been implicated
in various metabolic disorders, including obesity, diabetes, and
dyslipidemia [99‒101]. A high body mass index (BMI) is commonly
used as a criterion for obesity, but when using the IgG glycome as a
biomarker, the waist-to-hip ratio should be used instead of BMI, as
it has been shown that individuals with a normal BMI who have
central adiposity (as measured by the waist-to-hip ratio) have lower
levels of galactosylation and bisecting GlcNAc and higher fucosyla-
tion [99,102]. Importantly, hyposialylated IgG can activate the
endothelial IgG receptor FcγRIIB to promote obesity-induced insulin
resistance [100]. The common types of diabetes are type 1 diabetes
mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Studies have
shown that the onset of type 1 diabetes is associated with an
increase in the proportion of plasma and IgG high-mannose and
bisecting GlcNAc structures, a decrease in monogalactosylation,
and an increase in IgG disialylation [103]. Furthermore, Liu et al.
[104] observed a decrease in bisecting N-acetylglucosamine of IgG2
and agalactosylation of IgG4 and an increase in sialylation of IgG4
and digalactosylation of IgG2 in T2DM patients. In addition, Plomp
et al. [105] reported a positive association between IgG1 fucosylation
and insulin levels and between IgG4 galactosylation and sialylation
and insulin, as well as a positive association between IgG4 bisection
and glucose. Age-related changes in IgG glycosylation in T2DM
patients have been highlighted in several studies, and age-related
increases in α2,3-linked and α2,6-linked sialylation on fucosylated
glycans have been observed, suggesting a potential link between
aging and chronic inflammation and disease exacerbation [106].
Dyslipidemia is another common metabolic disease and a key

contributor to atherosclerosis. In dyslipidemia, inflammation is
driven not only by abnormal glycosylation of lipoproteins but also
by modifications of IgG glycans. Reductions in galactose and sialic
acid residues, together with the introduction of bisecting GlcNAc on
IgG glycans, may contribute to the persistent inflammation
observed during the development and progression of dyslipidemia
[101,107]. Understanding the alterations in IgG glycans, such as
changes in galactose and sialic acid residues and the presence of
bisecting GlcNAc, provides insights into the underlying mechan-
isms of inflammation in conditions such as dyslipidemia.

Autoimmune and inflammatory diseases
The activity and interaction of IgG, a critical component of humoral
immunity, with other immune cells and molecules can be largely
influenced by glycosylation. Rheumatoid arthritis (RA) was the first
disease reported to be associated with altered IgG glycosylation
[108]. A decrease in galactosylated and sialylated IgG glycans was
found in patients with RA [109‒111]. Other researchers have used
lectin microarrays to detect higher levels of fucosylation in the
plasma of RA patients [112]. These glycosylation changes may affect
the functional properties of IgG, such as antibody-dependent cell-
mediated cytotoxicity (ADCC) and inflammatory regulation. Speci-
fically, reduced galactosylation may reduce the anti-inflammatory
function of IgG, whereas increased sialylation may enhance its anti-
inflammatory effects [113]. In addition, the ratio of serum G0/G1
(non-galactosylated to monogalactosylated) can serve as a diagnos-
tic marker to distinguish RA patients from healthy individuals as
early as 3.5 years prior to the onset of the disease [114].
In a collagen-induced arthritis (CIA) model, genetic blockade of
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sialylation in activated B cells tends to increase joint inflammation.
Conversely, artificial glycosylation of anti-type II collagen anti-
bodies, including anti-citrullinated peptide antibodies (ACPAs), not
only attenuates arthritis-inducing activity but also inhibits the
development of CIA in antibody-pretreated mice. Notably, glycosy-
lation of other IgGs does not prevent CIA [115]. In another study,
TH17 cells regulated the expression of β-galactoside α2,6-sialyl-
transferase 1 in newly differentiated antibody-producing cells by
directing B cells in an IL-22- and IL-21-dependent manner. This
regulation determines the glycosylation profile and activity of IgG
produced by subsequent plasma cells. Asymptomatic patients with
RA-specific autoantibodies exhibit similar changes in the activity
and glycosylation of autoreactive IgG antibodies before they enter
the inflammatory phase of RA [116]. Additionally, certain auto-
immune and inflammatory diseases, such as multiple sclerosis (MS)
[117] and systemic lupus erythematosus (SLE) [118], exhibit
significantly different IgG glycomic profiles. Although these condi-
tions are influenced by age, they are primarily categorized as
autoimmune diseases rather than aging-related diseases and thus
will not be discussed in detail here.
Overall, the above studies on aging-related diseases suggest that

IgG glycosylation may play a significant role in disease pathogenesis
by influencing protein aggregation, immune responses, and chronic
inflammation (Table 1). Further investigation into the underlying
mechanisms of IgG glycosylation dysregulation may provide
insights into potential therapeutic targets for the treatment of these
devastating conditions.

Conclusions
The altered glycosylation patterns observed on IgG in aging-related
diseases underscore the intricate interplay between immune
function, inflammation, and aging processes. The distinct changes
in IgG glycosylation profiles, including reductions in galactosylation
and sialylation, alongside increases in agalactosylation and bisect-
ing GlcNAc, serve as potential biomarkers for assessing aging-
related pathologies. These glycan modifications reflect underlying
physiological changes associated with aging, inflammation, and
immune dysregulation, highlighting the importance of IgG glycosy-
lation as a promising avenue for understanding and diagnosing
aging-related diseases.
Further research is warranted to elucidate the mechanisms

underlying alterations in IgG glycosylation in aging-related diseases
and their functional implications. This includes investigating the
causal relationships between specific glycan structures and disease
pathogenesis, as well as exploring the potential of IgG glycan-based
interventions for disease prevention and treatment. IgG glycosyla-
tion is strongly influenced by genetic and environmental factors,
including age, gender, ethnicity and geographic distributions. It is
therefore necessary to integrate IgG glycan biomarkers with other
types of biomarkers discovered by genomics, proteomics, and
metabolomics to comprehensively assess age-related phenotypes.
This holistic approach could provide deeper insights into the complex
interplay between molecular pathways underlying aging processes
and open up avenues for the development of innovative interven-
tions aimed at promoting healthy aging and extending lifespan.

Table 1. Altered IgG glycosylation in age-related diseases

Diseases Samples Increased glycoforms Decreased glycoforms Year Ref

AD Plasma Fucosylation Galactosylation and sialylation 2014 [87]

Plasma Bisecting GlcNAc Sialylation and core fucosylation 2021 [90]

Plasma Non-fucosylated IgG1 and IgG2 2022 [91]

PD Plasma Galactosylation Sialylation 2017 [88]

ALS Plasma and
cerebrospinal fluid

Bisecting GlcNAc Galactosylation 2015 [93]

Cerebrospinal fluid Galactosylation 2019 [92]

Cardiovascular disease Plasma Agalactosylated, monogalactosylated, and
sialylated glycans with bisecting GlcNAc

Sialylated glycans without
bisecting GlcNAc

2021 [119]

Plasma Galactosylated and sialylated
fucosylated glycoforms without
bisecting GlcNAc

2022 [95,96]

Atherosclerosis Plasma Bisecting GlcNAc 2018 [94]

Coronary artery disease Plasma Sialylation 2023 [97]

Central adiposity Plasma Fucosylation Galactosylation
and bisecting GlcNAc

2019 [99,102]

Type 1 diabetes mellitus Plasma High-mannose, bisecting GlcNAc
and disialylation

Monogalactosylation 2022 [103]

Plasma Galactosylation
and sialylation

Simple biantennary N-glycans 2018 [120]

Type 2 diabetes mellitus Plasma Sialylation of IgG4 and
digalactosylation of IgG2

Agalactosylation of IgG4 and
bisecting N-GlcNAc of IgG2

2019 [104]

Plasma IgG4 bisection 2017 [105]

Dyslipidemia Plasma Bisecting GlcNAc Galactosylation and sialylation 2018 [101,107]

Rheumatoid arthritis Plasma Fucosylation Galactosylation and sialylation 2023 [111,112]
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In summary, the study of altered IgG glycosylation in aging-
related diseases as well as during natural physiological aging holds
significant promise for advancing our understanding of glycosyla-
tion functions and disease mechanisms, improving diagnostic
strategies, and ultimately enhancing therapeutic interventions to
promote healthy aging and mitigate age-related pathologies.
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