Apr. 2004

1,4-丁二醇常压气相脱氢制 γ -丁内酯

郑洪岩 杨 骏*

朱玉雷

(暨南大学化学系 广州 510632)

(中国科学院山西煤炭化学研究所煤转化国家重点实验室 太原)

摘 要 采用固定床反应器,研究了常压下铜铬系催化剂对 1,4-丁二醇气相脱氢制 γ -丁内酯的催化性能,考察了反应条件对催化性能的影响。结果表明,添加 Ca、Ba 助剂的 Cu-Cr 催化剂在 $180 \sim 200 \,^{\circ} \,^{\circ}$ 、液时空速 $0.3 \sim 0.7 \,^{\circ}$,氢醇摩尔比 $15 \sim 30$ 的条件下,1,4-丁二醇转化率 $\ge 99.9 \,^{\circ}$, γ -丁内酯产率 $\ge 96 \,^{\circ}$ 。通过 XRD 和 TG/ DTG 表征发现, Cu° 为催化剂的活性中心,Cr 的存在促进了 Cu 的高度分散,提高了催化剂的活性及选择性。助剂 Ca 和 Ba 的加人,降低了催化剂的还原温度,提高了 γ -丁内酯的产率。

关键词 丁二醇,气相脱氢,γ-丁内酯,Cu-Cr 催化剂

中图分类号:0643.38

文献标识码:A

文章编号:1000-0518(2004)04-0343-05

 γ -丁内酯(γ -BL)是一种用途很广泛的精细化工产品,是环丙沙星、脑复康、氨酪酸、维生素 B_1 、聚乙烯基吡咯烷酮等的原料; γ -丁内酯还可用作优良的高沸点有机溶剂、萃取剂和吸收剂^[1-6]。因此, γ -丁内酯需求量日益上升,其合成成为研究的热点。目前,主要有 2 种原料路线生产 γ -丁内酯,即顺酐加氢法和 1,4-丁二醇脱氢法。顺酐加氢法粗产物中酸度相对较高,这给产物的分离和产物的品质带来一定的影响;1,4-丁二醇脱氢法的副产物少,组分简单,产品易分离,合成的 γ -丁内酯品质好。有关1,4-丁二醇脱氢制 γ -丁内酯^[6-9],使用铜铬催化剂的较多,研究方向主要集中在催化剂的开发和工艺条件方面,对催化剂的表征较少。文献^[10]使用 XRD、SEM 及 BET 等手段,对催化剂进行了表征。本文考察了添加 Ca、Ca 、Ca 、

1 实验部分

1.1 试剂和仪器

1,4-丁二醇,工业品;H2气(>99%);重铬酸铵、硝酸铜、硝酸钡、硝酸钙均为分析纯试剂。

Tristar 3000 物理吸附仪(美国 Micromeritics 公司); D/max RB 型 X 射线衍射仪(日本 Rigaku 公司), Cu $K\alpha$ 射线源(λ = 154 nm), Ni 滤波, 管电流 150 mA, 管电压 40 kV; TGA92 热分析仪(Setaram 公司), $V(H_2)$: $V(N_2)$ = 5:95 的混合还原气,流量 45 ~ 50 mL/min, 升温速率 10 ℃/min, 从室温程序升温到 800 ℃(100 ℃停留 0. 5 h); SP-2000 气相色谱仪(山东鲁南瑞虹化工仪器有限公司), 氢火焰检测器对产物进行分析, 固定液为 PEG-20M, 其中固定液质量为固定相质量的 10%,固定相为 Chromosorb W-HP (0. 177 ~ 0. 149 mm), 柱长 2 m, 直径 3 mm, 液相产物采用柱温 80 ℃ ~ 120 ℃ ~ 170 ℃(二阶程序升温)分析, 气相产物在柱温 80 ℃恒温分析。

1.2 催化剂的制备

²⁰⁰³⁻⁰⁸⁻²⁰ 收稿,2003-11-18 修回

国家自然科学基金项目(20276077)和山西省自然科学基金项目(20021023)

通讯联系人: 杨骏, 男, 1967 年生, 博士, 副教授; E-mail: tyangj@ sohu. com; 研究方向: 多相催化

1.3 催化剂活性的考察

采用固定床反应装置,反应器为长 500 mm,内径 12 mm 的不锈钢管。5.0 g(0.84~0.42 mm)的催化剂装填在反应器恒温段内。活性评价前,催化剂用约 $V(H_2):V(N_2)=5:95$ 的混合气原位还原,还原结束后,切换成 H_2 和 1,4-丁二醇的反应混合气,调节至所需的反应条件,进行反应。产物经冷凝后进入气液分离器,尾气放空。每次改变操作条件后,稳定时间不少于 10 h,待体系达稳态后,收集液样产物分析。液相粗产物中有 γ -丁内酯、四氢呋喃、丁醇及少许未知物,气相产物中有很少量的四氢呋喃。

2 结果与讨论

2.1 催化剂催化性能的比较

从表 1 可见,催化剂的活性都很高,在实验的范围内,转化率几乎为 100%,但 Cu-Cr-Ca-Ba 催化剂的 γ -丁内酯的产率高于 Cu-Cr 催化剂,四氢呋喃的产率低于 Cu-Cr 催化剂,这可能是由于碱性助剂 Ca和 Ba的加入,降低了催化剂表面的酸度,抑制了 1,4-丁二醇脱水生成四氢呋喃的反应 100% 。不同批次制备的 Cu-Cr-Ca-Ba 催化剂,反应活性和选择性结果基本相同,说明此 Cu-Cr-Ca-Ba 催化剂的反应性能重复性较好。

Yield/% t/°C LHSV/h⁻¹ $n(H_2)/n(BDO)$ Catalyst Conv. THF BOL Others $\gamma - BL$ Cu-Cr 99.9 182 0.3 15 96.73.1 0.1 99.9 95.4 0.1 0.1 201 0.3 15 4.4 250 0.3 35 100 84.8 11.5 2.7 1.0 Cu-Cr-Ca-Baa 182 0.3 15 100 97.0 2.3 0.70.3 15 100 96.4 2.4 0.1 1.1 201 250 0.3 35 100 88.9 8.4 2.6 0.1 0.3 15 99.9 97.6 2.2 0.1 0.1 Cu-Cr-Ca-Ba 182 201 0.3 99.9 96.9 0.1 0.6 15 2.4 0.2 217 0.315 99.9 93.66.2 236 0.3 15 99.9 90.7 8.0 1.1 0.2

表 1 催化剂的催化性能
Table 1 Catalytic performance of catalysts in dehydrogenation of 1,4-butanediol

BDO:1,4-butanediol; γ-BL:γ-butyrolactone; THF:tetrahydrofuran; BOL:butyl alcohol; a,b are catalysts of different batch.

2.2 Cu-Cr-Ca-Ba 催化剂的脱氢性能

- 2.2.1 反应温度的影响 反应温度对催化剂催化性能的影响如图 1 所示。从图可知,当反应温度低于 180 ℃时,由于 1,4-丁二醇转化率较低,导致 γ -丁内酯的产率不高,随着反应温度的提高,1,4-丁二醇转化率提高, γ -丁内酯的产率也相应地提高,但当温度大于 200 ℃时,1,4-丁二醇脱水反应开始加剧 $^{[6,11]}$,四氢呋喃产率提高,降低了 γ -丁内酯的产率。由此可见,在实验范围内,反应温度较明显地影响着 γ -丁内酯的产率,反应温度低,1,4-丁二醇转化率较低,不利于 γ -丁内酯的生成;反应温度高,脱水反应加剧,导致 γ -丁内酯产率降低,并且反应温度过高时,很容易结焦和 Cu^0 烧结而影响催化剂的寿命 $\mathrm{Ch}^{[6,11]}$ 。因此,要获得良好的 1,4-丁二醇脱氢性能,选择适当的温度至关重要。从实验结果看,反应温度选在 180 ~ 200 ℃较佳。
- 2.2.2 液时空速的影响 液时空速(LHSV)对催化剂催化性能的影响见图 2。由图可见,在实验范围内,液时空速对 γ -丁内酯的产率影响较大,当空速小时,1,4-丁二醇与催化剂接触时间过长,导致 1,4-丁二醇脱水生成四氢呋喃反应加剧, γ -丁内酯产率降低,随着空速的增大,脱水反应受到抑制, γ -丁内酯产率提高,继续增大空速,反应物在反应器中停留时间短,转化率降低,以致 γ -丁内酯产率降低。从实验结果看,空速选择在 0.3 ~ 0.7 h⁻¹较为合适。
- 2.2.3 氢醇比的影响 图 3 为氢醇摩尔比($n(H_2):n(BDO)$)对催化剂催化性能的影响。从图 3 可见,在实验范围内,氢醇摩尔比在 $15 \sim 30$ 之间, γ -丁内酯产率受氢醇摩尔比影响不大,但是当氢醇摩尔比大于 30 时,四氢呋喃产率提高, γ -丁内酯产率下降。另外,氢醇摩尔比过大,在生产中 H,气循环量大,会

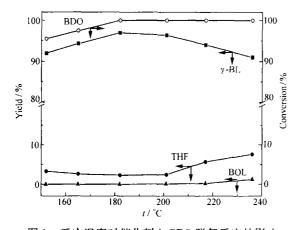


图 1 反应温度对催化剂上 BDO 脱氢反应的影响 Fig. 1 Effects of reaction temperature on the dehydrogenation of BDO over Cu-Cr-Ca-Ba catalyst Reaction condition:LHSV of BDO = 0.3 h⁻¹, $n(H_2)/n(BDO) = 15$

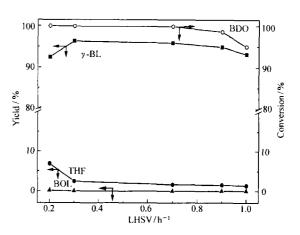


图 2 空速对催化剂上 BDO 脱氢反应的影响 Fig. 2 Effects of LHSV of BDO on the dehydrogenation of BDO over Cu-Cr-Ca-Ba catalyst Reaction condition: t = 201 ℃, n(H₂)/n(BDO) = 15

增加能耗,所以氢醇摩尔比选在15~30对反应比较有利。

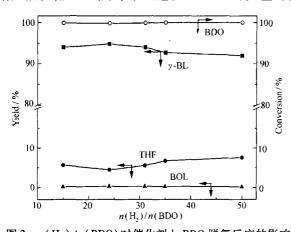


图 3 $n(H_2)/n(BDO)$ 对催化剂上 BDO 脱氢反应的影响 Fig. 3 Effects of $n(H_2)/n(BDO)$ on the dehydrogenation of BDO over Cu-Cr-Ca-Ba catalyst Reaction condition: t = 217 °C, LHSV of BDO = 0.3 h⁻¹

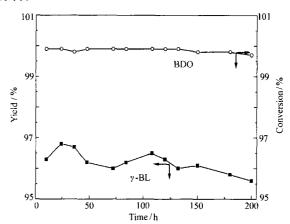


图 4 Cu-Cr-Ca-Ba 催化剂的稳定性 Fig. 4 Stability of Cu-Cr-Ca-Ba catalyst Reaction condition: t = 201 ℃, LHSV = 0.3 h⁻¹, n(H₂)/n(BDO) = 15

2.3 Cu-Cr-Ca-Ba 催化剂的稳定性

图 4 为 Cu-Cr-Ca-Ba 催化剂的稳定性考察结果。该催化剂在 201 $\,^\circ$ C,液时空速 0.3 h⁻¹的条件下,200 h 内转化率和选择性始终保持较为稳定的数值,1,4-丁二醇转化率 \geq 99.7%, γ -丁内酯产率保持在 96% 左右,说明此催化剂具有良好的稳定性。

2.4 催化剂的表征

2.4.1 比表面和孔结构 表 2 列出 2 种催化剂的物理性质。从表中可见, 2 种催化剂都具有较大的比表面积,加入助剂 Ca、Ba 的催化剂的比表面积略有降低,孔容和平均孔径无明显变化。

表 2 催化剂的物理性质

Table 2 Physical character of two catalysts

Catalyst	BET surface area/(m²·g ⁻¹)	Pore volume/(cm ³ · g ⁻¹)	Average pore diameter/nm
Cu-Cr	63.63	0.18	11.25
Cu-Cr-Ca-Ba	59.23	0.19	12.56

2.4.2 催化剂的 XRD 表征 图 5 为 Cu-Cr-Ca-Ba 催化剂反应前和还原后的 XRD 图。由图 5a 可见,在

 $2\theta = 35.6^{\circ}$ 、 37.6° 均出现 $CuCr_2O_4$ 特征衍射峰,在 $2\theta = 35.6^{\circ}$ 、 38.9° 均出现 CuO 的特征衍射峰 $^{[12]}$,但峰强度很小,说明 Cr 促进了 Cu 的高度分散。从图 5b 可见,催化剂还原后,铜元素是以 Cu° 和 $Cu_2Cr_2O_4$ 这 2 种状态存在,因为此催化剂在还原后才具有脱氢活性,所以催化剂的活性组分为高度分散于 Cu_2 Cr_2O_4 上的 $Cu^{\circ[12]}$ 。Cu-Cr 催化剂反应前和还原后的 XRD 图与 Cu-Cr-Ca-Ba 催化剂类似。

2.4.3 还原气氛的热重分析 从 H_2/N_2 气程序升 温还原的 TG 和 DTG 曲线(图 6,图 7)可见,2 种催 化剂的 DTG 曲线均出现2 个还原失重峰,结合 XRD 结果可知第 1 个非常尖锐的还原峰(约 150 ~ 250 $^{\circ}$ C)为 CuO 还原为 Cu $^{\circ}$ 的失重峰,第 2 个还原失 重峰很平缓(约 250 ~ 550 $^{\circ}$ C),是 CuCr $_2$ O $_4$ 的还原失 重峰 $^{[12]}$; Cu-Cr-Ca-Ba 催化剂的第 1 个还原失重峰

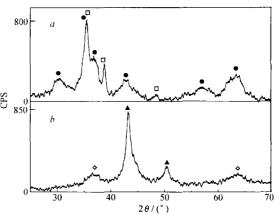


图 5 Cu-Cr-Ca-Ba 催化剂的 XRD 图
Fig. 5 XRD patterns of Cu-Cr-Ca-Ba catalyst
(a) before reduction and (b) after reduction

□ CuO; • CuCr₂O₄; • Cu⁰; • Cu₂Cr₂O₄

明显前移,这说明助剂 Ca、Ba 具有调变功能,使催化剂易于还原。结合反应评价结果我们认为,这可能也是 Cu-Cr-Ca-Ba 催化剂催化性能好的原因。Cu-Cr-Ca-Ba 催化剂还原失重峰面积的减小,可能是由于单位质量催化剂所含 CuO 的量的减少引起的。

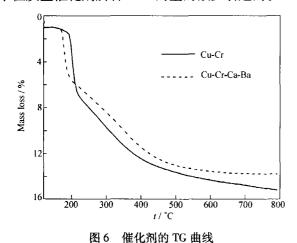


Fig. 6 TG curves of two catalysts

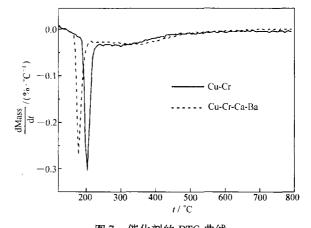


图 7 催化剂的 DTG 曲线 Fig. 7 DTG curves of two catalysts

参 考 文 献

- 1 Castiglion G L, Fumagalli C. US 6 492 535[P], 2002
- 2 TONG Li-Shan(童立山),LI Xiang-Wei(李向伟),WANG Hai-Jing(王海京). CN 94 105 927.8[P],1995
- 3 WANG Hai-Jing(王海京), ZHANG Jing-Sheng(张京生), FENG Wei-Sun(冯薇荪), et al. CN 97 122 092.1[P], 1999
- 4 LIN Yan-Hua(林衍华),LUO You-Shou(骆有寿). Mod Chem Ind(现代化工)[J],1997,(1):43
- 5 Zhu Y L, Xiang H W, Wu G S, et al. Chem Commun[J], 2002, (3):254
- 6 Ichiki T, Tatsumi K, Suzuki S, et al. US 5 210 229 [P], 1993
- 7 Suzuki S, Fujii T, Ueno H. JP 03 232 875[P], 1991
- 8 Ichiki T, Mori S, Suzuki S, et al. JP 05 25 151[P], 1993; CA 119:139064t
- 9 WANG Hai-Jing(王海京), FENG Wei-Sun(冯薇荪). Petrol Proc Petrochem(石油炼制与化工)[J],1999,30(5):35
- 10 CHEN Xue-Gang(陈学刚), SHEN Wei(沈伟), XU Hua-Long(徐华龙), et al. J Fudan Univ(复旦学报)[J], 2000,

39(4):388

- 11 CHEN Xue-Gang(陈学刚), SHEN Wei(沈伟), XU Hua-Long(徐华龙), et al. Chin J Catal(催化学报)[J], 2000, 21(3):259
- 12 Tonner S P, Wainwright M S, Trimm D L, et al. Appl Catal [J], 1984, 11:93

Preparation of γ -Butyrolactone by Catalytic Dehydrogenation of 1,4-Butanediol

ZHENG Hong-Yan, YANG Jun*
(Department of Chemistry, Ji'nan University, Guangzhou 510632)
ZHU Yu-Lei

(State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan)

Abstract The dehydrogenation of 1,4-butanediol to γ -butyrolactone over copper-chromite catalysts at atmospheric pressure has been carried out in a fixed-bed reactor. The effects of reaction conditions on the performance of catalyst have been investigated. The results show that for Cu-Cr-Ca-Ba catalyst the conversion of 1,4-butanediol is $\geq 99.9\%$ and the yield of γ -butyrolactone is $\geq 96\%$ under the conditions: LHSV 0.3 \sim 0.7 h⁻¹, reaction temperature 180 \sim 200 °C and $n(H_2)/n(BDO)$ 15 \sim 30. The XRD and TG-DTG characterization results show that Cu⁰ is the active site of the catalyst in dehydrogenation and the presence of Cr is in favor15 of high dispersion of Cu, which results in increasing of the dehydrogenation activity and selectivity. Addition of Ca and Ba as promoters let the reaction temperature reduce to a lower degree and led to an increased yield of γ -butyrolactone.

Keywords butanediol, vapor-phase dehydrogenation, γ-butyrolactone, Cu-Cr catalyst