@ SCIENCE CHINA PRESS SCIENCE CHINA

life.scichina.com link.springer.com
https://doi.org/10.1007/s11427-024-2695-x

An in-depth understanding of the role and mechanisms of T cells
in immune organ aging and age-related diseases

Yudai Xu!2-37, Zijian Wang!-2-3%, Shumin Li!2:3, Jun Su#, Lijuan Gao!->3, Junwen Ou®, Zhanyi Lin®, Oscar Junhong Luo?,
Chanchan Xiao!23-8:9" & Guobing Chen!2:3.8.9"

"Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Inmunology, School of Medicine, Jinan University, Guangzhou 510632, China
2Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China

3Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China

4First Affiliated Hospital, Jinan University, Guangzhou 510630, China

SAnti Aging Medical Center, Clifford Hospital, Guangzhou 511495, China

6Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China

"Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China

8The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan 523000, China

9Zhuhai Institute of Jinan University, Jinan University, Zhuhai 519070, China

FContributed equally to this work
*Corresponding authors (Chanchan Xiao, email: xiaocc616@foxmail.com; Guobing Chen, email: guobingchen@jnu.edu.cn)

Received 24 February 2024; Accepted 28 July 2024; Published online 2 September 2024

T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It
is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights
into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined
the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that
occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-

related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
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Introduction

The aging population is a global and significant social issue, and
promoting healthy aging is a goal of human medicine. In the
elderly stage, the immune function of the body typically declines
with age, rendering older individuals more susceptible to various
infectious and malignant diseases. Therefore, it is crucial to
enhance the immune function of elderly people and delay
immune system aging to promote healthy aging.

Immune aging is a broad and complex subject that encom-
passes a variety of cellular changes, but when we narrow our
focus to T-cell aging, we delve into a specific aspect that has
profound implications for immune function. T cells, as a critical
component of the adaptive immune response, undergo aging
processes that can significantly affect their ability to respond to
infections and tumors. By examining the intricate mechanisms
underlying T-cell aging, we can better understand the decline in
immune responses observed with advancing age. For instance, T
lymphocyte-specific knockout of mitochondrial transcription
factor A (TFAM) has been shown to cause not only immunome-
tabolic dysfunction that drives T-cell senescence but also a
general deterioration of health throughout the body, accompa-
nied by multiple aging-related features, such as metabolic,

musculoskeletal, cardiovascular, and cognitive alterations (Des-
din-Mic6 et al., 2020). These findings suggest that premature
aging of T lymphocytes may have a systemic impact on aging,
accelerating the aging process in multiple organ systems.

Furthermore, immune cell aging not only affects innate and
adaptive immunity but also potentially impacts organ aging,
thereby accelerating the normal aging process (Yousefzadeh et
al., 2021). In conclusion, T lymphocytes have been implicated in
driving systemic aging, and modulating impaired immune cells
may be a means to delay the progression of aging.

T lymphocytes are derived from lymphoid precursor cells
originating in the bone marrow. They undergo differentiation
and maturation in the thymus and are distributed throughout
the immune organs and tissues of the body via the lymph and
blood circulation to exert their immune functions. Multipotent
stem cells in the bone marrow transform into lymphoid precursor
cells, which migrate to the thymus. Under the influence of thymic
factors, these cells undergo a series of orderly differentiation
processes, gradually developing into T cells with a T-cell receptor
(TCR) repertoire capable of recognizing various antigens. TCRs
can be classified into two types based on the combination of TCR
chains: ap T cells composed of a and B chains, which are the main
components of T cells, and yd T cells composed of y and 6 chains.
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T lymphocytes that enter the thymus go through three stages:
CD4* and CD8* double-negative (DN) T lymphocytes differenti-
ate into double-positive (DP) T cells. DP cells undergo positive
selection and negative selection to acquire major histocompat-
ibility complex (MHC)-restricted recognition ability and self-
antigen tolerance and develop into single-positive (SP) T cells
with the surface markers CD4 and CD8. These SP T cells then
migrate to peripheral lymphoid organs to settle (Touraine et al.,
1977).

Upon activation of naive T cells in the periphery, further
differentiation of CD4 T cells occurs under the influence of
cytokines and their microenvironment, giving rise to subpopula-
tions with different biological functions known as helper T cells
(Th). Th cells can be classified as Th1l, Th2, Th17, Th9, or
follicular helper T (Tth) cells, depending on the type of cytokine
secreted. Additionally, there are regulatory T (Treg) cells and
cytotoxic T cells, which are a group of CD8* T cells with cytotoxic
activity (Jenkinson, 1982). Different subpopulations of T cells
play distinct roles in different anatomical sites and pathological
processes, regulating and even converting each other and
collectively participating in the fine regulation of immune
responses in the body.

Numerous reviews on the role of T lymphocytes in aging have
been published recently (Jain et al., 2023; Mao et al., 2024;
Mittelbrunn and Kroemer, 2021; Moller et al., 2022; Nguyen
and Chauhan, 2023; Zheng et al., 2023). In this discussion, we
focus on recent evidence supporting the role of T lymphocytes in
immune organ aging and their contribution to the occurrence
and progression of age-related diseases. Specifically, we examined
age-related changes in various immune organs and tissues, such
as the thymus, spleen, lymph nodes, and tonsils, as well as the
characteristic changes in several T-cell subsets and the TCR
repertoire during aging. We also delve into the roles of T
lymphocytes in age-related diseases and explore the applications
and advances of T lymphocytes for anti-aging strategies. Under-
standing the mechanisms of T-cell aging and finding ways to
delay aging are crucial for maintaining the health of immune
function in the human body.

Aging of immune organs and tissues

The aging process of T cells is intricately linked to the aging of
immune-related organs and tissues. The development, differen-
tiation, homeostasis, and immune responses of T cells occur
within various immune organs and tissues. In this section, we
will provide a description of the characteristic changes observed
in the aging process of the thymus, spleen, lymph nodes, tonsils
and blood (Figure 1).

Changes in the thymus during aging

The thymus is enveloped by a thin layer of dense connective
tissue called the capsule, which extends into the thymus to form
interlobular septa, dividing the parenchyma into incomplete
thymic lobes. Each lobe comprises a cortex and a medulla, with
the medulla of adjacent lobes being continuous (Hale et al.,
2020; Rodewald, 1998). The cortex is supported by thymic
epithelial cells (cTECs) and contains a large number of
thymocytes and a small number of other stromal cells (Nitta,
2022). The medulla contains more thymic epithelial cells
(mTECs), as well as a few immature T cells (Kishimoto and
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Sprent, 1997), macrophages (Zhou et al., 2022b), and dendritic
cells (Li et al., 2021b). The thymus serves as the site of T-cell
differentiation, development, and maturation. Lymphoid hema-
topoietic stem cells from the bone marrow enter the thymus
through high endothelial venules at the corticomedullary
junction and migrate from the cortex to the medulla for
development (Raviola and Karnovsky, 1972). Positive selection
occurs in the outer cortex, granting T cells the ability to recognize
antigens presented by MHC molecules. Negative selection occurs
in the deep cortex and medulla, eliminating T cells that react with
self-antigens (Klein et al., 2009). Over 95% of thymic cells
undergo apoptosis and are cleared by macrophages (Surh and
Sprent, 1994). Mature naive T cells exit the thymus through
blood and lymphatic vessels to reach thymus-dependent regions
of peripheral lymphoid organs and lymphoid tissues, where they
participate in cellular immune responses (Matloubian et al.,
2004).

The thymus plays a crucial role in the immune system,
including in T-cell development, immune tolerance, and immune
regulation. It is vital for maintaining normal immune function
and preventing the occurrence of autoimmune diseases. The
thymus begins developing during embryonic stages, around the
sixth week, and originates from the third pharyngeal pouch
(Farley et al., 2013). Subsequently, it starts to atrophy during
puberty (Singh and Singh, 1979). During thymic involution, the
thymus tissue gradually atrophies, perivascular spaces increase,
and fat tissue accumulates (Lynch et al., 2009). Simultaneously,
the thymus tissue undergoes deterioration, altering the distribu-
tion ratio of the cortex and medulla and resulting in a decrease in
thymic cell count (Li et al., 2021b). Thymus degeneration leads
to (i) a decrease in the output of thymus naive T cells and a
reduction in the number of peripheral naive T cells (Sandstedt et
al., 2023); (ii) a compensatory increase in memory T cells (Nasi et
al., 2006); (iii) a decrease in TCR diversity (Yang et al., 2009),
resulting in a diminished ability to resist external pathogens; and
(iv) disruption of negative selection, leading to an increase in self-
reactive T cells and an elevated risk of developing autoimmune
diseases (Coder et al., 2015).

The causes of thymic atrophy include hormonal changes,
infection, malnutrition, obesity, pregnancy, and antitumor
treatment. Increased levels of sex hormones such as testosterone
and estrogen promote thymic degeneration by affecting the
function of TECs (Taves and Ashwell, 2022). An increase in
steroid hormones such as cortisol and a decrease in growth
factors (such as growth hormone, insulin-like growth factor-1
(IGF1), and keratinocyte growth factor (KGF)) also contribute to
thymic degeneration (Min et al., 2006). Exogenous administra-
tion of IL-6 or injection of poly (I:C) to simulate viral infection can
induce thymus degeneration in young mice (Sempowski et al.,
2000). Recent studies have revealed that IL-33 causes naive T-
cell aging mediated by thymus degeneration and impairs host
control of severe infections. It has also been shown that I1.-33
induces the overproduction of mTEC IV and disrupts mTEC/cTEC
lacunae, thus leading to thymic degeneration. Additionally,
targeting IL-33 or growth stimulation expressed gene 2 (ST2)
may be a promising intervention route to restore T-cell immunity
for better control of severe infections (Xu et al., 2022). Older
individuals are more prone to tumors, chronic diseases, and
severe infections than are young individuals, partially due to
thymus atrophy. Research on thymic involution is crucial for the
prevention and treatment of these conditions.
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Figure 1. Age-related changes in the thymus (A), spleen (B), lymph nodes (C), tonsils (D) and peripheral venous blood (E).

Changes in the spleen during aging

The spleen is the largest lymphatic organ in the human body and
serves various functions, including blood storage, hematopoiesis,
removal of senescent red blood cells, and immune response. It
consists of red and white pulp surrounded by a fibrous capsule.
The red pulp contains stromal cells, macrophages, plasmablasts,
and plasma cells. Stromal cells provide structural support, while
macrophages remove harmful substances and senescent red
blood cells while recycling iron. Plasmablasts and plasma cells
ensure efficient secretion of antibodies into the blood (Mebius and
Kraal, 2005; Nolte et al., 2000; Toellner et al.,, 1996; van
Krieken and te Velde, 1988).

The structure of the white pulp in the spleen differs between
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mice and humans. Humans have an inner and outer marginal
zone surrounding the white pulp, along with a large peri-
follicular area. The periarterial lymphatic sheath surrounding
the central artery contains T cells, macrophages (El-Naseery et
al., 2020), fibroblast reticular cells (Bajénoff et al., 2008), and
conventional dendritic cells (Zanna et al., 2021). B-cell follicles,
which consist of B lymphocytes with germinal centers (GCs), are
located adjacent to the lymphatic sheath (Mebius and Kraal,
2005). The marginal zone of the spleen plays a crucial role in
capturing and removing blood-borne pathogens and antigens. It
contains specialized populations of macrophages and B cells that
act as a bridge between innate and adaptive immunity (Mebius
and Kraal, 2005).

https://doi.org/10.1007/511427-024-2695-x
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During development, the spleen starts to form approximately
30 days after fertilization. As the stomach rotates in the third
month, the spleen separates and moves upward, forming the
splenic ligament that connects the mesentery and the stomach.
Hematopoietic stem cells migrate to the spleen, initiating red
blood cell production, and a dark center appears, eventually
merging within the spleen (Weinzirl et al., 2020). The infant
spleen has a thin membrane with uniform elastin fibers. With
age, the capsule thickens and forms a layer of collagen
(Higginson et al., 2020). Studies have shown that spleen stiffness
is not influenced by age, sex, or spleen size, but spleen size is
significantly smaller in females than in males. There is also a
negative correlation between longitudinal spleen size and age
(Albayrak and Server, 2019).

In aging mice, the spleen undergoes changes such as increased
volume, fibrotic areas, blurred boundaries between red and white
pulp, discontinuity in the marginal zone, and increased macro-
phages in the marginal zone. The red pulp accumulates
senescence-associated B-galactosidase (SA-B-gal)-positive cells
earlier and more frequently than does the white pulp. In the
white pulp, SA-B-gal-positive cells initially accumulate in small
amounts in the center and gradually spread throughout the
entire white pulp with age. p21-positive proteins are primarily
expressed in stromal cells, while no pl6-positive proteins are
detected in the spleen (Jin et al., 2023). Moreover, the number of
mitochondrial DNA (mtDNA) copies increases in the spleen of
aging C57 mice, which may lead to nuclear enlargement and
mitochondrial dysfunction (Baek et al., 2019).

Similar changes are observed in aged rats, including a blurred
boundary between the red pulp and white pulp, atrophy of the
white pulp area, infiltration of red blood cells, and a reduced
number of GCs. The antioxidant capacity decreases, and spleen
damage increases in aged rats. The proportion of T cells and the
number of IL-1B- and IL-6-immunopositive cells were signifi-
cantly lower in the spleens of aged rats than in those of young
rats. However, there is an increase in ssDNA- and caspase-3-
positive apoptotic cells in the spleen of aged rats (El-Naseery et al.,
2020). In elderly mice, overall cytosine-phosphate-guanine
(CpG) methylation levels in spleen tissue decrease with age, with
high methylation observed in promoter regions and low
methylation in gene body and intergenic regions (Jeong et al.,
2023).

Factors contributing to splenic senescence include age,
infection, circadian dysregulation, and iron homeostasis. Infec-
tion with Toxoplasma gondii can lead to white pulp atrophy and
premature aging of the spleen in mice (Pereira et al., 2019).
Chronic circadian dysregulation accelerates splenic aging
(Inokawa et al., 2020). Iron homeostasis promotes anti-immune
senescence in the spleen (He et al., 202 3). Various interventions,
such as voluntary exercise, vitamin E supplementation, and the
use of specific probiotics or extracts, have shown potential in
restoring spleen function and preventing spleen damage and
aging (Gao et al., 2022a; Lee et al., 2019; Li et al., 2021a; Li et
al., 2020; Qian et al., 2018; Tao et al., 2021).

Changes in the Iymph node during aging

Lymph nodes serve crucial functions in immune surveillance,
antigen presentation, lymphocyte activation and proliferation,
and lymphocyte migration. They play a vital role in maintaining
the normal function of the immune system and defending against
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pathogen invasion. Three compartments—the cortex, paracor-
tex, and medulla—of lymph nodes house distinct regions
occupied by B cells, T cells, fibroblastic reticular cells, macro-
phages, dendritic cells, and follicular dendritic cells (D’Rozario et
al., 2023; Willard-Mack, 2006).

Aging of lymph nodes is characterized by atrophy, decreased
cortical and medullary areas, reduced T-cell zones, diminished
number and size of GCs, fibrosis, and increased adipose tissue
(Dempsey, 2022; Luscieti et al., 1980; Silva-Cayetano et al.,
2023). Research has revealed significant structural differences in
lymph nodes among different age groups and anatomical
locations. The formation of GCs is most prominent in infants
and children, less common in young adults, and typically absent
in older adults, resulting in weakened immune responses
(Luscieti et al., 1980). Denton et al. (2022) reported that this
age-related defect is associated with lymphoid stromal cells
expressing MAdCAM1. Immunization of heterozygous mice
demonstrated that the GCs in older mice were smaller and that
the expansion of MAdCAMI1™* stromal cells was reduced.
Transcriptomic analysis revealed changes in these stromal cells
after immunization, but this response was absent in older mice.
TLR4 agonist immunization enhanced the GC response in older
mice, albeit with only slight improvement in humoral immunity
(Dempsey, 2022). Moreover, the number and size of GCs in the
lymph nodes of aged mice decreased. This is due to dysregulated
CXCR4 expression in aging Tth cells, leading to their misplace-
ment within GCs and impairing their ability to support B cells and
promote antibody production (Silva-Cayetano et al., 2023).

Adipose tissue replacement (adipose involution) is a character-
istic of many peripheral lymph nodes, especially those subjected
to less antigenic stimulation, such as the elbow, axillary, and
popliteal lymph nodes (Chen et al., 2022; Luscieti et al., 1980).
Lymph node adiposis is common in older adults, and one possible
mechanism involves the infiltration of surrounding adipocytes
into the lymph nodes (Leborgne et al., 1965). However, research
data also suggest that adiposis originates from the deeper parts of
the medulla and involves cells expressing markers of fibroblast
and adipocyte lineages, exhibiting transitional phenotypes. These
changes are associated with the downregulation of lymphoid
protein B (LTB), which inhibits the differentiation of SC precursor
cells into adipocytes during early lymph node development.
Additionally, medullary reticular cells (MedRCs) are more prone
to transdifferentiate into adipocytes, while T-cell zone reticular
cells (TRCs) are less likely to do so. Lymph node adiposis leads to
the loss of medullary stromal matrix and extensive vascular
remodeling of high endothelial venules (HEVs) and lymphatic
vessels, thereby altering the immune environment of human
lymph nodes (Bekkhus et al., 2023). Aging of lymph nodes
exacerbates inflammatory responses. In the draining lymph
nodes of aged mice, effector T cells exhibit characteristics of
cellular senescence and proinflammatory effects, with strong
production of IFN-y being a prominent feature (Ashour et al.,
2023).

Changes in the tonsils during aging

The tonsils, which are situated at the base of the tongue and
pharynx, comprise specialized compartments that contribute to
immune functions, such as the reticular crypt epithelium, the
extrafollicular area, the mantle zones of lymphoid follicles, and
the GCs (Korsrud and Brandtzaeg, 1980; Nave et al., 2001).
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During embryological development, lymphocytes and lymphoid
stem cells invade the lamina propria and begin to form follicles
and eventually GCs after approximately 16-17 weeks. The
formation of tonsillar GCs signifies the activation of B cells
induced by exogenous antigens, which typically occurs shortly
after birth. The differentiation of effector B cells into extra-
follicular plasma cells can be observed approximately 2 weeks
after birth (Korsrud and Brandtzaeg, 1980). The pharyngeal and
palatine tonsils usually reach their maximum size at approxi-
mately 6 years of age and during puberty, respectively. Subse-
quently, they undergo involution, characterized by increased
production of fibrous tissue and eventual fatty atrophy, which
typically occurs at approximately 8-10 years of age and in
adulthood, respectively (Arambula et al., 2021). Unlike lymph
nodes, tonsils are not fully encapsulated and lack incoming
lymphatics. The surface of the tonsils forms crypts to increase the
contact surface area with pathogens, and abundant dendritic
cells are present. Dendritic cells take up exogenous antigens and
transport them to the T-cell zone outside the follicles and B-cell
follicles (Brandtzaeg, 2015; Perry and Whyte, 1998).

Tonsil volume significantly diminishes with age, primarily due
to a reduction in lymphoid tissue and an increase in fibrous
connective tissue (Isaacson and Parikh, 2008). Children exhibit
larger palatine tonsils, which decrease in size as they mature
(Akcay et al., 2006; Nave et al., 2001). The T-cell population,
particularly the CD4* cell population, increases until the age of
35, after which it stabilizes. Conversely, the proportion of B cells
decreased until 35 days of age and then stabilized. The number of
natural Kkiller cells remains consistently low across all age groups
(Bergler et al., 1999; Harada, 1989). The age-related increase in
T follicular regulatory (Tfr) cells suggests a potential role in IgG4-
related disease (IgG4-RD) pathogenesis. However, the inhibitory
function of Tfr cells declines in elderly individuals, which may
contribute to the development of IgG4-RD (Ito et al., 2019). As
individuals age, the tonsils undergo structural changes, with a
decrease in lymphoid tissue and an increase in fibrous tissue. This
is accompanied by shifts in immune cell populations. The
increase in Tfr cells with age could theoretically enhance
immune regulation. However, the decline in their inhibitory
function in older individuals may lead to a reduced ability to
control immune responses, potentially contributing to the
development of IgG4-RD. This suggests that the balance between
regulatory and effector immune responses in the tonsils is crucial
and can be disrupted by age-related changes.

The aging process in tonsils is associated with alterations in
both immune cell composition and metabolic profiles. The
increase in eosinophils and mast cells may reflect an altered
immune response, potentially contributing to chronic inflamma-
tion. Metabolic changes can affect tonsil function and the local
immune environment, impacting both innate and adaptive
immune responses. Epigenetic alterations may regulate gene
expression related to immune function and inflammation,
influencing tonsil aging and the progression of chronic inflam-
matory conditions. These changes collectively contribute to an
age-dependent shift in tonsil physiology and immune capacity.

Changes in the blood during aging

The peripheral blood is the body’s largest fluid tissue, circulating
throughout and composed mainly of red blood cells, white blood
cells, and platelets. Red blood cells, which are abundant in
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peripheral blood, contain hemoglobin for oxygen transport to
tissues and carbon dioxide for transport to the lungs (Ahmed et
al., 2020). White blood cells, including lymphocytes, granulo-
cytes, and monocytes, play crucial roles in immune defense by
identifying and clearing pathogens and foreign substances
(Chaplin, 2010). Platelets, which are cell fragments, play a role
in hemostasis and wound healing at sites of injury (Koupenova et
al., 2018). Peripheral blood indicators can reflect an individual’s
health status, and its composition and function undergo age-
related changes.

Older adults often experience a gradual decline in red blood cell
count and hemoglobin levels, a condition known as anemia
during aging. This is attributed to decreased production of
erythropoietin, the hormone that stimulates red blood cell
production, as well as decreased bone marrow function (Halawi
et al.,, 2017). Red blood cells from older adults also tend to have
decreased flexibility and increased rigidity, which can impair
their ability to effectively transport oxygen (Wink, 1992). The
lifespan of individual red blood cells may also be shortened in
older adults, further contributing to anemia (Halawi et al.,
2017). Platelet count and function can decline with age. Older
adults often exhibit lower platelet counts than younger
individuals (Le Blanc and Lordkipanidzé, 2019). Platelet
aggregation and adhesion may be impaired in older adults,
leading to an increased risk of bleeding and impaired wound
healing (Gawaz and Vogel, 2013). Reduced platelet function in
older adults is associated with changes in platelet signaling
pathways, decreased expression of adhesion receptors, and
alterations in platelet-endothelial cell interactions (Gawaz and
Vogel, 2013).

With age, there is a decrease in conventional CD8* T cells,
leading to an increase in the CD4*/CD8* T-cell ratio, while the
total CD4* T-cell count remains stable. Mucosal-associated
invariant T (MAIT) cells decrease after 55 years of age. Naive
CD4* T cells undergo transcriptional remodeling, metabolic
changes and active cytokine signaling, particularly upregulation
of the IL-2-STAT5 pathway. This results in increased CD25
expression and enhanced homeostatic proliferation in elderly
individuals. Th2 and HLA-DR* memory T cells accumulate with
age, but cytotoxic CD4* T cells remain unchanged. There was a
decrease in naive Treg cells and an increase in memory Treg cells,
with no overall change in Treg proportions. The number of naive
CD8* T cells significantly decreased, while the number of GZMK™*
effector memory and central memory CD8* T cells increased. In
yd T cells, naive and V61 GZMB™* subsets show age-related
changes. B cells and NK cells show limited or no age-related
changes, and myeloid cells remain stable (Terekhova et al.,
2023). Aging affects T-cell populations by altering their
proportions and functions. The decrease in CD8* T cells and
increase in the CD4*/CD8* T-cell ratio reflect a shift in T-cell
homeostasis. The transcriptional remodeling of naive CD4* T
cells, which is driven by metabolic changes and cytokine
signaling, suggests an adaptation to maintain immune function
despite age-related decline. The upregulation of the IL-2-STAT5
pathway and the consequent increase in CD25 expression
promote homeostatic proliferation of naive CD4* T cells,
compensating for their reduced numbers. The selective accumu-
lation of certain memory and effector T-cell subsets indicates a
shift toward a memory-dominated immune system, which may
be a response to cumulative antigen exposure over a lifetime. The
stability of B cells, NK cells, and myeloid cells suggested that these
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populations are less affected by age-related changes in the
immune system. Overall, these changes reflect an attempt to
maintain immune surveillance and response capacity in the face
of aging.

Characteristics of T-cell aging

The complexities of T-cell aging are multifaceted. Aging leads to a
reduction in TCR diversity and a decrease in naive T-cell
numbers. Moreover, aging triggers intricate modifications in
memory T cells, marked by an increased proportion of effector T
cells, central memory T cells, and terminally differentiated
effector memory T cells re-expressing CD45RA (TEMRA) cells.
Various subsets of effector T cells exhibit distinct behaviors as
aging progresses, including an imbalanced Th1/Th2 ratio,
heightened differentiation of Th9 cells, increased pathogenicity
of Th17 cells, and compromised Treg cell function. Additionally,
the ratio of Tfh/Tfr cells changes. These alterations may
contribute to an elevated susceptibility to age-related diseases
and a decline in immune function. In this context, we elucidated
the characteristics and changes occurring within different T-cell
subsets during the process of T-cell aging (Figure 2).

Reduction in the TCR repertoire diversity and naive T cells
during aging

The TCR is a crucial receptor on the surface of T cells and is
composed of two polypeptide chains, o and B. These proteins
activate T cells by recognizing and binding to specific peptide-
MHC antigens. This recognition function of the TCR relies on its
high diversity, which is produced by the gene recombination

!-! TCR repertoire

“ T cell subsets

mechanism during the development of T cells (Kuhns et al.,
2006). Specifically, the TCRa chain is composed of variable (V)
and joining (J) gene segments, while the TCRf chain is composed
of V, diverse (D), and ] gene segments. A small fraction of T cells
express y0 TCRs, which directly bind to pathogen-derived
glycoproteins or nonclassical MHC molecules. The random
rearrangement of these gene segments, coupled with mechan-
isms such as the insertion and deletion of nucleotides, enables the
extremely rich diversity of TCRs, which are theoretically capable
of producing up to 1014-101° distinct TCR sequences (Weng,
2023). The unique combinations of various TCRs together
construct the diversity of the TCR repertoire. The diversity of the
TCR repertoire is crucial for the immune system’s ability to
recognize and respond to a wide range of different pathogens
(Mao et al., 2024).

In immunological research, single-cell immune repertoire
sequencing technology can provide paired sequence information
on TCRs, while bulk-TCR sequencing can obtain data by
analyzing TCRa or TCRP (Pai and Satpathy, 2021). The
algorithms for calculating the diversity of TCR repertoires include
the GLIPH algorithm, which is based on sequence similarity and
identifies specific groups by assessing features such as shared V
gene usage and CDR3 length. The TCRdist algorithm enables
clustering and visualization of TCR sequences by defining a new
measure of distance. In addition, diversity metrics such as the Hill
number, Rényi entropy, Shannon entropy, and Gini-Simpson
index are important tools for quantifying and analyzing the
complexity of TCR repertoires (Friedlander et al., 1985;
Katayama et al., 2022). These methods are crucial for under-
standing immune responses and developing treatment strategies
for immune-related diseases.
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Mature naive SPs exit the thymus and enter peripheral
lymphoid organs. During pathogenic infections, T cells encounter
foreign peptides presented by antigen-presenting cells (APCs),
such as macrophages, dendritic cells, and B cells. Engagement of
the TCR with the antigenic peptide activates T cells, leading to
clonal expansion and differentiation to perform effector functions
through complex molecular changes in the plasma membrane,
cytoplasm, and nucleus. TCR signaling is crucial for T-cell
activation and the immune response, and dysregulation of TCR
signaling can result in T-cell dysfunction or autoimmunity (Shah
et al., 2021).

A reduction in TCR repertoire diversity may lead to a decline in
the immune system’s ability to recognize and respond to a variety
of pathogens, weaken immune memory and the preventive
effects of vaccines (Xiao et al., 2022; Xiao et al., 2023), increase
the risk of autoimmune diseases (He et al., 2022), diminish the
surveillance and clearance capacity against tumors (Schreiber et
al., 2020; Tichet et al., 2023), and accelerate the process of
immunological aging with advancing age (Foth et al., 2020),
thereby affecting overall immune health and defense functions.
The decline in TCR repertoire diversity with age is closely
associated with a decrease in the number of naive T cells. This
reduction in peripheral naive T cells is observed in both mice and
humans, with a more pronounced decrease in CD8* naive T cells
than in CD4* naive T cells in humans. This difference may be
attributed to the greater abundance of Tribbles homolog 2
(TRIB2) in naive CD4* T cells, which suppresses AKT activation
and counteracts quiescence exit (Cao et al., 2023).

There are two main reasons for the decrease in naive T-cell
numbers during aging. First, thymic involution leads to reduced
thymic output. Second, antigen stimulation of peripheral naive T
cells results in the accumulation of memory T cells over time and
a decrease in the proportion of naive T cells. In mice, the
maintenance of peripheral naive T cells primarily relies on
thymic output throughout life rather than self-renewal and
proliferation of peripheral naive T cells. In humans, the
maintenance of peripheral naive T cells depends on thymic
output to varying degrees at different stages of life. During
childhood, the maintenance of peripheral naive T cells relies on
both thymic output and peripheral T-cell division. However,
thymic involution becomes primarily dependent on peripheral T-
cell division (de Boer et al., 2023). In elderly individuals, the self-
renewal of naive T cells through homeostatic proliferation often
fails (Goronzy and Weyand, 2019). The diversity of the TCR
repertoire in the human body decreases with age and is strongly
associated with a decrease in naive T cells. TCRp diversity is
significantly reduced in both CD4* and CD8™* T cells, while TCRa
expression remains relatively unchanged. These changes pri-
marily occur in naive T cells, with minimal alterations observed
in memory T cells. Analysis of complementarity determining
region 3 of the T-cell receptor  chain (CDR3p) region of the TCR
revealed age-related decreases in CDR3 length, nontemplated
diversification nucleotide (NDN) insertions, and nontemplate-
added N nucleotide numbers. The physicochemical properties of
the central region of the CDR3p loop also undergo changes
(Weng, 2023). The reduced diversity in the TCR repertoire,
which provides specific high-affinity TCRs, affects responses to
newly encountered antigens in older adults (Ci¢in-Sain et al.,
2010; Gustafson et al., 2020). The age-related decline in naive T-
cell numbers and TCR repertoire diversity has significant
implications for immune function, leading to a diminished
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capacity to respond to new infections and a reduced efficacy of
vaccines in elderly individuals, thereby highlighting the im-
portance of maintaining a robust and diverse immune system
throughout life.

Changes in memory T cells during aging

When naive T cells interact with APCs, they become activated,
proliferate, and differentiate into effector T cells and memory T
cells. Effector T cells rapidly expand and release cytokines to
directly eliminate pathogens. On the other hand, memory T cells
enter a dormant state, awaiting a signal to encounter the same
antigen again. Memory T cells possess long-term survival
capabilities and can persist in the body for years or even a
lifetime. When the body encounters the same antigen again,
memory T cells are quickly activated and differentiate into
effector T cells. These effector T cells rapidly expand and release a
large amount of cytokines to counteract the reinvasion of
pathogens (Kiinzli and Masopust, 2023).

Central memory T cells primarily reside in lymphoid tissues
and provide long-term immune memory and persistent immune
protection. Effector memory T cells mainly exist in nonlymphoid
tissues, enabling them to rapidly respond to reinfection and clear
pathogens swiftly. Tissue-resident memory T cells, on the other
hand, are found in specific tissues and provide rapid and localized
immune responses (Kiinzli and Masopust, 202 3). Inmunological
memory plays a significant role in resisting foreign pathogens.
However, achieving the same level of effectiveness as in young
elderly individuals is extremely challenging. With age, varicella-
zoster virus (VZV), which was originally in a latent state, can
reactivate and manifest as a shingle. By the age of 80,
approximately 50% of the population has experienced shingles
at least once (Ciabattini et al., 2018; Goronzy and Weyand,
2019). Additionally, older adults who received the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine
showed poor expansion of preexisting memory T cells (Saggau
et al., 2022).

A study revealed that the proportion of total T cells in
peripheral blood did not significantly differ among healthy
individuals aged 20 to 70 years, while the percentage of CD4*
T cells tended to increase and that of CD8* T cells tended to
decrease with advancing age. However, significant changes were
observed in the proportions of memory T-cell subgroups within
CD4* T cells and CD8* T cells in peripheral blood, with more
prominent changes in CD8* T cells (Jia et al., 2023).

For CD4™" T cells in peripheral blood, the proportion of TEMRA
cells did not significantly change with age (20-24 age group:
9.5%%15.96%, 70 age group: 9.05%%7.21%). However, the
percentages of effector memory CD4+ T cells, CD4* TEMRA T
cells, and mature NK cells in peripheral blood were significantly
greater in women aged 35 years and older than in younger
women. Age-related dysregulation of CD4* T and NK cells may
be involved in pregnancy loss in older women (Muyayalo et al.,
2023). The proportions of CD4™* T cells among central memory T
cells (20-24 age group: 19.57%%6.34%, 70 age group: 24.32%
+8.79%) and effector memory T cells (20-24 age group: 33.16%
+11.42%, 70 age group: 37.09%+13.60%) increased with age.
On the other hand, CD8* T cells exhibited more pronounced
changes in memory T-cell subgroups in peripheral blood. Among
CD8* T cells, the proportions of TEMRA (20-24 age group:
33.48%%16.92%, 70 age group: 44.97%%17.3%), central
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memory T cells (20-24 age group: 3.47%%2.46%, 70 age group:
5.32%%3.86%), and effector memory T cells (20-24 age group:
33.3%%16.69%, 70 age group: 37.75%=%16.71%) increased
with age, with the increase in TEMRA cells being more significant
(Jia et al., 2023).

TEMRA cells represent a population of senescent cells that
accumulate with age, often due to specific infections such as
cytomegalovirus. Compared with effector memory T cells, CD8*+ T
cells exhibit greater expression of genes related to cytotoxicity
and depletion, especially in CD8™* T cells, where high levels of the
cytotoxic cytokines TNF-o, IFN-y, perforin, and GZMB are
expressed. Approximately 60% of TEMRA cells express high
levels of markers of aging, including killer cell lectin-like receptor
G1 (KLRG1), CD57, and programmed cell death receptor 1 (PD-
1), in contrast to only 10% of naive cells and central memory T
cells. Furthermore, TEMRA cells have a lower proliferation
capacity and lower telomerase activity (Strickland et al., 2023).
CD8* TEMRA cells are increased in the lungs of individuals with
mild to moderate chronic obstructive pulmonary disease and
may contribute to inflammation preceding severe disease
(Villasenor-Altamirano et al., 2023). Age-related high hetero-
geneity in CD8* TEMRA cell accumulation and disruption of the
kynurenine pathway are associated with the development of
chronic inflammation and insulin resistance (IR). Comprehensive
strength and endurance exercise attenuates CD8* TEMRA cell
differentiation and impacts the kynurenine pathway in older
individuals (BoLlau et al., 2023).

Changes in the effector T-cell subset

Effector CD4* T cells encompass various subpopulations, includ-
ing Th1, Th2, Th17, Th9, and Tth cells, while Treg and Tfr cells
serve as regulatory immune cells. Each of these T-cell subpopula-
tions plays a distinct role in immunity, contributes to the
development of different immune-related diseases, and undergoes
specific dynamic changes during aging. Consequently, they
exhibit diverse manifestations of diseases that are more prevalent
among elderly individuals.

Th1 cells

Th1 cells primarily combat intracellular pathogens such as
parasites, viruses, and intracellular bacteria by mediating
cellular immunity and delayed hypersensitivity (Szabo et al.,
2000). The differentiation of naive T cells into Th1 cells requires
IL12 and involves the activation of macrophages and dendritic
cells. Thl cells also produce TNF, lymphotoxin-a, and IL-2,
which actively participate in anti-infection immunity (Abbas et
al., 1996). A study analyzing peripheral blood samples from
healthy individuals across different age groups (30-69 years old)
revealed that the proportion of Thl cells increases between the
ages of 30 and 59 but declines after the age of 50 (Aragon et al.,
2023). Moreover, the spleens of older mice exhibit a greater
proportion of Th1 cells than those of younger mice (Kawata et al.,
2021).

Th2 cells

Th2 cells are crucial for B cells to execute humoral immunity,
eliminate extracellular microorganisms, and combat intestinal
worms (Szabo et al., 2000). Additionally, they contribute to
antibody class switching, resulting in the production of IgE,
which can induce or sustain allergic reactions (Kemter and
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Nagler, 2019). Unlike those of Thl and Th17 cells, the
proportion of Th2 cells in the peripheral blood of individuals aged
40-49 years increases from 19.72% to 23.36% and remains
stable until the age of 69 years (Aragon et al., 2023). Similarly,
the proportion of Th2 cells in the spleens of older mice is greater
than that in the spleens of younger mice (Kawata et al., 2021).In
rats, Th2 cell abundance continues to increase during aging (Ye
et al.,, 2022). The age-related increase in Th2 cells impacts
immune responses associated with aging (Mansfield et al., 2012)
and contributes to an increased frequency of food allergies
among elderly individuals (De Martinis et al., 2019).

Th1/Th2 balance

During the aging process in humans and mice, there is a decline
in the Th1 response and an exacerbation of the Th2 response
(Shearer, 1997). The decreased expression of CD28 with age
disrupts the balance between Th1 and Th2 cells, impairing T-cell-
mediated immunity (Shimizu et al., 2008). The consumption of
probiotic Lactobacillus rhamnosus fermented milk has been shown
to improve Th1/Th2 immune homeostasis, antioxidant status,
and resistance to pathogenic Escherichia coli in aging mice and to
enhance anti-infection immunity (Sharma et al., 2014).

Th9 cells

Th9 cells play a role in preventing intestinal worm infections, and
their IL-9 production stimulates the proliferation of hematopoie-
tic cells, inhibits their apoptosis, and activates proinflammatory
Th17 cells (Angkasekwinai, 2019). Naive CD4* T cells from
elderly individuals tend to differentiate into Th9 cells through
two main mechanisms. First, there is increased responsiveness to
transforming growth factor B (TGFP) stimulation as age
advances, which is attributed to the upregulation of the TGFbR3
receptor and increased expression of the PU.1 transcription
factor. Second, aged immature CD4* T cells display altered
transcription factor profiles upon TCR stimulation, including
increased expression of BATF and IRF4 and decreased expression
of ID3 and BCL6. These transcription factors contribute to Th9
differentiation and IL9 transcription (Hu et al., 2019).

Th17 cells

Th17 cells provide protection against bacteria and fungi at
mucosal surfaces (Wang et al., 2024), targeting certain
microorganisms that Th1 or Th2 cells cannot effectively combat,
such as Mycobacterium tuberculosis, Bacillus fragilis, and Klebsiella
pneumoniae (Bedoya et al., 2013). The proportion of Th17 cells
increases between the ages of 30 and 49, followed by a decrease
after the age of 49 (Aragon et al., 2023). Furthermore, the
spleens of older mice exhibit a greater proportion of Th17 cells
than those of younger mice (Kawata et al., 2021). Elevated Th17
expression in CD4* T cells of elderly individuals promotes age-
related chronic inflammation and inflammatory processes. In
elderly mice infected with Listeria monocytogenes, the differentia-
tion of proinflammatory Th17 cells is enhanced, exacerbating the
pathological response during listeriosis (Alam et al., 2020).
However, another study revealed that Th17 cell pathogenicity
decreases in aging mice, as indicated by reduced levels of the IL-
23R transcript and protein and downregulated secretion of GM-
CSF in aging Th17 cells.

Th1/Th17 cell ratio
The ratio of Th1 to Th17 cells significantly increases before the

SCIENCE CHINA Life Sciences Vol.68 No.2, 328-353 February 2025 335


https://doi.org/10.1007/s11427-024-2695-x

age of 59 and then decreases (Aragon et al., 2023). Additionally,
a study on T cells in women before and after menopause revealed
that after menopause, the proportion of Thl cells decreases,
while the proportion of Th17 cells increases. This shift has been
associated with osteoporosis and is influenced by estrogen levels
(Bhadricha et al., 2023). Another study revealed that testoster-
one inhibits the differentiation of Th1 and Th17 cells (Kissick et
al., 2014). These findings suggest that age-related changes in sex
hormones play a significant role in T-cell aging and that the
effects of estrogen and testosterone differ, indicating potential
gender-specific susceptibilities to different diseases in aging
individuals. Furthermore, the differentiation of Th1l and Th17
cells has been implicated in other autoimmune diseases, such as
psoriasis and Crohn’s disease (Gao et al., 2022b).

Treg cells

Treg cells can suppress immune responses and maintain
peripheral immune tolerance (Caza and Landas, 2015). FOXP3
is the master transcription factor for Treg cells (Jia et al., 2024).
Insufficient expression of CD4, CD25, and FOXP3 in Treg cells
leads to severe autoimmune responses in experimental and
clinical models (Buckner, 2010). Studies have shown that in
aged BALB/c mice, the percentage of CD4*CD25* Treg cells
increases, but their function significantly changes (Zhao et al.,
2007). Moreover, the proportion of Treg cells in the spleens of
older C57BL/6] mice is greater than that in the spleens of
younger mice (Kawata et al., 2021). During the aging process in
humans and mice, the number of naive Treg cells decreases,
while the number of memory Treg cells increases. This dual effect
may lead to a decline in immune function in elderly individuals,
although aged Treg cells may exhibit an enhanced ability to
regulate immune responses. These changes are closely linked to
immune aging and the development of related diseases (Roca-
mora-Reverte et al., 2020). Aging Treg cells exhibit a defective
proliferative capacity and display high levels of SA-B-gal activity.
Additionally, aging-related genes, including p16Ink4a, p19Arf,
and p21Cipl, were upregulated. Compared with young Treg
cells, aged Treg cells fail to protect mice from colitis induced by
immature T cells. Aged Treg cells express characteristic Treg
genes (Foxp3, Tnfrsf18 encoding GITR, Ikzf2, I12ra, Capg) at
normal levels but exhibit increased expression of key inflamma-
tory cytokines (I11a, Il11b, 114, 116, 111 7a, 111 7f) (Guo et al., 2020).

Tfh and Tfr cells

Tth cells reside in the lymphoid follicular region of peripheral
immune organs. Tfr cells have immunomodulatory functions
within GCs, inhibiting GC reactions and interacting with Tfh and
B cells to suppress the production of high-affinity antibodies (Ding
et al., 2019). The main role of B cells is to assist in the survival,
proliferation, and differentiation of B cells in the GCs of lymphoid
follicles (Crotty, 2014). In a study on aging in BALB/c mice, it
was observed that the number of Tfh cells in the spleens of older
mice was lower than that in younger mice, while the number of
Tfr cells remained unchanged. Consequently, the proportion of
Tfr to Tth cells significantly increased, resulting in a decrease in
the number of splenic B cells. This change was more pronounced
in females (Arsenovi¢-Ranin et al., 2019). Similar changes were
observed in aging C57BL/6 mice (Bufan et al., 2020). Another
study revealed that older mice had a greater proportion of Tth
cells than younger mice, but Tth cell populations from older mice
exhibited increased PD-1 expression and contained more CD153-
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positive cells. These markers are described as age-related features
of T cells. Additionally, the ability of Tth cells to aid in the
production of IgG antibodies by B cells was decreased in older
mice (Kawata et al., 2021). In humans, the abundances of Tth1
and Tth2 cells largely remain unchanged with age (Huang et al.,
2020).

Mechanisms of T-cell aging

Many mechanisms contribute to T-cell aging, including epige-
netic inheritance, telomeres, metabolism, oxidative stress,
mitochondria, and autophagy. A comprehensive understanding
of the regulation and interrelationships among these factors is
crucial for elucidating the molecular mechanisms of T-cell aging
and establishing a theoretical foundation for preventing and
treating related diseases. In this context, we aimed to elucidate
the roles of these factors in T-cell aging (Figure 3).

Epigenetics

Epigenetics refers to changes in gene expression or cellular
phenotype that can be preserved and inherited through
mechanisms other than alterations in DNA sequence. Epigenetic
phenomena involve various mechanisms, such as DNA methyla-
tion, RNA methylation, RNA interference, nucleosome position-
ing, chromatin conformational changes, chromatin remodeling,
histone modifications, and long noncoding RNA sequences.
Epigenetic research primarily focuses on two categories: gene-
selective transcriptional regulation, including DNA methylation,
genomic imprinting, histone covalent modifications, and chro-
matin remodeling; and posttranscriptional regulation, including
noncoding RNA, microRNA, antisense RNA, introns, and
riboswitches in the genome.

Chromatin accessibility

The highly folded chromatin structure plays a crucial role in
exposing DNA sequences for replication and transcription. This
region, known as the chromatin development region, is closely
associated with transcriptional regulation because it allows for
the binding of transcription factors and other regulatory
elements. When the dense nucleosome structure is disrupted, it
creates an accessible region known as open chromatin or
chromatin accessibility. Open chromatin encompasses cis-reg-
ulatory elements such as promoters, enhancers, insulators, and
silencers, as well as trans-acting factors.

The epigenetic state of naive T cells enables them to remain in a
quiescent and viable state while retaining the capacity to
proliferate and differentiate upon stimulation (Weng et al.,
2012). On the other hand, the chromatin structure provides
stability to memory states after antigen clearance. The epigenetic
landscape of accessible sites formed in effector T cells is
maintained in memory cells for extended periods, serving as a
crucial mechanism for immunological memory (Akondy et al.,
2017).

In a study, the authors investigated differentially open
chromatin sites between TCR-stimulated and unstimulated T
cells. The number of differentially active open sites increased over
time. Genes associated with T-cell activation, such as TNF,
IL2RA, and GZMB, gained chromatin accessibility following TCR
stimulation, while quiescent genes such as TCF7 lost accessi-
bility. Changes in chromatin accessibility are closely correlated
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Figure 3. The mechanism of T-cell aging.

with alterations in transcription. However, T cells from elderly
individuals exhibited weaker TCR signaling during TCR stimula-
tion, yet they displayed similar temporal patterns in chromatin
changes as those observed in younger adults, even with excessive
accessibility to bZIP family members after 48 h of stimulation
(Zhang et al., 2023).

Significant changes in chromatin accessibility occur during the
aging process in CD4* and CD8* T cells. These changes in CD4*
T cells are relatively minor compared with those in CD8* T cells,
which undergo extensive chromatin remodeling during aging.
This discrepancy is closely associated with the differential rate of
aging between CD4* and CD8* T cells, with CD8* T cells
experiencing more pronounced changes due to a reduced initial
T-cell population after aging (Ucar et al., 2017).

Histone modification

Histone modification is a cellular process that plays a crucial role
in regulating gene expression by modifying the structure and
function of histones. These modifications encompass a range of
chemical reactions, including methylation, acetylation, and
phosphorylation, which can impact DNA accessibility and
regulate the transcription and posttranscriptional modifications
of genes. As a result, histone modifications have significant
implications for cellular function and development.

Researchers have compared immune organs in aged and
young rats and observed histone modification changes in
lymphocytes associated with gene expression and epigenetic
regulation. For instance, in aged rats, Suv39hl, a histone
methyltransferase, is downregulated in the spleen and thymus,
leading to reduced levels of H3K9me3 overall (Sidler et al.,
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2013).

During acute lymphocytic choriomeningitis virus (LCMYV)
infection in mice, individual CD8* T cells were analyzed,
revealing that the differentiation of terminal effector cells was
initiated by an early burst of transcriptional activity. Subse-
quently, the epigenetic silencing of transcripts associated with
memory lymphocytes is fine-tuned through the histone mod-
ification H3K27me3 and the enzyme Ezh2 (Gray et al., 2017).

At the single-cell level, older T cells exhibit increased
heterogeneity in histone acetylation, indicating diverse states of
activation and differentiation (Goronzy and Weyand, 2019). This
suggests that histone acetylation patterns contribute to the
variability in T-cell function and differentiation observed in aging
individuals.

DNA methylation

DNA methylation refers to the addition of a methyl group to DNA
molecules, primarily occurring on cytosine residues in CpG
dinucleotides. This modification has a significant impact on gene
accessibility, gene transcription activity, and consequently,
cellular function and development.

During CD4* T-cell senescence, there are CpG methylation
changes at more than 10,000 sites, while in CD8* T cells, the
changes are even more extensive, affecting more than 40,000
sites (Goronzy and Weyand, 2019). The changes in DNA
methylation in senescent CD4* T cells partially overlap with
those observed in senescent CD8* T cells (Zhu et al., 2018). In
both CD4* and CD8* T cells, changes in DNA methylation at
each specific site are inconsistent. Some sites show increased
DNA methylation levels (upregulation), while others exhibit
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decreased levels (downregulation) (Roy et al., 2023).

In aging CD8* TEMRA cells, there are significant alterations in
DNA methylation levels. Genome-wide methylation analysis of
CD8* TEMRA cells revealed numerous methylation sites
associated with immunosenescence. The methylation levels of
these sites are positively correlated with the degree of immuno-
senescence (Salumets et al., 2022). With increasing age, C57BL
mice exhibit hypomethylation of CpG sites on Foxp3, accom-
panied by increased Foxp3 expression and an increased number
of Treg cells. Furthermore, Treg cells in older mice exhibit
stronger inhibitory effects, as indicated by higher levels of IL-10
production, while dendritic cells express lower levels of CD86
(Garg et al., 2014). Additionally, the DNA methylation levels of
certain inflammation-related genes, such as IL-6 and IFN-y, are
influenced by age, potentially leading to an enhanced inflam-
matory response (Stevenson et al., 2021).

Overall, DNA methylation plays a crucial role in T-cell aging by
regulating gene expression and function, thereby influencing the
immune response and function of T cells. Analyzing the
methylation levels of the ELOVL2 gene and quantifying sjTREC
levels in blood samples from individuals of varying ages has
proven useful for predicting actual age. These markers provide
valuable insights into age prediction (Paparazzo et al., 2022).

MicroRNAs

MicroRNAs (miRNAs) are a class of small noncoding RNA
molecules consisting of approximately 20-22 nucleotides. They
play a crucial role in posttranscriptional gene regulation by
binding to messenger RNA (mRNA) molecules, either inhibiting
their translation or promoting their degradation. In the context
of T-cell aging, miRNAs have emerged as important regulators of
immune function. Studies have revealed that changes in specific
miRNAs during T-cell aging contribute to the regulation of
immune responses.

One extensively studied miRNA is miR-155, which is
upregulated in T cells with age. This upregulation is associated
with enhanced inflammatory responses and immune activation.
miR-155 is involved in the age-related increase in Toll-like
receptor 5 (TLR5) expression, leading to heightened inflamma-
tory responses in aged T cells (Qian et al., 2012).

Another miRNA of interest is miR-181a, which plays a
significant role in T-cell development and function. Down-
regulation of miR-181a in aged T cells contributes to T-cell
dysfunction and impaired immune responses (Li et al., 2012).
Decreased expression of miR-181a leads to increased activity of
bispecific phosphatase 6, which impairs TCR sensitivity.

Overall, miRNAs are key players in the regulatory networks
involved in T-cell aging. Changes in miRNA expression, such as
the upregulation of miR-155 and downregulation of miR-181a,
contribute to altered immune function and the age-associated
decline in T-cell responses. Understanding the roles of specific
miRNAs in T-cell aging can provide insights into potential
therapeutic targets for immune-related disorders associated with
aging.

Telomere

As individuals age, the length of telomeres in T cells gradually
decreases, which is associated with immunosenescence and an
increased risk of disease (Ucar et al., 2017). Telomerase is an
enzyme that plays a role in protecting and repairing shortened or
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damaged telomeres (Cech, 2004). The activity of telomerase in T
cells from peripheral blood decreases with age (between 23 and
83 years). However, telomerase activity in centenarians is
significantly greater than that in individuals aged 67 to 83 and
is comparable to that in individuals aged 50 to 66 (Tedone et al.,
2019). Peripheral blood mononuclear cells isolated from healthy
individuals show an increasing number of cells with age-related
B-galactosidase activity. Among these cells, the CD8* T-cell
population exhibited the greatest age-related increase, with an
average proportion of 64% of cells showing high SA-B-Gal
activity in donors over 60 years old. CD8* T cells with high SA-B-
Gal activity exhibit senescence induced by telomere dysfunction
and p16-mediated senescence, resulting in impaired proliferative
capacity (Martinez-Zamudio et al., 2021). In a recent study, it
was found that certain APCs deliver telomeres to T lymphocytes
through small particles called extracellular vesicles. After
telomere transfer, recipient T cells become long-lived and possess
memory and stem cell properties, enabling them to provide long-
term protection against deadly infections (Lanna et al., 2022).

Metabolism

Naive T cells are characterized by low metabolic activity and
preferentially utilize oxidative phosphorylation (OXPHOS) to
generate ATP, maintaining a resting state and homeostasis (Han
et al., 2023). However, with age, the failure of NRF1 to maintain
promoter opening results in decreased oxygen consumption in
senescent CD8* T cells, impairing their metabolic status and
leading to increased cell loss. This metabolic dysfunction hinders
vigorous and energy-demanding clonal expansion during
immune responses (Moskowitz et al.,, 2017). Upon antigen
stimulation, initial T cells rapidly shift their metabolic mode from
OXPHOS to aerobic glycolysis (Chang et al., 201 3). During acute
infection, the primary metabolic mode of CD8* T cells transitions
from mitochondrial OXPHOS to glycolysis, meeting the bioenergy
demands necessary for the activation of initial T cells into effector
T cells (Buck et al., 2015). The activation defects observed in
aging CD4™* T cells are associated with decreased glycolysis and
carbon metabolism. The addition of metabolites to one-carbon
metabolism partially restores the activation defect in aging CD4+
T cells (Ron-Harel et al., 2018). It remains to be studied whether
naive CD8* T cells also experience impaired glycolysis during
aging. Fatty acid oxidation (FAO) and OXPHOS are crucial for
maintaining the survival and energy requirements of differentiat-
ing memory T cells (Corrado and Pearce, 2022). After reaching
peak effector differentiation, memory precursor cells shift back to
OXPHOS while also gaining the ability to utilize FAO (O’Sullivan
et al., 2014; van der Windt et al., 2012). Compared with effector
T cells, memory T cells possess greater mitochondrial mass and
greater mitochondrial spare respiratory capacity (SRC) (van der
Windt et al., 2012). Additionally, in contrast to the small, distinct
mitochondria observed in effector T cells, memory T cells
maintain a network of fused mitochondria (Buck et al., 2016).
Aging memory T cells exhibit lower levels of OXPHOS, decreased
proliferative capacity, and impaired cytokine production (Han et
al., 2023).

Oxidative stress

Under normal conditions, reactive oxygen species (ROS) are
primarily produced by mitochondria at low concentrations and
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serve as key signaling molecules in various cellular processes,
including cell cycle regulation, survival, and the immune
response (Ray et al., 2012). However, excessive production of
ROS can lead to oxidative damage to DNA, proteins, and lipids,
resulting in cellular dysfunction and aging (Schieber and
Chandel, 2014). Telomere shortening is a characteristic feature
of T-cell senescence (Ucar et al., 2017). In vitro treatment with
ROS scavengers prevents telomere shortening in CD8* T cells
(Sanderson and Simon, 2017). Downregulation of DCAF1 in
aging Treg cells and decreased ability to control ROS accumula-
tion via GSTP1 leads to abnormal activation of ERK, resulting in
deficiencies in proliferative capacity and function. Treatment
with ROS scavengers effectively restores the immunosuppressive
function of aging and DCAF1-deficient Treg cells (Guo et al.,
2020).

Mitochondria and autophagy

Mitochondria play a crucial role in cellular energy production
through metabolic pathways such as OXPHOS and FAO.
Additionally, mitochondria are involved in various cellular
processes, including lipid synthesis, apoptosis, and calcium (Ca?
*) homeostasis. Dysfunction of mitochondria is observed in
multiple cell types across organisms (Escrig-Larena et al., 2023).
Previous studies have demonstrated significant changes in
mitochondrial morphology in aging lymphocytes (Beregi et al.,
1980). In vitro stimulation of naive CD4™* T cells from young and
old mice for 24 h followed by electron microscopy imaging
revealed that while the number of mitochondria was similar, the
stimulated T cells from older mice exhibited smaller mitochondria
with reduced activation and function in response to the stimulus
(Ron-Harel et al., 2018). A deficiency in TFAM leads to a
substantial decrease in mtDNA content in T cells, impairing the
expression of critical components of the electron transport chain
and resulting in mitochondrial dysfunction and accelerated
aging (Desdin-Mico et al., 2020). Recent research has shown that
spermidine can enhance FAO activity in CD8* T cells by binding
to mitochondrial translocating protein (MTP), thereby activating
mitochondrial metabolism, improving the antitumor response to
PD-L1 in mice, and significantly extending the lifespan of aging
mice (Al-Habsi et al., 2022).

T-cell senescence is closely associated with autophagy. A study
conducted as part of the Baltimore Longitudinal Study of Aging
(BLSA) revealed dysregulation of OXPHOS and energy metabo-
lism-related molecular pathways in CD4* T cells of older adults,
along with impaired mitochondrial respiratory function. Despite
similar numbers of mitochondria in the naive and memory cells
of older and younger participants, older individuals exhibited
significantly greater quantities of autophagosomes, many of
which contained undegraded mitochondria. These findings
suggest that the persistence of mitochondrial dysfunction in
CD4* T lymphocytes during aging is linked to defects in
mitochondrial turnover caused by autophagy (Bektas et al.,
2019). Another recent study demonstrated that age-related
ceramide stress in 8-month-old mouse T cells induces mitochon-
drial dysfunction through PKA inhibition, leading to Drpl
activation and mitochondrial autophagy, which is not observed
in young (2-month-old) mice. This impaired mitochondrial
autophagy restricts antitumor function. Moreover, inhibition of
ceramide synthesis and activation of PKA attenuated mitochon-
drial autophagy, restored effector T-cell function, and suppressed
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tumor growth following adoptive transfer of CD8* T cells isolated
from 8-month-old mice (Vaena et al., 2021).

The role of T cells in age-related diseases

The process of human aging is primarily characterized by
cumulative cellular aging. T cells, a vital component of the
immune system, are responsible for regulating and coordinating
immune responses. However, as the body ages, the immune
system gradually enters a state of aging, resulting in functional
impairments, a decline in immune responses, and the occurrence
of induced inflammation (Akbar and Fletcher, 2005). Major
changes include a decrease in the number and function of
hematopoietic stem cells, a decrease in the proportion of
immature T cells, an increase in the proportion of memory T
cells, and elevated levels of proinflammatory cytokines (ElyaHu et
al., 2019; Mogilenko et al., 2021). Notably, the diminished
ability of CD8* T cells to mount a response to infection is a
significant age-related immune change (Blank et al., 2019;
Czesnikiewicz-Guzik et al., 2008), which has been observed in
humans (Goodwin et al., 2006), mice (Effros and Walford, 1984;
Yager et al., 2008), and monkeys (Ci¢in-Sain et al., 2010). In
humans, aging T cells are terminally differentiated T cells known
as TEMRA cells. These cells undergo extreme differentiation of
memory T cells, lose the expression of the costimulatory
molecules CD27 and CD28, and experience T-cell aging and
exhaustion (Callender et al., 2018). Furthermore, aging T cells
possess a preferential homing ability to peripheral tissues and
often accompany the occurrence of induced inflammatory
reactions, leading to their classification as pathogenic (Rodriguez
et al., 2021).

Recent research reports have highlighted significant changes
in chromatin modifications of human immune cell epigenetic
phenotypes (Goronzy et al., 2018). Genetic changes have been
found to exert a substantial impact on the function of immune
cells. For instance, the expression of the IL-7 receptor (IL-7R) and
age-dependent IL-8 signals in CD4* T cells have been observed,
and these changes are typically associated with immune cell
dysfunction, particularly age-related dysfunction in T cells (Ucar
et al., 2017). Experimental studies further revealed that the loss
or abnormality of certain genes can result in impaired immune
cell function, resembling the characteristics of cellular aging. In
mouse experiments, the deletion of menin leads to reduced
antigen reactivity in CD4* T cells and the emergence of a
senescence-associated secretory phenotype (SASP) (Kuwahara et
al., 2014). The SASP promotes inflammation, drives the
differentiation of Th17 and Thl cells, and ultimately leads to
tissue damage (Faust et al., 2020; Mogilenko et al., 2021).
Additionally, Carrasco et al. (2022) demonstrated that mice with
a specific deficiency in TFAM display several features of immune
aging, including impaired TCR-dependent proliferation and the
accumulation of highly differentiated T-cell phenotypes. They
also found that immune aging is accompanied by premature
inflammation, severe cardiovascular and metabolic dysfunction,
and cognitive impairments, ultimately resulting in a reduced
lifespan in mice (Ekiz et al., 2020). Moreover, senescent T cells
primarily produce proinflammatory cytokines such as IFN-y and
TNFa (Kato et al., 2018), which can contribute to a chronic low-
grade inflammatory state in elderly individuals even in the
absence of infection. It has also been reported that mice subjected
to dietary restriction treatment (previously shown to extend
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lifespan) exhibit lower levels of TNFa, which may play a role in
improving survival rates (Spaulding et al., 1997). These studies
underscore the close relationship between inflammation and T-
cell function, particularly in the context of T-cell aging. Age-
related diseases often manifest as sustained inflammatory
processes, and T cells play a crucial role in both initiating and
terminating inflammation. They are key players in various age-
related diseases, notably neurodegenerative diseases, cardiovas-
cular diseases (CVDs), and diabetes. Therefore, analyzing the
relationship between T cells and age-related diseases provides
valuable insights. In the following sections, we delve into the
specific roles of T cells in different age-related diseases (Table 1).

T cells in autoimmune diseases

The aging process leads to significant dysregulation of the
immune system, characterized by immune senescence and
chronic inflammation. Immune senescence weakens the body’s
immune defense against pathogens and tumors, while chronic
inflammation increases the risk of autoimmune diseases. Auto-
immune diseases are a group of conditions in which the immune
system mistakenly attacks its own tissues and organs (Weyand
and Goronzy, 2021). Older individuals are more susceptible to
developing autoimmune disorders (Yung and Julius, 2008), and
previous research has shown that the aging of T cells contributes
to the risk of autoimmune diseases (Gray et al., 2006). In the
context of autoimmune diseases, the improper activation and
differentiation of naive T cells can lead to the breakdown of
immune tolerance and the generation of autoreactive T cells. The
differentiation of naive T cells into Th1 cells can lead to the
production of IFN-y, a cytokine that can exacerbate autoimmune
inflammation. Similarly, the Th17 subset, characterized by the

Table 1. Summary of T-cell aging-related diseases

production of IL-17, has been implicated in several autoimmune
diseases, including psoriasis and multiple sclerosis (van den
Broek et al., 2018). On the other hand, the development of Treg
cells from naive T cells is crucial for maintaining immune
homeostasis and preventing autoimmunity, as Treg cells
suppress the activation and proliferation of other T cells (Lee,
2018).

As individuals age, the recognition and Kkilling abilities of T
cells decline, making them more prone to attack their own
tissues and increasing susceptibility to autoimmune diseases ('t
Hart et al., 2013). The accumulation of CD28-CD4* and
CD28-CD8* T cells displaying an aging phenotype has been
observed in the peripheral blood of patients with rheumatoid
arthritis (RA) (Fasth et al., 2007). Compared with normal CD4*
CD28* T cells, CD4* CD28- T cells produce higher levels of IFN-y
and TNF-a, which may play a key role in triggering autoimmune
diseases. The authors also observed an enrichment of KLRG1 in
the synovial fluid of patients with spondyloarthritis (SPA) and
RA. KLRG1-positive T cells were shown to be effective producers
of IFN-y and TNF-o in previous studies (ElyaHu et al., 2019;
Hashimoto et al., 2019; Pieper et al., 2014). Furthermore,
decreased glycolytic activity has been observed in immature
CD4* T cells of RA patients, leading to the accumulation of
NADPH and the consumption of ROS, ultimately resulting in
abnormal TCA cycle function (Wen et al., 2017; Yang et al.,,
2013).CD4* T cells accumulate damaged DNA throughout their
lifespan, and research has confirmed that the rate of DNA
damage accumulation in CD4* T cells is significantly accelerated
in patients with RA (Li et al., 2018). This is due to the
transcriptional inhibition of DNA repair kinases in patients with
mutations associated with endothelial dysfunction-related vas-
cular diseases, which is also a hallmark of T-cell senescence in

Diseases Changes of T cells

Clinical features References

Joint pain, swelling, morning stiffness, and

CD4* CD28~, CD8* CD28~ and KLRG1* T

Rheumatoid arthritis .
cells have increased.

Increased expression of PD-1 in
CD57* CD8* T cells.

Decreased ratio of CD8* CD28* T cells to
CD8* CD28~ T cells.

It leads to high levels of TNF-a, IL-6, IFN-y, and
IL-17, accompanied by a decrease in Treg cells
that secrete IL-10 and TGF-B.

Multiple sclerosis

IBD

Cardiovascular diseases

Increased CD8* T cell inflammatory infiltration
in the brain, increased TEMRA cell population,
and increased secretion of TH17 T cells.

Alzheimer’s disease

Dopamine neurotoxicity mediated by T cells is
mainly produced by CD4* T cells, with an increased
ratio of Th1 and Th17 cells and a decreased ratio of

Th2 and Treg cells.

Increased CD8* T cells in adipose tissue,
increased IFN-y* expressing T cells, Th2 cells,
and CD153* PD-1* CD44* CD4* T cells.

Parkinson’s disease

Obesity

Increased Th1 and Th17 cells, decreased Treg
cells, increased TEMRA cells, increased TNF-q,
IL-6, IL-1p in adipose tissue.

Diabetes/insulin resistance

The T cells lose CD28, but show increased
expression of KLRG1, CD57, PD-1 and CTLA-4,
and secrete more immunosuppressive cytokines.

Tumors
Breast cancer/prostate cancer/
lung cancer

fatigue, cognitive and emotional impairment.

Symptoms such as bloating, abdominal

Memory impairment, loss of speech ability,

tremor, and abnormal posture and gait.

The body fat percentage has exceeded the

Presence of a lump or mass in the breast/
difficulty urinating, decreased urine flow/
cough, coughing up blood-tinged sputum. Klebanoff et al., 2006; Pereira et al., 2020

deformity. This condition can lead to
complications such as pleurisy and
valvular heart disease.

ElyaHu et al., 2019

Visual impairment, motor impairment,  Bjornevik et al., 2022; Kuchroo and Weiner,

2022; Lopez et al., 2016

Dai et al., 2013; De Tena et al., 2004;

pain, and rectal bleeding. Schramm-Luc et al., 2018

Chest tightness, shortness of breath,
palpitations, sitting upright to breathe,
difficulty breathing, rapid heartbeat.

Desdin-Mico et al., 2020; Libby et al., 1995;
Wang et al., 2019

Gate et al., 2020; Jorfi et al., 2023; Mietelska-

emotional blunting, and labile affect. Porowska and Wojda, 2017

Kustrimovic et al., 2018; Mount et al.,
2007; Reynolds et al., 2010;
Sommer et al., 2018

Bradykinesia, muscle rigidity, resting

Ahnstedt et al., 2018; Bapat et al., 2015;

diagnostic criteria (male body fat Jiang et al., 2014; Lumeng et al.. 2011

percentage >25%, female >30%).
Coope et al., 2016; Galicia-Garcia et al.,
2020; Hotamisligil et al., 1993; Lau et al.,
2019; Zeng et al., 2012

Drink more water, eat more, urinate
more, and lose weight.

Chen and Mellman, 2017; Grosso and
Jure-Kunkel, 2013; Hurez et al., 2012;
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RA patients (Shao et al., 2010). Increased expression of PD-1
has also been detected in CD57+*CD8* T cells in another
autoimmune disease, multiple sclerosis (Cencioni et al., 2017).
Similarly, these cells with evident aging phenotypes are unable
to control the replication of EBV, which is considered a definitive
trigger for multiple sclerosis (MS) (Bjornevik et al., 2022;
Kuchroo and Weiner, 2022). In CD4* T cells from aged humans
and mice, the regulatory subunit KU complex of the DNA-
dependent protein kinase (DNA-PK) is able to recognize the
accumulation of cytosolic DNA. This process enhances T cell
activation and pathology in experimental autoimmune ence-
phalomyelitis (EAE) in aged mice (Wang et al.,, 2021). A
significant increase in CD4* CD28~ T cells displaying an aging
phenotype has also been observed in patients with systemic
lupus erythematosus (SLE) (Kalim et al., 2021; Lopez et al.,
2016), and the percentage of aging T cells is significantly
correlated with SLE activity and disease severity (Kalim et al.,
2021; Ugarte-Gil et al., 2016). Finally, an increase in CD4*
CD28~ and CD8* CD28~ T cells has been observed in patients
with inflammatory bowel disease (IBD) (De Tena et al., 2004;
Kobayashi et al., 2007). The ratio of CD8*CD28* T cells to
CD8*CD28~ T cells is often used as an important indicator for
assessing the severity of IBD in clinical evaluations, indicating
that aging T cells can impact the progression of IBD (Dai et al.,
2017; Dai et al., 2013). Additionally, the size and function of the
naive T-cell pool are also critical factors in autoimmune diseases
(Jia et al., 2023). With aging, the ability of the thymus to
produce new naive T cells declines, leading to a reduced naive T-
cell repertoire. This reduction can impair the immune system’s
capacity to respond to new antigens and may contribute to the
increased incidence of autoimmune diseases in older individuals
(Jia et al., 2023; Mao et al., 2024). A reduction in naive T cells
may lead to a decrease in immune system tolerance to self-
tissues, increasing the activity of autoreactive T cells, which can
trigger or exacerbate the disease. Aging T cells have been found
to be associated with the severity of other autoimmune
inflammatory diseases, including ankylosing spondylitis, juve-
nile idiopathic arthritis, and psoriasis (Lima et al., 2015;
Schramm-Luc et al., 2018). In conclusion, there is a close
relationship between aging T cells and autoimmune diseases. A
decrease in function, a decrease in quantity, and a disturbance in
immune tolerance in aging T cells all contribute to an increased
risk of developing autoimmune diseases. However, further
research is needed to elucidate and confirm the specific under-
lying mechanisms and impacts involved.

T cells in cardiovascular disorders

T-cell aging has been implicated in chronic inflammation, which,
in turn, can contribute to vascular wall damage and the
formation of plaques. As such, aging T cells may play a
significant role in the development of CVD. CVD is a leading
cause of death and disability worldwide, with the number of
affected individuals increasing from 271 million in 1990 to 523
million in 2019 (Song et al., 2020). Inflammation has emerged
as a key driver and primary therapeutic target in CVD over the
past few decades (Lusis, 2000; Tardif et al., 2019). The disease
involves complex interactions between vascular endothelial cells
and the immune system, ultimately leading to cardiac and
arterial pathology. The primary cause of CVD is typically the
excessive accumulation of lipids and cholesterol on the arterial
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wall (Lusis, 2000).

Recent studies have indicated a correlation between naive T
cells and CVD (Kose et al., 2018). CVDs are often associated with
chronic inflammation, and naive T cells play a crucial role in
initiating and regulating inflammatory responses. Naive T cells
can differentiate into Th1 cells that produce IFN-y, a cytokine
that is associated with the development of atherosclerosis.
Additionally, naive T cells may also differentiate into Treg cells,
which help maintain immune tolerance and prevent excessive
immune responses from damaging the cardiovascular system
(Lee, 2018). Aging T cells can secrete proinflammatory cytokines
such as TNFa and IL-6 and enhance macrophage recruitment,
thereby promoting foam cell formation in atherosclerotic lesions
(Galkina and Ley, 2009). Previous studies have confirmed the
involvement of T cells in the progression of atherosclerotic
lesions. For instance, T cells infiltrating the affected area can
promote the production of inflammatory molecules (e.g., IFN-y)
and inflammatory cytokines (e.g., IL-10) (Libby et al., 1995; Seko
et al.,, 1997). In aged mice, the accumulation of CD4*IFNy* T
cells in the heart and lymph nodes induces inflammation, leading
to myocardial damage (Ramos et al., 2017). The peripheral blood
of elderly individuals also contains an increased number of CD4*
T cells that produce high levels of IL-17 and IFN-y, along with
clear signs of aging (Wang et al., 2019). Age-related cardiovas-
cular changes have also been observed in mice with premature T-
cell aging caused by mitochondrial dysfunction (Desdin-Mico et
al., 2020). As age increases, thymic function declines, leading to
a reduced production of naive T cells. This can weaken the
immune system’s ability to respond to new antigens and
simultaneously decrease the protective effect on the cardiovas-
cular system (Mao et al.,, 2024). Therefore, maintaining a
healthy pool of naive T cells is important for preventing CVD.

Studies have shown that Treg cells can secrete cytokines such
as IL-10 and TGF-B, thereby inducing macrophages to differ-
entiate into the M2 type. The enrichment of reparative M2
macrophages in plaques is a hallmark of atherosclerosis
regression (Ait-Oufella et al., 2006; Feng et al., 2009). The
overexpression of autophagy-related protein 14 (ATG14) can
inhibit the accumulation of p62, promote Treg differentiation,
and increase the quantity of Treg cells, thereby reducing
inflammation and lesions in atherosclerosis. Conversely, wea-
kened autophagy has been observed in aging T cells, which may
contribute to the reduced number of Treg cells in elderly
individuals (Zhang et al., 2021). Simiao Yong’an decoction, a
traditional Chinese herbal medicine, has also been shown to
improve atherosclerotic lesions by reducing the infiltration of
inflammatory macrophages and increasing the number of Treg
cells (Chen et al.,, 2021). Furthermore, a significant positive
correlation has been reported between a reduction in CD69 levels
in T cells, the emergence of inflammatory cytokines, and the risk
of human clinical atherosclerosis (Tsilingiri et al., 2019). Recent
research has further revealed that in the angiotensin II model,
transferring aged T cells from old mice to young mice results in
damage to the heart and kidneys through increased secretion of
IFN-y, thereby promoting inflammation and fibrosis (Pan et al.,
2021).

In summary, these studies clearly demonstrated that T-cell-
mediated immune alterations and changes in T-cell subsets are
major regulatory factors in the pathogenesis of atherosclerosis
and CVD.
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T cells in neurodegenerative disease

The blood-brain barrier (BBB) plays a crucial role in maintaining
homeostasis in the brain. As a highly sensitive organ, the brain is
susceptible to irreversible damage from foreign substances or
immune reactions. Under normal circumstances, the BBB acts as
a protective barrier, preventing the entry of peripheral immune
cells, including T cells, into the brain and safeguarding it from
potential threats from the external environment (Da Mesquita et
al., 2018). Due to the robust defense provided by the BBB, the
brain is considered one of the most isolated organs from the
external environment.

The BBB is formed by specialized brain endothelial cells (BECs)
that line the lumen of brain capillaries and tightly regulate the
entry of molecules and cells into the central nervous system
(CNS). BECs are blocked by tight junction proteins (such as
claudins and occludin) and adherens junction proteins (such as
VE-cadherin) (Castro Dias et al., 2019; Engelhardt et al., 2017).
These proteins contribute to the barrier properties of the BBB and
collectively form what is known as the neurovascular unit
(Louveau et al., 2018). However, recent studies have suggested
that the function of the BBB can be influenced by certain factors,
resulting in a loss of strict control over peripheral immune cells.
Aging is an important factor that contributes to BBB breakdown
(Louveau et al., 2018). Research has also indicated that age-
related neurodegenerative diseases may exacerbate BBB dysfunc-
tion (Ferretti et al., 2016).

As individuals age, the integrity of the BBB gradually
deteriorates, allowing peripheral immune cells, including T cells,
to enter the brain. This breakdown in BBB integrity leads to a
decline in brain function and the onset of neurodegenerative
diseases (Sweeney et al., 2018). Notable examples of such
diseases include Alzheimer’s disease (AD) (Berente et al., 2022)
and Parkinson’s disease (PD) (Thomas, 2009), among others. In
addition, emerging evidence suggests that the immune system,
including the activity of naive T cells, may contribute to the
pathogenesis of neurodegenerative diseases (Kanematsu et al.,
2015). The relationship between naive T cells and neurodegen-
erative diseases is multifaceted. Upon antigen exposure, naive T
cells can differentiate into various effector T cells, which can then
traffic to the CNS, where they may influence neuroinflammation
(Bodvarsson, 2007). For instance, some naive T cells can
differentiate into Th1 cells that produce proinflammatory
cytokines, such as IFN-y, which can exacerbate neuroinflamma-
tion and contribute to neuronal damage (Lee, 2018; Valldeperas
et al., 2011).

AD is an age-related neurodegenerative brain disorder and the
most common neurodegenerative disease among the elderly
population (Bondi et al., 2017). Its primary features include
intracellular neurofibrillary tangles (NFTs) and extracellular
deposition of amyloid-beta (AB) plaques (DeTure and Dickson,
2019; dos Santos Picanco et al., 2018). Despite significant efforts
to understand the pathogenesis of AD, most clinical trials related
to this disease have failed, highlighting the urgent need to explore
alternative potential mechanisms (Serpente et al., 2014).

Neuroinflammation in AD is generally believed to be mediated
by microglia and astrocytes, but emerging evidence suggests that
T cells also play a role in regulating the inflammatory response in
AD (Togo et al., 2002). Chi et al. reported that Ap plaques may
induce the proliferation of proinflammatory microglia and that
CD8* T cells accumulate in later stages, reducing microglial
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inflammation and preventing further formation of Ap plaques
(Su et al., 2023). However, another study conducted by a team at
Massachusetts General Hospital in the United States using a 3D
human neural-immune model revealed that under pathological
conditions of AD, CD8* T cells infiltrate the brain and induce
neuroinflammation mediated by astrocytes, resulting in more
severe damage to neurons and astrocytes (Jorfi et al., 2023).
Additionally, T-cell infiltration has been observed in postmortem
brain tissues of AD patients (Togo et al., 2002).

Patients with AD exhibit increased levels of CD8* and CD4*
effector memory and late-stage effector T cells in their
cerebrospinal fluid, while central memory T cells are reduced.
AD patients also show an increased presence of TEMRA cells,
characterized by enhanced TCR signaling and a negative
correlation with cognitive decline (Gate et al., 2020; Mietelska-
Porowska and Wojda, 2017). Studies in mouse models have
demonstrated that -amyloid can promote T-cell infiltration and
disrupt normal T-cell functions, including activation and antigen
presentation, leading to an impaired ability of T cells to generate
protective immune responses in AD (Ferretti et al., 2016).
Furthermore, cytokines secreted by T cells can affect the
functions of chemokines expressed by local astrocytes in
inflammation and neurodegenerative diseases (Williams et al.,
2020a). T cells in AD patients exhibit greater levels of activation
than those in healthy controls, further promoting the release of
proinflammatory cytokines that impact the pathological process
of AD (Mietelska-Porowska and Wojda, 2017).

Mouse studies have shown that mice lacking T and B cells
exhibit altered learning behavior while retaining motivation.
Mice lacking T cells and B cells also exhibit changes in learning
and memory abilities without altered exercise capabilities
(Brynskikh et al., 2008; Kipnis et al., 2004). Additionally, the
cognitive impairments observed in mice with IL-4 deficiency can
be improved by the use of T cells from wild-type mice (Derecki et
al., 2010). Moreover, T cells are associated with TAU protein
pathology. In the brains of AD patients, particularly in the
hippocampus, there is a strong association between T cells and
Tau pathology (Merlini et al., 2018). Previous studies have also
confirmed a positive correlation between T-cell infiltration and P-
TAU levels in the superior temporal gyrus and middle temporal
gyrus in AD patients (Laurent et al.,, 2017). This evidence
collectively indicates the involvement of T cells in the disease
progression of AD and their critical regulatory role.

PD is a neurodegenerative disorder characterized by the
gradual loss of dopaminergic neurons in the brain (Thomas,
2009). Pathological studies have shown that patients with PD
exhibit excessive activation of microglia in the brain and elevated
levels of cytokines in the cerebrospinal fluid (Boka et al., 1994;
Dobbs et al., 1999), suggesting the presence of chronic
inflammation in the brains of PD patients. Previous studies have
confirmed the early infiltration of CD4* and CD8* T cells in the
brains of animal models overexpressing a-Syn (Sanchez-Guajar-
do et al., 2010). T cells from severe combined immunodeficiency
(SCID) mice have also been shown to be relatively resistant to
MPTP-induced substantia nigra (SN) degeneration (Benner et al.,
2008), indicating that T cells can enhance cytotoxicity.
Additionally, compared with normal mice, immune-deficient
mice (RAG1 and TCRB mice) exhibited a significant decrease in
dopamine neuron death after MPTP induction (Brochard et al.,
2008). However, in MPTP-induced mice, the proportion of
dopaminergic neuron cell death was not significantly reduced in
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mice lacking CD8™ T cells. These studies suggest that CD4™* T cells
may play a relatively important role in promoting neurodegen-
eration via the nigrostriatal pathway. Further research revealed
that CD4* T cells predominantly contribute to T-cell-mediated
dopaminergic neurotoxicity (Jorfi et al., 2023), a conclusion that
has been validated in animal models (Reynolds et al., 2010) and
clinical data (Sommer et al., 2018).

The specific CD4* T-cell subset that regulates MPTP-induced
cytotoxicity in mice is still unclear. Th1 cells can exert cytotoxic
effects on dopaminergic neurons by releasing IFN-y, which
activates and recruits other immune cells to amplify local
inflammation (Mount et al., 2007). Additionally, Th17 cells
can promote neurotoxicity by secreting IL-17 or releasing GZMB,
a cell lytic enzyme (Kebir et al., 2007). The proinflammatory
effects of Th1 and Th17 cells were further confirmed in the MPTP
mouse model. When naive CD4* T cells are treated with a-
synuclein, they polarize toward Th1l or Th17, resulting in the
degeneration and death of SN neurons and dopamine neurons
(Reynolds et al., 2010). Chen et al. (2015) observed that PD
patients have an increased ratio of Th1 and Th17 cells compared
with healthy controls but a significant decrease in the absolute
number and ratio of Th2 (Kustrimovic et al., 2018) and Treg cells
(Reynolds et al., 2010). Reynolds et al. further demonstrated the
neuroprotective effects of Treg cells in an MPTP-induced mouse
model of PD. After transferring Treg cells into MPTP-induced
mice, clear dose-dependent protection of dopamine neurons was
observed (Chen et al., 2003), possibly through attenuation of the
neurodegeneration mediated by Th17 or Th1 cells (Reynolds et
al., 2010). These findings collectively indicate that T cells play
important roles in mediating cytotoxicity and neuroprotective
effects in PD models. Therefore, gaining a better understanding of
the initiating signals and specific mechanisms by which T cells
mediate PD may provide new therapeutic opportunities for PD
patients.

T cells in metabolic dysfunction

During the aging process, the excessive accumulation of fat often
leads to a chronic metabolic disease that is typically caused by
energy intake exceeding energy expenditure (Hotamisligil,
2017). This condition is characterized by weight gain and fat
accumulation in the abdomen, buttocks, thighs, and other areas
and is accompanied by a series of health problems, such as IR
(Mehta et al., 2015), diabetes (Nishimura et al., 2009; Rocha et
al., 2008), and obesity (Jagannathan-Bogdan et al., 2011).
Studies have shown that T cells in adipose tissue may play an
important role in regulating energy metabolism and immune
function (Grover et al., 2015; Lim and Meigs, 2014). In middle
age, the ability of subcutaneous adipose tissue to store lipids
decreases (Jensen, 2008), resulting in excess fat being transferred
to visceral adipose tissue, leading to visceral obesity (Kuk et al.,
2009; Mraz and Haluzik, 2014). Excessive lipid accumulation in
visceral adipose tissue and the surrounding tissue microenviron-
ment may increase the number of immune cells and play a
critical role in immune-metabolic homeostasis (Nosalski and
Guzik, 2017).

Obesity can lead to accelerated immune aging, a phenotype
commonly observed in older individuals (Bektas et al., 2017;
Yang et al., 2009), which has also been found in obese children
(Spielmann et al., 2014). In addition, obesity can result in poor
vaccine efficacy (Painter et al., 2015; Park et al.,, 2014), as
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studies have shown a correlation between increased body mass
index (BMI) and decreased influenza-specific antibody titers one
year after vaccination (Park et al., 2014). Xiao et al. (2023)
reported that after vaccination with excess SARS-CoV-2 vaccine,
it takes longer for elderly individuals to reach a neutralizing
antibody level similar to that of young people. Recent reports
indicate that a significant increase in T cells in adipose tissue is
associated with aging. Aged mice show an increased ratio of
CD4* T cells to CD8* T cells, with the increase in CD8" T cells
being greater than that in CD4* T cells (Jiang et al., 2014;
Lumeng et al., 2011). Additionally, an increase in CD8* T cells
expressing IFN-y and activated CD4* T cells is observed in aged
mouse adipose tissue (Ahnstedt et al., 2018; Bapat et al., 2015),
similar to the T-cell phenotype changes induced by obesity.
Furthermore, obesity accelerates T-cell aging in the visceral
adipose tissue of mice (Shirakawa et al., 2016), as evidenced by
the accumulation of CD153*PD-1*CD44+CD4™* T cells in obese
mice, resembling the phenotype of age-related T cells (Shirakawa
et al., 2016). These changes in CD4* T cells resemble the
alterations observed in senescence-associated T cells during the
aging process.

Adipose tissue T (ATT) cells are present in visceral fat during
normal aging (Lumeng et al., 2011). The role of ATT cells in
obesity-induced inflammation has also been documented. Recent
studies have reported that changes in T-cell homeostasis in
individuals with obesity may be attributed to a decrease in Th2
cells and an increase in CD8* T cells (Feuerer et al., 2009; Winer
et al., 2009). Additionally, the number of Treg cells decreases
with obesity, which may contribute to excessive immune
activation. Researchers have also observed a decrease in the
proportion of naive T cells and an increase in the number of
memory T cells in the adipose tissue of aged mice (Mauro et al.,
2017). Compared with those from lean mice, ATT cells from
obese mice produce higher levels of proinflammatory mediators
such as IFN-y and GZMB (Lumeng et al., 2011). This finding is
consistent with previous reports that T cells from healthy elderly
individuals secrete higher levels of cytokines (TNF-o and IL-6)
than those from young individuals.

With the increase in the prevalence of obesity, the worldwide
incidence of diabetes has dramatically increased. Diabetes is one
of the major health problems of the 21st century, with one in
every 11 adults affected by the disease (Williams et al., 2020Db).
Type 2 diabetes (T2D) is the most common type of diabetes,
accounting for approximately 90% of all cases globally (Khan et
al., 2020). IR, often associated with obesity, increases suscept-
ibility to T2D, which is characterized by impaired insulin
secretion, glucose intolerance, and high blood sugar (Guzman-
Flores and Lopez-Briones, 2012). There is increasing evidence
that T cells play a pathological role in diabetes and IR. T2D can
induce hyperglycemia and trigger IR, leading to compensatory
overproduction of insulin in the body, ultimately resulting in -
cell exhaustion (Coope et al.,, 2016). A large body of data
indicates a strong pathogenic link between obesity, IR, and T2D
(Nikolajczyk et al., 2011; Roden and Shulman, 2019). In this
process, T cells play a crucial role (McLaughlin et al., 2017), first
by inducing a chronic state of low-grade systemic inflammation
in response to obesity and, second, by excessive production of
inflammatory mediators such as TNF-o, IL-6, MCP, and IL-1f in
adipose tissue. Once released, these proinflammatory cytokines
interfere with insulin signaling in insulin-responsive tissues
(such as the liver and skeletal muscle) and impair pancreatic p-
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cell function, ultimately leading to defective insulin secretion
(Coope et al., 2016; Galicia-Garcia et al., 2020). Previous studies
have demonstrated increased expression and production of TNF-
a in the blood and adipose tissue of T2D patients (Hotamisligil et
al., 1993), which can activate intracellular transduction
cascades and interfere with insulin signaling by inhibiting
insulin receptor substrate 1 (IRS-1) (Hotamisligil et al., 1996).
Additionally, it has been reported that the levels of the
proinflammatory cytokines Th1l (McLaughlin et al., 2014) and
Th17 (Garidou et al., 2015) are increased in the adipose tissue
and blood of T2D patients. In obese mouse models, Th1 cells can
induce IR, while reducing the number of Th17 cells can improve
glucose homeostasis (Sumarac-Dumanovic et al., 2013). In
humans, Treg cells appear to be reduced in the blood of more
obese subjects than in that of leaner subjects and are negatively
correlated with BMI and plasma leptin levels (van der Weerd et
al., 2012). The number of Treg cells in the blood of T2D patients
is also lower than that in nondiabetic individuals, while the
numbers of Thl and Th17 cells are increased, indicating a
proinflammatory shift in T cells in T2D patients (Zeng et al.,
2012). Recent research has also shown that transferring T cells
from the adipose tissue of obese mice to that of lean mice causes
inflammation and IR. Conversely, removing senescent T cells
from the adipose tissue of obese mice can significantly improve
insulin sensitivity (Shirakawa et al., 2016; Yoshida et al., 2020).
Additionally, the numbers of functionally impaired senescent
CD4* and CD8* TEMRA cells are significantly increased in the
circulation of T2D patients (Lau et al., 2019). In addition to
changes in conventional T cells, studies have shown increased y3
T cells and decreased iNKT cells in the adipose tissue of obese
patients, and both subsets play a role in the development of IR
(Kohlgruber et al., 2018; Mehta et al., 2015).

T cells in tumors

With aging, the incidence of cancer increases significantly
(Lopez-Otin et al., 2023). Among the elderly population, cancer
is not only more common but also often has a poorer prognosis.
In recent years, an increasing number of studies have shown that
aging of the immune system, particularly T-cell senescence, plays
a key role in this process (Hong et al., 2019; Yang et al., 2022;
Zhou et al., 2022a). A decrease in immune function due to T-cell
senescence is a significant factor in tumor immune evasion and
maintenance of a suppressive TME (Hasegawa et al., 2023;
Staber et al.,, 2019; Wang et al.,, 2022). Meanwhile, the
extracellular signals in the TME of the elderly drive the tumor-
infiltrating age-related dysfunctional (Trap) cell state, and these
cells may promote the progression of tumors in the elderly (Chen
et al., 2024).

During the process of organismal aging, T cells undergo
multiple divisions and activations and then enter a state of
functional decline (Effros, 2005). Senescent T cells typically
exhibit a loss of CD28, along with increased expression of KLRG1
and CD57 (Effros, 2005). These changes make it difficult for T
cells to proliferate effectively and carry out immune functions.
Moreover, the proliferative capacity of senescent T cells is
significantly reduced, with diminished responsiveness to antigens
and decreased cytotoxicity (Akbar and Henson, 2011). Addi-
tionally, the profile of cytokines secreted by these cells also
changes, and these cells tend to secrete more inhibitory cytokines
(Lages et al., 2008). Additionally, studies have reported that the
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metabolic functions of T cells from elderly individuals are
significantly altered, characterized by mitochondrial dysfunction
and changes in glucose metabolism, which further limit the
functionality of T cells (Henson et al., 2014).

Due to their functional decline, aging T cells are unable to
effectively recognize and kill tumor cells, leading to the evasion of
tumor cells from immune surveillance (Pawelec et al., 2010).
Moreover, the expression of immune checkpoint molecules such
as PD-1 and CTLA-4 on senescent T cells is increased, further
suppressing their antitumor activity (Pereira et al., 2020).
Senescent T cells maintain a suppressive tumor microenviron-
ment by secreting inhibitory cytokines (such as IL-10 and TGF-f)
and expressing inhibitory receptors (such as PD-1 and CTLA-4)
(Jiang et al., 2015). This environment not only hinders the
antitumor functions of other immune cells but also promotes the
growth and metastasis of tumor cells. Studies have shown that
senescent T cells may promote tumor growth and metastasis by
secreting proinflammatory cytokines (such as IL-6) (Campisi,
2013; Li et al., 2022). These proinflammatory factors not only
directly stimulate tumor cells but also indirectly promote tumor
progression by affecting other cell types in the tumor micro-
environment, such as fibroblasts and endothelial cells (Freund et
al., 2010).

In the elderly population, T-cell senescence is closely associated
with the incidence and prognosis of various cancers. Studies have
shown that T cells from elderly breast cancer patients exhibit
significant signs of senescence, and these patients generally have
a poorer prognosis (Pereira et al., 2020). High expression of PD-1
on senescent T cells is closely related to immune evasion and
tumor progression (Klebanoff et al., 2006). T cells from elderly
prostate cancer patients also show significant signs of senes-
cence, including loss of CD28 and increased expression of KLRG1
(Hurez et al.,, 2012). These senescent T cells are unable to
effectively kill prostate cancer cells, leading to accelerated disease
progression. Furthermore, research has shown that the expres-
sion of PD-1 and CTLA-4 on senescent T cells from prostate
cancer patients is significantly increased, which further inhibits
their antitumor activity (Grosso and Jure-Kunkel, 2013). In
elderly lung cancer patients, T-cell senescence is associated with
high expression of immune checkpoint molecules, such as PD-1
(Pereira et al., 2020). These senescent T cells not only are
functionally impaired but also maintain a suppressive tumor
microenvironment by secreting inhibitory cytokines, such as IL-
10 and TGF-p (Chen and Mellman, 2017). The combined effect of
these factors leads to a poorer response to immunotherapy in
elderly lung cancer patients (Dunn et al., 2002). In summary, T-
cell senescence plays a crucial role in tumor immune evasion and
the tumor microenvironment and is an important factor
contributing to the increased incidence of cancer in elderly
individuals. Future research should further explore the molecular
mechanisms underlying T-cell senescence and work toward
developing novel therapeutic strategies to counteract or decele-
rate the aging process of T cells.

T cells in anti-aging applications

As human life expectancy continues to increase, there is an
urgent need to understand the mechanisms of aging and develop
methods to delay it. Changes in the immune system can
contribute to the aging of other tissues and can lead to increased
disease and premature death. Research has demonstrated that
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the knockout of the Erccl gene in hematopoietic cells of mice
results in premature immune aging in adulthood. This aging
process is characterized by the loss and aging of specific immune
cell populations, as well as impaired immune function, similar to
the changes observed in naturally aging mice (Yousefzadeh et al.,
2021). These manifestations include a significant decrease in the
number of immune cells, with the number continuing to decline
with age. The spleen and thymus also experience reduced weight,
and there is a significant increase in the expression of cell aging
markers (p16, p21) and the SASP. It is important to note that the
aging and oxidative stress observed in gene knockout mice also
cause damage to other normal tissues, suggesting that aging
immune cells can promote systemic aging. Targeting T cells and
overcoming their exhaustion during aging are highly important
because of their crucial role in driving organismal senescence
and the aging of other organs. The prevailing view is that T cells
delay aging by activating telomerase (Lanna et al., 2014).
However, recent reports have revealed a new pathway indepen-
dent of telomerase, in which some T cells (particularly naive and
central memory cells) can extend telomeres by acquiring
telomere-containing vesicles from APCs (Lanna et al., 2022).
The research team also confirmed that telomere-containing
extracellular vesicles can be purified from blood and, when added
to T cells, exhibit anti-aging activity in the immune system of
humans and mice. The aging of immune cells can significantly
accelerate the aging process, leading to adverse effects on both
quality of life and lifespan. It can alter the entire physiological
process of the human body, thus having a major impact on
overall health. Researchers found that treating gene knockout
mice with rapamycin reduced the expression of aging markers in
immune cells, improved immune function, and enhanced the
immune function of mice, demonstrating that immune aging can
be regulated. Furthermore, when spleen cells from gene knock-
out mice or normally aged mice were transplanted into young
mice, the aging process in the recipient mice accelerated.
However, when spleen cells from normal young mice were
transplanted into gene knockout mice, the aging process was
found to slow (Yousefzadeh et al., 2021). This further illustrates
that aging immune cells promote systemic aging, while
transplanting young immune cells can delay aging. In a mouse
model study conducted in Japan, mice with early reproductive
ability and rapid apoptosis were found to undergo overall aging.
Additionally, it was discovered that some supercentenarians
(individuals over 100 years old) have a greater presence of T cells
and greater expression of the CRELD1 gene, which is believed to
be the main reason for their healthy state and longevity
(Bonaguro et al., 2020). Another article provides detailed reports
on how the absence of TFAM in mouse T cells leads to
mitochondrial dysfunction, accelerates aging, and results in
premature death in mice (Desdin-Mico et al., 2020). A decrease
in this type of mitochondria is associated with the distortion of
Thl cells, characterized by the excessive secretion of the
proinflammatory cytokines IFN-y and TNF-a, as well as the
expression of the Thl cell regulator T-bet. In addition to this
proinflammatory phenotype, these CD4¢r¢ mice exhibit immune
defects that normally only appear in normal mice at 22 months
of age. Subsequently, researchers injected etanercept, a drug that
can prevent T cells from releasing the cytokine TNF-a, into TfamV/
1CD4Cre mice. After a few weeks, mouse muscle strength,
cognitive function, and heart function improved (Desdin-Mico
et al.,, 2020). These results indicate that defects in T cells
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accelerate the aging of T lymphocytes in the human body. The
above findings indicate that the aging of immune cells plays a
crucial role in overall aging and that maintaining the quantity
and activity of immune cells in the body is of significant
importance in combating aging. When immune cells in the body
undergo aging, strategies such as telomerase activation, small
molecule drugs, or cell therapy can be employed to reverse aging.
If these methods can be successfully applied to T cells, they may
provide new opportunities for restoring exhausted T cells. In
conclusion, gaining a deeper understanding of T-cell exhaustion
and aging processes will contribute to the development of more
effective treatment strategies.

Despite the potential of the aforementioned regimens in certain
cancer treatments, the application of such methods in the field of
anti-aging is still in its infancy. Moreover, when considering the
application of T cells for anti-aging purposes, it is essential to
weigh the potential benefits against the risks. T-cell therapies
may trigger a range of side effects, including cytokine release
syndrome (CRS), autoimmune reactions, and a potential risk of
carcinogenesis (Koppelman et al., 2004; Latner et al., 2004).
Additionally, the long-term consequences of T-cell therapy are
not yet fully understood, and long-term follow-up studies are
needed to assess their safety and efficacy. Furthermore, due to
genetic and phenotypic differences among individuals, anti-aging
T-cell therapy may necessitate a personalized approach. This
means that treatment strategies need to be tailored to an
individual’s immune status, health condition, and specific disease
risks. The implementation of personalized medicine will face
significant technical and economic challenges (Galderisi et al.,
2018; Vogelsang et al., 1994). Finally, the application of T cells
for anti-aging purposes may also involve a series of ethical issues
(Ishida et al., 2014; Yu et al., 2018). For instance, who will have
access to such treatments? How will the costs of treatment be
distributed? Are there trade-offs between extending lifespan and
improving quality of life? These questions require the collective
discussion of policymakers, healthcare professionals, and the
public at large.

Therefore, future research on the application of T cells for anti-
aging purposes should focus on the following areas. First, more
basic research is needed to elucidate the mechanisms by which T
cells are involved in the aging process. Second, clinical trials are
required to assess the safety and efficacy of T-cell therapies. Third,
interdisciplinary collaboration is necessary to address the issues
of personalized medicine and ethics. Finally, public education is
needed to increase awareness of immunosenescence and T-cell
treatments. Once these issues are resolved, it is believed that this
discovery will drive another transformation in human medical
technology.

Conclusion and perspectives

As the body ages, the immune system gradually erodes, and T-
cell aging has emerged as a crucial issue with significant
implications for immune function and human health. During
development, T cells undergo differentiation from immature cells
to mature cells. However, as age progresses, the thymus
continues to shrink, resulting in the production of fewer
immature T cells (Taams and Taylor, 2023). Additionally, other
immune organs also undergo degenerative aging, leading to
changes in the number and function of different T-cell subsets,
ultimately culminating in immune senescence. Immunosenes-
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cence is characterized by progressive functional decline and
enhanced autoimmunity, which renders individuals more
susceptible to infections and cancer and reduces vaccine efficacy
(Akbar and Fletcher, 2005). Moreover, aging of CD4* T cells can
trigger chronic inflammation and exacerbate systemic aging
phenotypes, suggesting that T-cell aging can contribute to
systemic aging and the development of age-related diseases,
including CVD, neurodegenerative diseases, T2D, and autoim-
mune diseases. Therefore, current research on T-cell aging
should primarily focus on understanding the relative importance
of various changes occurring during the aging process of T cells,
determining their interrelationships, and distinguishing primary
from secondary changes. This will enable the identification of
optimal molecular targets that can slow or interrupt the aging
process.

Currently, several therapeutic approaches targeting T cells
have shown initial efficacy in age-related diseases. One promising
therapy, calledenolytics, induces the death of aging cells by
targeting apoptosis and protein modification, thus selectively
eliminating aging T cells in the body. These findings present a
new avenue for the clinical treatment of CVD (Goronzy and
Weyand, 2019). Recent studies have also highlighted age-related
dysfunctional T cells as therapeutic targets for age-related
diseases (Serrano, 2017). However, the current research is
primarily focused on determining the associations between T
cells and these diseases. The precise mechanisms through which
T cells influence the processes of these age-related diseases or
how changes in these diseases impact T-cell aging remain
unknown. Addressing these questions will significantly enhance
our understanding of the mechanisms underlying T-cell aging
and may pave the way for the development of targeted drugs in
this field.
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