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ABSTRACT

Radiotherapy is one of the main treatment methods for cancer, and the delineation of the radiotherapy
target area is the basis and premise of precise treatment. Artificial intelligence technology represented by
machine learning has done a lot of research in this area, improving the accuracy and efficiency of target
delineation. This article will review the applications and research of machine learning in medical image
matching, normal organ delineation and treatment target delineation according to the procudures of doctors
to delineate the target volume, and give an outlook on the development prospects.

1. INTRODUCTION

To estimate the global burden of Cancer-based on the cancer and mortality information provided by the
International Agency for Research on Cancer in GLOBOCAN 2020 [1], by 2020, Globally, there are an
estimated 19.3 million new cancer cases (18.1 million excluding non-melanoma skin cancer) and nearly
10 million cancer deaths (9.9 million excluding non-melanoma skin cancer). The global cancer patients
will be expected to reach 28.4 million cases by 2040, a 47% increase from 2020. Malignant tumors will
surpass all other chronic diseases and become the “number one killer” that threatens human life and health.
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Radiotherapy is one of the main treatments for malignant tumors. Its principle is to use the high-energy
ionizing radiation to kill cells of tumors. About 60%—-70% of tumor patients need to receive radiotherapy.
According to statistics, the current average progression-free survival rate of malignant tumors is about 55%,
of which radiotherapy contributes 40% of the tumor cure [2], and the therapeutic effect has been widely
recognized in clinical practice. The rapid development of artificial intelligence represented by machine
learning can be applied to all aspects of clinical practice of radiotherapy [3-6], making radiotherapy
decision-making more simplified, individualized and precise, and improving the automation of the entire
process of radiotherapy. The precise determination of radiotherapy target volume is the basis and premise
of precision radiotherapy. The automatic delineation of radiotherapy target volume based on machine
learning is essential in the research of artificial intelligence in the field of radiotherapy application, which
greatly improves the efficiency and accuracy of target volume delineation [7]. This article will review
medical image matching, normal organ delineation and treatment target delineation.

2. APPLICATION OF MACHINE LEARNING IN RADIOTHERAPY

Recently, with the development and progress of medical and computer technology, radiotherapy has
entered a new era of precision radiotherapy, and more and more precision radiotherapy technologies have
entered the practice of clinical tumor treatment. Precision radiotherapy is playing an increasingly important
role in improving curative effect, delaying disease progression, improving prognosis and improving patients’
quality of life [8, 9].

In the 1930s, radiation technology has been used to treat tumor patients [10], and in the 1960s with the
widespread applications of medical linear accelerators [11]. However, X-ray simulation localization is used
for tumor localization during radiotherapy in this period. The doctor obtains the location of the tumor from
the patient’s fluoroscopic image, and marks the irradiation range on the patient’s body surface according
to the localization image, and performs treatment through the body surface projection field. Due to the
failure to clearly define the tumor and normal tissue, and the poor uniformity of radiation dose distribution,
it is easy to miss the tumor or normal tissue is irradiated with a higher dose, resulting in a lower cure rate
and higher complications. In 1959, Takahashi et al. [12] proposed the concept of three-dimensional
conformal radiation therapy (3D-CRT). The prototype is based on the three-dimensional morphological
structure of the tumor, using lead blocks to irradiate in multiple radiation directions through the blocking
part field, so that the shape of the irradiated area is the same as that of the tumor target, while reducing
the radiation dose received by the blocked area. In the 1970s, the widespread application of computer
systems and the emergence of computed tomography (CT), magnetic resonance imaging (MRI) and other
equipment promoted radiotherapy to three-dimensional space, enabling 3D-CRT to be realized.

In recent years, three-dimensional digital precise radiotherapy technology has gradually replaced
traditional two-dimensional radiotherapy technology, and has become an important development direction
of tumor radiotherapy in the 21st century. The three-dimensional digital precise radiotherapy technology
focuses on precise positioning and precise treatment, and performs conformal or intensity-modulated
radiotherapy at the three-dimensional level through dose segmentation, so that the internal irradiation dose
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of the lesion in the target area is the largest, and the surrounding normal tissue is the smallest, the irradiation
dose is evenly distributed, and has the advantages of high precision, high efficacy and low damage [13].
In addition to 3D-CRT, the currently recognized precision radiotherapy techniques also include stereotactic
body radiotherapy (SBRT), intensity modulated radiotherapy (IMRT), and image guided radiation therapy
(IGRT), etc. The technique system of precise radiotherapy for tumor is gradually perfection, and the treatment
accuracy is increasingly improved.

At present, the steps of precise radiotherapy are to first obtain the anatomical images of the patient on
the treatment couch by simulated positioning, then manually delineate the target area and organs at risk
by the doctor, and then configure the radiation dose, number of fields, field angle and other parameters
can be used to generate a radiotherapy plan suitable for the shape and dose of the tumor target. Finally,
after the radiotherapy plan is verified and correct, the treatment can be carried out. Among them, target
delineation is the core work of radiotherapy physicians. Accurate target delineation is the premise and
crucial step of precise tumor radiotherapy. The quality of delineation has a great impact on the treatment
effect of patients and the occurrence of complications [14]. If the treatment target volume is too large, it
will increase the radiation dose received by the surrounding organs, thereby increasing the probability of
complications [15]. Conversely, if the tumor area is not completely covered, it will lead to insufficient doses
to kill all cancer cells, greatly increasing the possibility of recurrence after treatment [16].

Currently, the therapeutic target volume that needs to be manually delineated by radiologists mainly
includes the gross tumor volume (GTV) visible on the image; the clinical target volume (CTV) is delineated
based on the knowledge of tumor pathology, tumor invasion range, and lymph node metastasis pathway.
In addition, the target area of the organ at risk (OAR) within the irradiation range also needs to be accurately
delineated to avoid over-irradiation of the OARs, causing serious side effects and complications of
radiotherapy [17]. The above-mentioned delineation quality of the therapeutic target volume and OARs
completely depends on the professional knowledge and experience of the doctor, and certain errors will
occur. Moreover, these large-scale structures are delineated manually layer by layer for the radiologists, and
the time cost is also very high. With the development of artificial intelligence technology, deep learning
methods based on the big data of radiotherapy patient images can automatically delineate the therapeutic
target area and OARs of patients. The speed and accuracy are greatly improved, which helps to reduce the
workload of doctors and reduce manual delineation. uncertainty, further improving the precision of
radiotherapy [18, 19].

As the main method in the field of artificial intelligence, machine learning can be divided into supervised
learning, unsupervised learning, and semi-supervised learning which combines the two [20-22]. Specifically
in the field of radiotherapy, supervised learning-assisted radiotherapy is mainly used [23]. Combining
multiple simple machine learning models to obtain an ensemble learning model with better performance
can design a combination scheme for specific machine learning problems to get a better solution [24].
Neural networks are a form of machine learning inspired by the way the brain works, referencing the
connection structure of neurons [25-27]. When the neural network has many hidden layers, it is defined
as a deep neural network. Deep learning methods use deep neural networks to solve various classification
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and prediction problems. Compared with traditional machine learning methods, deep learning methods
have the advantage of being able to automatically learn features in data and avoid manual feature selection.
A large amount of data accumulation and the improvement of hardware computing power have made deep
learning methods more and more applied in the medical field, and they have shown better performance
than traditional machine learning methods [28-31].

3. MEDICAL IMAGE REGISTRATION BASED ON MACHINE LEARNING

The electron density of CT images is linearly related to the density of the human body, which can be
directly used to calculate the radiation dose, and has become the most commonly used radiotherapy
positioning equipment. It has a good effect on bone and lung tissue observation, while soft tissue MRI
images have better observation effects, and PET images can indicate areas with strong metabolism. Therefore,
multi-modal imaging registration is often used in clinical assessment of disease. Medical image registration
is to find the optimal spatial transformation between the source image and the target image to match all
the feature points or at least all the corresponding points with diagnostic significance on the two images,
and provide doctors with more abundant clinical information. Common registration methods include rigid
registration and non-rigid registration.

3.1 Rigid Registration

Rigid deformation can be described by a few transformation parameters. In the field of radiotherapy, rigid
registration is very common and highly accepted, and clinicians will fuse images of different modalities
through this transformation to obtain more information about areas of interest. The registration method is
to align the two images by finding the rotation-translation transformation matrix between the fixed image
and the moving image [32]. The methods used include linear transformations such as translation and
rotation, which can ensure that the overall structure or line parallelism of the image remains unchanged
after spatial transformation. At the same time, it has the advantages of simple calculation and low time
complexity, and is suitable for images with little deformation.

Rigid registration not only provides a prerequisite for further non-rigid registration and saves the calculation
time of image optimization iterations, but also can intuitively display the anatomical structure differences
between images between different modalities, assisting doctors in accurate delineation. Traditional
registration methods include surface-based methods, point-based methods (usually based on anatomical
markers), and voxel-based methods [33]. Among them, voxel-based methods have been widely used by
virtue of the rapid development of computer technology. The goal of this method is to obtain geometric
transformation parameters by computing the similarity between two input images without pre-extracting
features [34]. However, these traditional registration methods often require iterative calculation of similarity
measures such as mean square error, mutual information and normalized mutual information, etc. Due to
the non-convexity of similarity measures in parameter space, the registration process is relatively expensive.
sometimes with poor robustness [35]. Besides, other methods such as intensity-based feature selection
algorithms perform image registration by extracting image features corresponding to the intensity, however,
the extracted features are difficult to correspond well in anatomy [36].
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3.2 Non-rigid Registration

Since medical images are affected by factors such as imaging time, imaging equipment, and patient
posture, it is difficult to spatially register multimodal images. In addition, the internal tissue structure of the
human body is complicated and has time-varying characteristics. For example, the tissues and organs in
the lung scan images will move with the patient’s breathing. For the deformation of the images with large
differences in each direction, the rigid registration method cannot meet the requirements. In this case, a
non-rigid registration technology needs to be used, and the same parts of different images are corresponding
to each other by means of the spatial registration deformation field. The entire registration process will also
introduce different degrees of registration errors due to the chosen optimization method.

Non-rigid transformation includes translation, rotation, scaling, and affine transformation based on an
affine matrix and other linear and nonlinear transformation forms. Compared with rigid transformation, it
has better deformation accuracy, but the calculation speed is slower. Gu et al. [37] proposed a B-spline
affine transformation registration method, using affine transformation to replace the traditional displacement
of each B-spline control point, and using a two-way distance cost function to replace the traditional one-
way distance cost function to achieve bidirectional registration of two images. Pradhan et al. [38] used a
P-spline function with a penalty added to the B-spline for brain image registration. The method based on
the physical model regards the deformation of the floating image as the physical change caused by the
external force, takes the original image as the input, and calculates the result of the image that is changed
by the external force under the physical rules through the physical model. The physical models used are
mainly viscous fluid models and optical flow field models. Wodzinski et al. [39] applied the algorithm of
the optical flow field model to breast cancer tumor localization, compared it with the B-spline method,
and obtained a better registration effect.

With the development of deep learning technology, significant progress has been made in the field of
image processing, mainly including the use of unsupervised or self-supervised deep learning to calculate
deformation parameters and similarity measures. For example, Hessam et al. [40] used a large number of
artificially generated displacement vector fields for training to integrate image content from multiple scales,
thereby directly estimating the displacement vector field from the input image. Hongming et al. [41]
proposed a new non-rigid image registration algorithm based on a fully convolutional network, and
optimized and learned the spatial transformation process between images through a self-supervised learning
framework. However, until now, the non-rigid registration algorithm is still not mature enough compared
with the rigid registration algorithm, and the algorithm acceptance is not enough [42].

4. AUTOMATIC DELINEATION OF NORMAL TISSUE BASED ON MACHINE LEARNING
4.1 Atlas Based Automatic Contouring

After multimodal image registration, clinicians will delineate contour information on the planned CT.
The delineated targets mainly included therapeutic targets and OARs. The shape of OARs is relatively
definite, and the location generally does not change much. In terms of automatically delineating OARs, the
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most widely used clinically is the automatic segmentation technology based on the atlas library [43]. Atlas
refers to medical images and their corresponding binary delineation results, since even among different
groups of people, the relative spatial positions and spatial shapes of normal organs in the body are similar,
and the image textures have the same characteristics. The delineation principle is to pre-establish one
or several sets of OARs templates, and machine learning methods automatically match the appropriate
templates [44].

The delineation methods based on atlas libraries can be basically divided into two categories: delineation
methods based on single atlases and delineation methods based on multiple atlases [45]. The delineation
method based on a single map can be regarded as a deformation registration problem. First, the atlas is
registered to the image to be delineated, and the transformation matrix and deformation field are obtained.
All the delineated organs in the atlas will be deformed and mapped according to the same transformation
parameters, and the result of the mapping is the delineation result. However, the single-atlas library
delineation method may have a large difference between the input patient images and the average atlas,
resulting in unsatisfactory delineation results.

The accuracy of the method based on a single atlas library depends heavily on the accuracy of image
registration. When the atlas used is very different from the image to be delineated, it is difficult for the
registration algorithm to achieve good results, resulting in a significant reduction in delineation accuracy.
In order to improve this phenomenon, Aljabar et al. [46] proposed a multi-atlas method, which registered
and fused multiple sets of reference atlases with the images to be delineated, obtained multiple sets of
alternative delineation schemes, and used an algorithm to synthesize the alternative plans to form the final
delineation. The performance of the multi-atlas library is often more stable than that of the single-atlas
library, because the poor mapping results of some atlases in the multi-atlas will be corrected by other
better-performing atlases, so that each part can be relatively reasonable. While multi-map-based methods
improve the robustness of delineation compared to single-map-based methods, they are prone to topological
errors because voxel voting does not necessarily result in closed surfaces. Such topological errors have a
great impact on the formulation of radiation therapy plans, and are also difficult to detect, requiring time-
consuming review and manual editing by clinicians [47].

4.2 Deep Learning Based Automatic Contouring

The atlas library is essentially the operation of registering the target image and the template image through
morphological features, that is, the process of searching for the most approximate shape in the atlas library.
But if the shape difference of the template image OARs is too large, the volume is too small or automatically
delineated inappropriate choice of deformation algorithm will affect the registration accuracy [48]. The
multi-atlas library can improve the accuracy of delineation, but the amount of calculation increases and
the time-consuming increases, so a balance between accuracy and speed must be balanced.

Automatic delineation based on deep learning does not require the above trade-offs. Since the key
advantage of deep learning is to automatically extract labelled features through the learning of generalized



A Survey on Automatic Delineation of Radiotherapy Target Volume based on Machine Learning

features in training samples to identify new scenes, the more input templates, the more accurate the learned
features [49]. Dolz et al. [50] used the support vector machine (SVM) algorithm to successfully achieve
automatic segmentation of the brainstem on the MRI image of brain tumors, and then used another deep
learning algorithm to segment the optic nerve, optic chiasm, pituitary and small organs such as pituitary
stalk are automatically segmented, and the similarity coefficient reaches 76-83% [51]. They also used
hand-extracted features, combined with unsupervised stacked denoising autoencoders for brainstem
segmentation, and the classification speed was about 70 times faster than that based on SVM methods,
reducing segmentation time [52]. Liang et al. [53] performed automatic segmentation on CT images based
on deep learning, with a sensitivity of 0.997~1 for automatic segmentation of most organs, which can
effectively improve nasopharyngeal cancer radiotherapy planning.

Currently, deep learning networks, especially convolutional neural networks (CNN), have become a
common method for medical image analysis [54]. CNN is capable of processing multi-dimensional and
multi-channel data, capturing complex nonlinear mappings between input and output, with advantages for
image processing and classification. A Stanford University study used a CNN model to automatically
segment head and neck OARs for the first time. In the automatic segmentation of organs such as bone,
pharynx, larynx, eyeball and optic nerve, it is better than or equivalent to the current best technology. But
for organs such as parotid gland, submandibular gland and optic chiasm whose boundaries are not easy
to identify on CT images, the delineated results are not satisfactory [55]. Lu et al. [56] used a 3D CNN to
automatically segment the liver, combined with a graph cut algorithm to refine the segmentation. The
advantage is that no manual initialization is required, and the segmentation process can be performed by
non-professionals. Also using 3D CNN for liver segmentation, Hu et al. [57] combined deep learning with
global and local shape prior information, and evaluated on the same dataset, and all error indicators were
significantly reduced. In a follow-up study, the target was extended to abdominal multi-organ segmentation,
using 3D CNN to perform pixel-to-pixel dense prediction with higher accuracy and shorter segmentation
time [58].

Therefore, the outline processing of OARs is a complex project, and it is often difficult to use a set of
models to achieve the expected accuracy for different parts of the body or different modalities. In actual
situations, it is necessary to combine specific factors to make certain improvements to deep neural networks.

5. THERAPEUTIC TARGET SEGMENTATION BASED ON DEEP LEARNING
5.1 GTV Automatic Delineation

As with normal tissue delineation, deep learning-assisted tumor target delineation helps improve
execution efficiency. However, since it is often difficult to distinguish the boundary between the tumor and
the surrounding tissue, the clinical information, pathological sections, and images of the patient will
become the reference data for GTV delineation. Various techniques are used to aid in identification. In the
Multimodal Brain Tumor Image Segmentation Challenge (BraTS) in 2013, Pereira et al. [59] used CNN to
automatically segment brain tumor MRI images, which improved the network accuracy and ranked first.
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Since then, Kamnitsas et al. [60] proposed a dual-channel 3D CNN network for brain injury (including
traumatic brain injury, brain tumor, ischemic stroke) segmentation, the first time to use fully connected
conditional randomization on medical data. Both of the above studies used neural networks with small
convolution kernels to make the network structure deeper without increasing the computational cost. Men
et al. [61] used big data to train deep dilated residual network (DD-ResNet) for breast tumor segmentation,
and the results were better than deep dilated convolutional neural networks (DDCNN) and distributed deep
neural networks (DDNN), similar to Dice The dice similarity coefficient (DSC) was 91%, which was higher
than the result hand-drawn by experts [62].

In addition, for the above-mentioned basic network types, studies have also shown that the improved
network in [63] can improve the accuracy of network segmentation and has stronger robustness. Lin
et al. [64] trained a 3D CNN to delineate the GTV of nasopharyngeal carcinoma on MRI images, and the
similarity with the GTV delineated by experts was high, with the DSC reaching 79%. With the help of
machine learning, doctors reduced their time by 39.4% and improved their accuracy. 3D CNN not only
utilizes the CT image information of each layer extracted by traditional CNN, but also utilizes the information
between layers, the information utilization rate is high, and the accuracy is improved to a certain extent.
Qi et al. [65] used convolutional neural networks to delineate the target volume of nasopharyngeal
carcinoma based on multimodal imaging (CT and MRI). The results show that the target area is delineated
with high precision. Li et al. [66] used the U-Net to automatically delineate the target volume of
nasopharyngeal carcinoma based on CT images. The results showed that the segmentation accuracy of the
automatically delineated target volume was high. Li et al. [67] based on the four-dimensional computed
tomography data of patients with non-small cell lung cancer, used transfer learning to automatically
delineate the tumor area, which improved the accuracy and shortened the retraining time of the network.
When the breathing range was 5-10 mm, the matching index improved by 36.1% on average compared
with the comprehensive elastic deformation registration technique. In a recent study [68], the authors used
fuzzy c-means clustering (FCM), artificial neural network (ANN), and SVM algorithms to automatically
segment GTV of solid, ground-glass, and mixed lung cancer lesions, respectively. It is considered that the
results of the FCM model are more accurate and efficient, and can be reliably applied to SBRT.

Delineating GTV based on deep learning can improve the work efficiency of clinicians, but this method
cannot completely replace manual delineation. On the basis of automatic delineation, manual correction
is still required to achieve accurate delineation effects [69].

5.2 CTV Automatic Delineation

CTV should be given a certain dose of radiation to the subclinical foci formed by infiltration around the
primary tumor and the path of regional lymph node metastasis according to the requirements of radiobiology
and the factors of tumor occurrence and metastasis. It is the basis for tumor regional radiotherapy to control
recurrence and metastasis. The delineation needs to be judged in combination with the specific pathological
conditions and the possible invasion or metastasis range of the diseased tissue, and the delineation results
of different types of tumors and different stages are completely different.
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Specifically, Men et al. [70] used a DDCNN model to attempt automatic segmentation of CTV and OARs
in 218 rectal cancer patients, and the results were accurate and efficient. Among them, the DSC of CTV
reaches 87.7%, the DSC of bladder and bilateral femoral head is more than 90%, and the delineation of
small intestine and colon is not accurate enough, and the DSC is 65.3% and 61.8%, respectively. It is
possibly related with that they are both air-containing hollow organs. Based on deep learning with Area-
aware reweight strategy and Recursive refinement strategy, called RA-CTVNet, Shi et al. [71] segment the
CTV from cervical cancer CT images. Their experimental results show that RA-CTVNet improves DSC
compared with different network architectures. Compared with three clinical experts, RA-CTVNet performed
better than the two experts while comparably to the third expert. Shen et al. [72] modified the U-net model
by incorporating the contours of gross tumor volume of lymph node (GTVnd) and designed the DiUnet
model for the automatic delineation of lung cancer CTV. The results showed that the DSC of most lymph
node regions was up to 70%, which was not significantly different from manual delineation.

In addition, our team [73] collected CT images of 53 cervical cancer patients. By modifying the U-net
model and the training process according to the task, the automatic segmentation of images of cervical
cancer CTV region and normal tissue is realized. By testing the prediction accuracy of the model and the
number of required dialogue rounds, the recall rate, accuracy rate, DSC, Intersection over Union (loU), etc.
of the results were evaluated. The results show that the proposed model has good performance in all the
indicators outlined in the target area. And compared with commonly used deep learning neural network
models such as mask region-based convolution neural network (Mask R-CNN), speech enhancement
generative adversarial network (SegAN), and U-net, the segmentation boundary of the proposed model is
clearer and smoother, and the recall rate is obviously better than that of other models. Moreover, because
of its very light weight, it can be adapted to the dataset size-limited case.

Due to the involvement of subclinical lesions and lymph node drainage areas, CTV automatic delineation
is relatively more difficult, and the performance of deep learning delineation is still far from that of
experts [74-76]. In the future, relying on the disease-specific big data platform to integrate multimodal
radiotherapy data, imaging, genetic and other multi-omics data, as well as the experience data of senior
radiotherapy physicians, physicists, and technicians, it is expected to be useful in the prediction of efficacy
and complication risk. Guided by the results, individualized CTV range decisions are provided.

6. CONCLUSION

The research of machine learning methods in the field of radiotherapy has been fully rolled out and
achieved phased results, among which the automatic delineation of normal tissues and tumor target areas
has always been a research hotspot [77-79]. Most of the existing deep learning models are based on natural
images, and there is a lack of deep learning models dedicated to medical, especially radiation oncology-
related images. The difference between medical images and natural images is that medical images are
grayscale images and generally have continuity [80, 81]. In image segmentation, not only the regional
structure of an image, but also the spatial structure of 3D data must be considered [82]. In addition, local
and global prior information needs to be considered before it can further contribute to the segmentation
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of OARs and therapeutic target volume [83]. Moreover, multimodal image registration is often required to
further identify the extent of tumor invasion [84, 85].

Besides, radiotherapy is one of the links in tumor treatment. How to determine the appropriate radiotherapy
target range and irradiation dose is a complex issue that requires system integration, such as disease
characteristics and overall treatment mode, even the cross-scale issues from molecular cells to tissues and
organs, and the spatio-temporal relationship of biomolecules and other factors need to be comprehensively
analyzed. So that the radiotherapy plan obtained in this way is more in line with the principle of precise
individualized treatment. The integration of automatic radiotherapy target delineation with artificial
intelligence knowledge maps and causal analysis may play an important role in the formulation of clinical
radiotherapy targets [86].

At present, most of the current applications are in the preclinical research stage, but there are still some
problems in clinical application. First, high-quality clinical data is the basis for artificial intelligence to learn
and judge, but the current standardization of relevant medical data for automatic target area delineation is
not high. The quality of labeling is uneven, and the data of major medical centers lack a joint construction
and sharing mechanism. There are data barriers, which seriously hinder the effective use of data and product
development. Secondly, it is still difficult to accurately define the treatment target area. Based on the current
CT, MRI, PET-CT and other means, it is generally not difficult to determine the GTV, but some lesions are
still difficult to identify, such as soft tissue invasion, bone destruction degree and scope, etc. The doses of
CTV are different according to the risk of recurrence and metastasis. There is no relevant research on how
to determine high-, medium-, and low-risk CTV. In addition, the clinical application of artificial intelligence
is directly related to life and health, and faces many ethical and legal challenges. However, the automatic
delineation of radiotherapy target volume based on machine learning will be an important development
direction of artificial intelligence in the medical field in the future.
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