一种新型冲击压入式单牙轮钻头的试验研究*

黄万志**

 $-\hat{A}^{1/4}\hat{A}^{3}$ O. A. * * *

吴 华

(西南石油学院)

(莫斯科石油天然气科技大学)

(四川石油管理局川东钻探公司)

黄万志等. 一种新型冲击压入式单牙轮钻头的试验研究. 天然气工业, 2000; 20(2): 45~48

摘 要 文章介绍了一种新型小尺寸钻头,它主要由一个偏置的多锥形牙轮和一个圆柱形滚轮及两个牙掌组成。其工作原理不同于球形单牙轮钻头,但是与三牙轮钻头的工作原理相同,主要依靠钻头牙轮牙齿的冲击和压入来破碎岩石,并且由圆柱形滚轮来修整井壁,还有两个靠近井底的喷嘴。与相同钻头尺寸的三牙轮钻头相比,该新型钻头的牙轮尺寸和轴承尺寸要大得多,因此,它可以承受较大的钻压,从而可以提高轴承和牙轮的使用寿命,进而提高机械钻速和钻头的使用寿命。文中介绍了在试验台上的试验情况和数据,并与三牙轮钻头进行了比较,得出了应用该钻头的重要结论。

主题词 牙轮钻头 岩石破碎 设计 实验 研究

新型冲击压入式单牙轮钻头结构

新型冲击压入式单牙轮钻头(图1)主要由钻头 体 1、牙掌 5 和它上面的单个多锥形牙轮 6、牙掌 11 和它上面的滚轮 12 等组成。钻头体 1 上有连接螺纹 2、泥浆流道3和轴承润滑部件4等。牙掌5同三牙 轮钻头一样, 有多锥形牙轮 6、大小滑动轴承 7 和 8、 滚动轴承 9、密封元件 10。在牙掌 5上, 牙轮及轴颈 的轴线布置得较低, 而且以一定的轴倾角(β) 和钻头 体中心线相交(无移轴式)或不相交(移轴式),在多 锥形牙轮上采用不均匀交错布齿, 以全面破碎井底 岩石。手掌形牙掌 11 上有保径滚轮 12、双支承轴承 13, 同时在牙掌 11 内还有两个泥浆通道及与通道相 通的上喷嘴 14 和下喷嘴 15。上喷嘴 14 主要清洗牙 轮 6. 下喷嘴 15 主要清洗井底。在手掌形牙掌 11 的 下部, 托住多锥形牙轮顶部安装有止推块 17. 以保证 牙轮在轴承失效的情况下,不致掉入井底。在牙掌 11的下端和侧面镶嵌有硬质合金牙齿,下端牙齿的 齿顶位置略高于由多锥形牙轮牙齿形成的井底齿 坑, 以便只是切削由多锥形牙轮破碎井底形成的井 底齿坑凸起部分。在手掌形牙掌 11 的下端, 位于多 锥形牙轮 6 旋转运动的前方, 有与牙掌 11 连接为整 体的肋 16, 它对泥浆运动的上升流产生局部阻挡。 在多锥形牙轮旋转运动的后方有足够的空间, 保证 泥浆的上升流流动顺畅无阻。

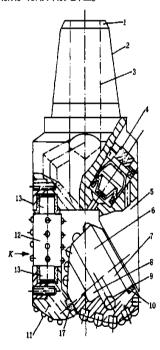


图 1 新型冲击压入式单牙轮钻头结构

^{*} 该钻头已获中国专利,专利号为 962241059。

^{* *} 黄万志, 1943 年生, 研究员; 1967 年毕业于西南石油学院机械系, 1981 年获硕士学位, 从事石油机械和钻井工具的科研与教学工作。地址: (637001) 四川省南充市。电话: (0817) 2603433 转 3015。

在钻头工作时,多锥形牙轮 6 沿井底滚动,依靠牙轮上不均匀排列的牙齿破碎井底岩石,其破岩方式与三牙轮钻头一致,以冲击压入为主。同时,除了依靠多锥形牙轮 6 的背锥牙齿和主锥上外排齿圈牙齿的外缘来修整井壁之外,还主要依靠滚轮 12 来修整井壁。在牙掌 11 的侧面也布置有硬质合金齿,协同修整井壁。

新型冲击压入式单牙轮钻头的特点

- (1)克服了现有小尺寸三牙轮钻头牙轮尺寸和轴颈尺寸太小的弱点,提高了牙轮尺寸和轴颈尺寸。 因此,可以提高单个牙轮上的钻压,提高破碎效率。
- (2) 该钻头的多锥形牙轮, 一方面有牙掌 5 上的轴颈轴承 7、8、9 作支承, 同时有手掌形牙掌 11 的止推块 17 作支承, 大大减少了牙轮落入井底的可能性, 提高了钻头工作的可靠性。
- (3)该新型钻头采用两个喷嘴,一个靠近井底,一个在牙轮前上方,泥浆从牙轮的前方和井底流入,清洗牙轮和井底,从牙轮后方空间流出形成上返流。在牙轮前上方的喷嘴,既有利于牙轮的旋转运动,又有利于清洗牙轮。靠近井底的喷嘴,有利于清洗井底。
- (4)该新型钻头与同尺寸三牙轮钻头相比,结构简单,制造成本低于同尺寸三牙轮钻头,与 PDC 钻头和切削型单牙轮钻头相比,该钻头用冲击压入方式破碎岩石,在钻进中可以得到较大颗粒的岩屑,极有利于对岩石的评估。同时,该钻头克服了切削型PDC 钻头和单牙轮钻头不宜破碎硬岩石的缺点,适应性较大。
 - (5) 牙轮上的布齿, 采用不等距全井底布齿。

受力情况分析

在加钻压和旋转钻柱时,该钻头的多锥形牙轮沿井底滚动,破碎井底岩石。此外,依靠多锥形牙轮的背锥牙齿和主锥外排齿圈牙齿的外缘表面修整井壁,同时,还依靠保径滚轮修整井壁,在接近井底区域沿井壁壁面滚动。

多锥形牙轮破碎井底岩石时, 井底反力可视为集中作用在多锥形牙轮上, 若将井底反力(图 2) 分解为纵向分力(W)和横向分力(R), 纵向分力(W) 平行于井眼中心线, 横向分力(R)朝向(有时背向) 井眼中心线, 纵向分力(W)作用偏心距离井底中心为(E), 在纵向分力作用下, 在钻头及钻柱上作用有弯

曲力矩(WE)。作用在保径滚轮上的合力为(H),其方向垂直于井眼中心线。钻头和钻柱上所受的弯曲力矩(WE),则由力矩(HI)、在距井底(L)处下部钻具与井壁接触点的井壁反力(F)的力矩(FL)和下部钻具组合抵抗弯曲的力矩(M)来平衡。(在钻具组合刚度大时,或钻具与井壁之间间隙大时,下部钻具不接触井壁则没有力矩(FL)。即:

WE = HI + FL + M

随着钻头牙齿的变钝,钻头破碎岩石的载荷将增加,同时也将使作用在保径滚轮上的反力(H)增加。保径滚轮提高了下部钻具组合绕井眼轴线旋转的概率,而不是绕自身轴旋转,如三牙轮钻头钻井那样。

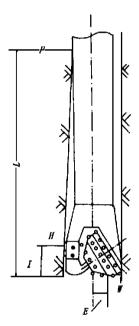


图 2 该钻头破碎井底岩石受力分析

对冲击压入式小井眼 单牙轮钻头的评估

该钻头只与同尺寸的三牙轮钻头相比较,因为只有这两种类型的钻头能保证所钻岩屑的大小,以便能在随钻过程中评认岩石。设三牙轮钻头的参数指标为1,则该新型钻头参数指标为带小数的数字。由表1可见:冲击压入式单牙轮钻头,有大的牙轮直径和轴承尺寸,破岩元件同岩石有稳定的相互作用关系,井底清洗情况良好。在相同条件下,可以减少钻头的消耗量,减少起下钻操作量,减少井下复杂情况的概率。

表 1 钻头优越性评估

			钻头类型		优越性		
项目	钻 头 参 数 和 工 作 指 标		冲击压入式三牙轮		评估		
			单牙轮钻头	钻头	VI 114		
1	原始	破碎岩石所需要的钻压	0. 4~ 0. 5	1	+		
		牙轮直径	1. 4~ 1. 5	1	+ +		
	参数	钻头转速相同时的牙轮转速	0. 8	1			
2	轴承	接触压力和应力大小	0. 3~ 0. 4	1	+		
		轴承的寿命	4	1	+ + +		
	牙齿	牙齿同岩石的接触作用时间	1. 5	1			
3		牙齿的磨损	0. 8	1	+		
4		机械钻速	1	1	+		
		钻头进尺	1. 5~ 2	1	+		
	工作	钻头寿命	1. 5~ 2	1	+ +		
	指标	钻头消耗	0. 5	1	+		
		井底清洗情况	1. 5	1	+		
		复杂情况慨率	0. 3~ 0. 5	1	+ +		

f 107. 95 mm 冲击压入式单牙轮 钻头在试验台上的试验

我们对这种新型钻头进行了试制,并在地面台架上进行模拟试验,以了解该新型钻头的钻进性能(机械钻速和井底状况),达到预期效果后,方能进行现场试验和投产使用。试验在西南石油学院的钻头实验架上进行。

- 1. 试验设备
- (1)300 kN 钻头实验架;
- (2) Y 8DB -5 动态应变仪;
- (3) 计算机及专用记录分析软件。
- 2. 试验岩石的物理力学性质(表 2)

表 2 试验岩石的物理力学性质

	$T_1 j^{1}$	P_2ch	花岗岩	$J_2 s^2$	
	(石灰岩)	(石灰岩)		(砂岩)	
孔隙度(n)	0. 65%		1. 26%	11. 59%	
弹性模量(MPa)	6. 825 × 10 ⁴	7. 1×10^4	3× 10 ⁴	0. 9× 10 ⁴	
泊松比(4)	0 18	0. 31	0. 2	0. 16	
单轴抗压强度(ਾਂ ල)	91. 2 MPa	124 5 MPa	146 MPa	34. 1 MPa	
抗拉强度(σ _t)	6. 22 MPa		3 59 MPa	2. 67 MPa	
塑性系数(k)	1. 23	1. 15	1. 5	3. 5	
研磨性(α)	1. 4mg/ min		19.94 mg/ min	25. 1 mg/min	
硬度	1 080 MPa	4 545 MPa	2 447 MPa	850 MPa	
可钻性(s)	98. 56	138. 5	346	19	

3. 试验数据和分析

(1) T₁i¹(石灰岩)

由试验数据图和观察井底可见,在转速为60 r/min的条件下,钻压为30~50 kN,机械钻速已经较

平稳地达到 5.8~6.7~m/h; 井底齿坑配置均匀; 井底清洗干净; 井壁有保径滚轮的明显压痕; 井径测量为 f108.5~mm; 岩屑颗粒呈 3~10~mm 片状, 说明该钻头的破岩作用实属压碎型。检查钻头磨损情况,在月牙形掌的裙部有擦伤。

(2) 花岗岩

在转速为 60 r/min 的条件下, 钻压为 40~47 kN, 机械钻速达到 4.43~5.72 m/h; 初始钻进造井底时振动稍大, 正常钻进后平稳; 井底清洗干净; 井壁有保径滚轮的压痕; 井径 f 108.7 mm; 岩屑颗粒 3~8 mm。检查钻头磨损情况, 在月牙形掌的裙部有较重的擦伤, 说明在月牙形掌的裙部应该增加保径齿或敷焊硬质合金粉; 在月牙形掌的正下方有一颗镶齿脱落, 制造中要特别注意保证镶齿质量。

(3) J₂s²(砂岩)

转速为 60~ 100 r/min, 钻压仅有 30 kN 左右, 机械钻速为 5.2~ 5.5 m/h, 钻进平稳; 井底清洗干净; 井壁有保径滚轮的压痕; 井径 f 109 mm, 说明砂岩稍软, 井径略有扩大; 岩屑颗粒稍细, 大小为 1~ 6 mm 的占多数。在用该钻头钻砂岩时, 机械钻速与钻头转速的关系不明显。

对 f 107. 95 mm 冲击压入型单牙轮钻头与 f 215. 9 mm 三牙轮钻进行了台架试验比较(表 3)。

表 3 台架试验结果对比

	转 速	钻压	单径钻压	扭 矩	机械钻速				
多数	(r/min)	(kN)	(kN/cm)	(Nm)	(m/h)				
以下为该新型 f 107. 95 mm 钻头的试验数据									
T ₁ j ¹ 石灰岩	60	29. 26	2. 7	386	6. 74				
P2ch 石灰岩	60	48. 12	4. 45	434	4. 21				
花岗岩	60	41. 19	3. 81	563	5. 72				
以下为 f 215. 9 mm XHP ₅ 三牙轮钻头的数据									
T ₁ j ¹ 石灰岩	60	85	3. 94	1 000	3. 5				
P2ch 石灰岩	60	115	5. 32	1 600	2. 7				
花 岗 岩	60	110	5. 09	1 500	3. 3				

可以看出, f 107. 95 mm 冲击压入型单牙轮钻头的单径钻压比三牙轮钻头还低一些, 但是机械钻速已经远超过了三牙轮钻头。这说明冲击压入型单牙轮钻头单个牙齿的载荷并不低, 该钻头的轴颈和牙轮比 f 165. 10 mm 三牙轮钻头的轴颈和牙轮还略大一点, 可以承受较大的钻压。若提高钻头钻压, 单齿载荷还可再大些, 机械钻速会更好。钻得的井底齿坑分布均匀, 用于破碎中硬以上的岩石, 破岩效果好。

套管可靠性研究进展*

刘清友** 陈 浩 钟 青 (西南石油学院)

黄华富(新疆石油管理局油气储运公司)

刘清友等. 套管可靠性研究进展. 天然气工业, 2000; 20(2):48~51

摘 要 文章在收集、查阅了大量国内外有关套管设计、套管失效形式、失效原因、可靠性分析等方面研究文献资料之后,结合我国石油天然气钻井生产实际和石油套管的研究现状,综合分析了目前国内外石油套管在设计、使用、维护等方面存在的问题;分析了套管的设计方法、套管的力学性能、使用环境等因素对套管工作寿命的影响及套管的主要失效形式和失效原因。阐述了国内外在套管设计及分析中应用可靠性技术的现状,为进一步开展套管可靠性研究提出了具体的研究方向和措施。

主题词 钻井工程 固井 套管 可靠性 研究

套管是为了防止地层坍塌而下入井中的金属管柱。分为表层套管,技术套管和油层套管。70年代以来,我国油气田套管损坏十分严重。据不完全统计,从1979年开始到1983年底,全国油气井套管损坏数已达3000多口。到1991年底,全国油气井的套管损坏数已超过4500口。1993年底全国套管损坏数已达10800多口。美国在1989年统计表明,过去十年中,每年美国钻井花费总额平均超过220亿

美元, 而用于套管的约 35 亿美元, 占年平均开支的 16% 左右, 在所有钻井项目中名列第二。

套管的损坏严重妨碍了油气田的正常生产,已成为目前国内外石油天然气开采中的一个急需解决的重要问题之一。由于油气井和地质条件的复杂性,加上目前套管设计大都采用常规的设计方法,因而难以找到有效的预防套管损坏的方法,往往是在套管损坏后再进行研究.采取措施(修套管或打井代

结 论

- (1)该新型钻头属压入破碎型小井眼钻头,用于破碎中硬以上的岩石,效果良好,可以承受较大的钻压,单齿载荷大,试验所得机械钻速正常。由于钻头轴承尺寸大,预计钻头使用寿命良好。该新型钻头的出现将解决小尺寸井眼钻井中缺乏可适用钻头问题。
- (2)由于该新型钻头是由偏置的单牙轮和月牙形牙掌上的保径滚轮共同破碎岩石,在垂直方向上的钻压由偏置单牙轮单独承受,合力不在钻头中心线上,因此,保径滚轮承受的作用力也较大,在钻出的井壁上明显可见滚轮齿坑。该新型钻头只适合用于破碎中硬以上的岩石,不适用于钻软和中软的地

层。

- (3)使用该钻头得到的岩屑颗粒较大,有利于鉴别所钻岩层;钻出的井壁规则、圆整,符合钻头技术条件要求。
 - (4)井底清洗干净。
- (5) 试验后, 钻头月牙形掌的裙部有擦伤, 应该增加保径齿或敷焊硬质合金粉末。
- (6)该钻头的结构形式适合于各种尺寸牙轮钻头,由于它比三牙轮钻头结构简单,因此,制造成本将低于同尺寸的三牙轮成本。地面台架试验表明,在钻头进尺和机械钻速上,该钻头与钻同类型岩石的大尺寸三牙轮钻头更好,极有利于降低钻井成本。

(收稿日期 1999-10-28 编辑 钟水清)

^{*} 石油科技中青年创新基金项目和"油气藏地质与开发工程"国家重点实验室开发基金项目的部分内容。

^{**} 刘清友, 1965 年生, 教授; 1997 年到重庆大学机械传动国家重点实验室做博士后。主要从事石油机械及设备的CAD/CAM、可靠性及系统仿真等方面的教学科研工作。地址: (637001)四川省南充市。电话: (0817) 2603433 转 3092。

Province, four second prizes issued by the Educational Commission of Heilongjiang Province and a second prize and three thrid prizes issued by the Daqing Petroleum Administration. Add: Box No. 23, Daqing Petroleum Institute, Anda, Heilongjiang (151400), China Tel: (0459) 4654101

.....

APPLCATION OF BP ARTIFICIAL NERVE NET-WORK TO CALCULATING WATER SATURA-TION

Hu Jun (Southwest Petroleum Institute). *NATUR. GAS IND*. v. 20, no. 2, pp. 39~41, 3/25/2000. (ISSN 1000-0976; **In Chinese**)

ABSTRACT: In comparison with the traditional log data comprehensive interpretation and digital processing methods, the BP artificial nerve network method possesses considerable superiority and applicability and it isn't in need of various inexact log interpretation formulae which are based on the experiments and are necessary for the traditional methods. The BP artificial nerve network method is only in want of the primary log data and solving practical data when training the samples and of the primary log data only when forecasting solving parameters, which provides a new feasible way for the log interpretation and digital processing urder the conditions of complex formations and other special circumstances.

SUBJECT HEADINGS: Well logging, Fuzzy mathematics, Water saturation, Computer program, Node analysis

Hu Jun's introduction: see v. 19, no. 4, 1999. Add: Nanchong Sichuan (637001), China Tel: (0817) 2601016—3474

.....

RECOGNITION OF OIL-, GAS- AND WATER-LAYERS IN THE STRATUM CONTAINING LOW-SALINITY FORMATION WATER

Yang Bisong (Logging Company of SPA). NA TUR. GAS IND v. 20, no. 2, pp. 42~ 44; 3/25/2000. (ISSN 1000-0976; In Chinese)

ABSTRACT: The stratum containing low-salinity formation water means that formation water salinity is near to mud salinity, their difference being about an order of magnitude. The oil, gas- and water-layers in the stratum containing low-salinity formation water are difficult to be recognized according to the water saturation values calculated by use of the traditional log interpretation methods, because a certain quantity of natural gas

which coagulated in the oil and gas bearing formations (especially in the south part of Zhunge er Basin, Xinjiang Province) can exert different influences upon the acoustic, density and neutron loggings. When the gas saturation in formation is high, the characters of low neutron, low density, high interval transit time and high resistance are obvious; while the gas saturation is low, these characters of gas-bearing formation are not obvious so as to be often ignored. In order to recognize the fluid properties, the generality of three porosity (i. e. neutron, density and acoustic) loggings and resistivity logging (laterolog) in water formations and the anisotropism of them in oil and gas formations should be fully utilized; through an interactive operation by use of the compensated neutron, compensated acoustic, compensated density and resistivity loggings and a magnification of these informations by use of computer technique, it is enough to raise the resolution capabilities of the three porosity and resistivity curves to audio-visually indicate the oil, gas and water-layers. The coincidence rate of the log interpretation by these methods is up to 95%.

SUBJECT HEADINGS: Xinjiang, Porosity logging, Formation water, Low salinity, Reservoir, Oil and gas formation, Water, Recognition, Analysis

Yang Bisong engineer), graduated in well log at the Jianghan Petroleum Institute. He has been engaged in the research on log interpretation and logging methods in Sichuan Province and at Tuha oil field in Xinjiang Province early or late. Add: Dashiba, Jiangbei District, Chongqing (400021), China Tel: (023) 67602105—352032

STUDY AND TEST FOR A NEW IMPACT AND PRESS-IN TYPE OF ZUBLIN SIMPLEX BIT

Huang Wanzhi (Southwest Petroleum Institute) £1/4Å3 O. A. (Moscow University of Oil and Gas Science and Technology) and Wu Hua (East Sichuan Drilling Co. of Sichuan Petroleum Administration).

NAT UR. GAS IND. v. 20 no. 2, pp. 45~ 48, 3/25/2000. (ISSN 1000-0976; In Chinese)

ABSTRACT: In this paper, a new small-sized bit is introduced. The bit is mainly composed of a biassed polyconic cutter, a cylindric roller and two bit legs. The operating principle of the bit is different to that of spherical zublin simplex bit, but is identical with that of three cone bit, namely it breaks rocks mainly through impact and press in by the cutter teeth and then the borehole wall is repaired by a cylindric roller and two injecting nozzles close to the bottom hole. The new bit s cone and bearing are much larger than those of the three cone bit with the same size, therefore the new bit can bear a greater WOB, thus, the life of the bearing and cone can be prolonged and then the penetration rate can be raised and the length of bit run prolonged. In this paper, the situation and data in the test on testing table are presented, which are compared with those of three cone bit, obtaining an important result in applying this kind of bit.

SUBJECT HEADINGS: Roller bit, Rock breaking, Design, Experiment, Research

Huang Wanzhi (research fellow), born in 1943, graduated in Mechanics from Southwest Petroleum Institute in 1967 and received his Master's degree in 1981. He is now engaged in the scientific research and teaching work on petroleum mechanism and drilling tools. Add: Nanchong, Sichuan (637001), China Tel: (0817) 2603433—3015

MapkoB's in troduction: see v. 18, no. 6, 1998.

PROGRESS IN CASING RELIABILITY STUDY

Liu Qingyou, Chen Hao and Zhong Qing(Southwest Petroleum Institute). *NAT UR. GAS IND.* v. 20, no. 2, pp. 48~51, 3/25/2000. (ISSN 1000-0976; **In Chinese**)

ABSTRACT: In this paper, on the basis of gathering and consulting a lot of foreign and domestic literatures relating to the design, the form and reason of failure and the reliability analysis, etc. of casing and combining with the practice of the oil and gas drilling and the actual research situation of the casing in China, the existing problems in the design, use and maintenance of foreign and domestic casing at present are analyzed, the influence of the design method, mechanical property and surroundings of casing on casing slifetime and its main form and reasons of the failure are analyzed and the actual situation in applying reliability technique in the design and analysis of foreign and domestic casing is expounded, putting forward the concrete research direction and measures for further casing reliability study.

SUBJECT HEADINGS: Drilling engineering, Well cementing, Casing, Reliability, Research

Liu Qingyou (associate professor) was born in 1965 and studied as a postdoctoral at the national key laboratory for mechanical transmission in Chongqing University in 1997. He is mainly engaged in the teaching and researching work on the CAD/CAM, reliability and system emulation for petroleum

mechanism and equipments. Add: Nanchong, Sichuan (637001), China Tel: (0817) 2603433 — 3092

...

A STUDY OF THE MECHANISM TO REMOVE CUTTINGS BED IN EXTENDED REACH WELL

BY UTILIZING ROTATIONAL ACTION

Shi Xiaobing (Department of Petoleum Engineering, Southwest Petroleum Institute). *NATUR*. *GAS IND*. v. 20, no. 2, pp. 51 ~ 53, 3/25/2000. (ISSN 1000-0976: **In Chinese**)

ABSTRACT: Hole cleaning is one of the key techniques in extended reach well drilling. For extended reach well, the cuttings bed is the key factor restricting hole cleaning. Besides the hydraulic action and rheological parameter of mud, the rotational action of drilling string is an important factor for removing the cuttings bed. Through researching and analyzing the annulus flow field under the rotational action of drilling string, the mechanical mechanism of removing cuttings bed by rotation of drilling string is revealed, namely the rotational action makes the pressure distribution fluctuated, causing a circulating force and gyroscopic force favourable to cuttings removal. The fluctuant pressure makes the cuttings bed unsteady but the circulating and gyroscopic force serves the function as stirring and supporting the cuttings bed, being convenient to make the cuttings to be carried by the annular return velocity. Taking the well Hong-9-1 in Dagang Oil Field for example, the important role of the rotation of drilling string in removing cuttings bed in extended reach well is expounded.

SUBJECT HEADINGS: High angle deviated hole, Cuttings, Rotary drilling, Pressure, Circulating pressure, Mechanism, Research

Shi Xiaobing, born in 1967, graduated in drilling engineering at Southwest Petroleum Institute in 1992 and received his Master's degree of drilling engineering from the institute in 1995. Now he is studying for Doctor's degree. Add: Nanchong, Sichuan Province (637001)), China. Tel: (0817) 2603433—3801

EXPERIMENT AND STUDY OF SLIM-HOLE DRILLING TECHNIQUE FOR COALBED GAS EXPLORATION