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3D Shape Reconstruction of Lumbar Vertebra From
Two X-ray Images and a CT Model

Longwei Fang, Zuowei Wang, Zhigiang Chen, Fengzeng Jian, Shuo Li, and Huiguang He, Senior Member, IEEE

Abstract—Structure reconstruction of 3D anatomy from bi-
planar X-ray images is a challenging topic. Traditionally, the
elastic-model-based method was used to reconstruct 3D shapes by
deforming the control points on the elastic mesh. However, the
reconstructed shape is not smooth because the limited control
points are only distributed on the edge of the elastic mesh.
Alternatively, statistical-model-based methods, which include
shape-model-based and intensity-model-based methods, are
introduced due to their smooth reconstruction. However, both
suffer from limitations. With the shape-model-based method, only
the boundary profile is considered, leading to the loss of valid
intensity information. For the intensity-based-method, the
computation speed is slow because it needs to calculate the
intensity distribution in each iteration. To address these issues, we
propose a new reconstruction method using X-ray images and a
specimen’s CT data. Specifically, the CT data provides both the
shape mesh and the intensity model of the vertebra. Intensity
model is used to generate the deformation field from X-ray
images, while the shape model is used to generate the patient
specific model by applying the calculated deformation field.
Experiments on the public synthetic dataset and clinical dataset
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show that the average reconstruction errors are 1.1 mm and
1.2 mm, separately. The average reconstruction time is 3 minutes.

Index Terms—2D/2D  registration, 2D/3D
reconstruction, vertebra model, X-ray image.

registration, 3D

I. INTRODUCTION

MAGE guided radiotherapy is widely applied in the

hospital-setting because it provides valuable anatomical
model information to help doctors understand pathology
[1]-[4]. Images shown in 3D form provide more clear ana-
tomical structures and spatial information than 2D images [4],
[5]. However, it is inconvenient to get 3D form data during
surgery since 3D data collecting devices used in the surgery
are so expensive that ordinary hospitals cannot afford it. For
ordinary hospitals, a 2D X-ray image collecting device is
widely used in the surgery. Recently, 3D anatomy shape
reconstruction using 2D X-ray images has been developed
[6]-[9]. Several corresponding methods have been proposed,
such as the elastic-mesh-based method and statistical based
model.

For elastic-mesh-based methods, an priori elastic mesh
model, which is also called the base model, is introduced to
reconstruct the 3D shape. Control points are distributed along
the edges of the base model. For reconstruction, the based
model is deformed through an optimal procedure so that the
projection of control points match the corresponding points in
X-ray images. The most commonly used strategy for this kind
of method is using the stereo or non-stereo correspondence of
control points [10]-[12]. Mitton et al. [10] and Mitulescu
et al. [11] deformed an elastic mesh by using stereo-
corresponding points (SCPs) and non-stereo-corresponding
points (NSCPs) that available in different projections. The
correspondence was built by rigid registration of control
points with the identified points in X-ray images. Then 3D
SCPs were reconstructed by applying the direct linear
transformation (DLT) algorithm. Subsequently, NSCPs and
their 3D coordinates were reconstructed by defining lines
connecting the projections of anatomical landmarks and the
ray source in the 2D image. The optimization procedure was
achieved by finding the best position on these lines by
calculating shape similarity with the base elastic mesh.
Laporte et al. [13] improved the NSCP by offering a non-
stereo corresponding contour (NSCC) in their method. Instead
of using non-stereo points, they applied non-stereo contours to
increase the number of control points. The main idea of their
method was to build the correspondence of 2D contours which
were generated from radiographs to 3D outlines that were
projected from the surface of the elastic mesh. A coarse to fine
strategy was also used to improve reconstruction accuracy.
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Mitton et al. [14] improved NSCC by progressively
reconstructing a coarse, intermediate, and fine personalized
model. The elastic-model-based methods just use a single
priori model to reconstruct the patient-specific model. The
advantage of elastic-mesh-based methods is that they only use
a single priori model for the reconstruction. However, the
limitation is that the control points are only distributed along
the model edge, which may lead to the un-smooth reconstruction.

For statistical-model-based methods, a deformable mean
model and characteristic factors are extracted from a series of
prior models. The mean model is deformed through a
characteristic factors selection optimal procedure until the
projection of the deformed mean model can match the X-ray
images. According to the status of the mean model, statistical-
model-based methods can be classified into two categories:
statistical shape model (SSM) methods which use shape
model as the mean model and statistical intensity model (SIM)
methods which use an intensity model as the mean model.
SSM based methods project the outlines of the mean model to
match the profiles of the X-ray images. A distance metric is
widely used in the SSM method for building the
correspondence between profiles of the X-ray images and
projection outlines of the training geometry [15], [16]. Fleute
et al. [17] built the correspondence by using an iterative
closest point (ICP) algorithm. Zhu et al. [18] restricted the
SSM to the contours of X-ray images by using a constraint
equation. Unlike ICP, this equation did not deform the
projected outlines. Baka et al. [19] did not build the
correspondence using a distance metric which was used in
[17], [18]. Instead, the correspondences were weighted by the
orientation difference of the X-ray images edges and the
projected silhouettes. The limitation of SSM based methods is
that they only use the boundary information from X-ray
images. Thus, the abundant intensity information inside X-ray
images is wasted. Moreover, the restriction is only distributed
along the projection outlines, which may not provide adequate
restrictions for a good reconstruction. SIM-based methods can
avoid this limitation. The projection of the intensity mean
model is known as digital reconstructed radiography (DRR).
The optimal procedure of SIM-based methods is achieved
until the intensity distribution of the projected DRR can match
the intensity distribution of the X-ray image. SIM-based
methods make full use of the intensity information from 2D
X-ray images, and they can achieve a higher reconstruction
accuracy. Whitmarsh ef al. [20] used an intensity-based
2D/3D registration strategy to register the DRRs onto two
bone densitometry (DXA) images. The best model was found
by adjusting the parameters of the mean intensity model
which resulted in the DRRs having the smallest difference
compared to the DXA images. Yao ef al. [21] and Hurvitz
et al. [22] shared a similar reconstruction strategy with
Whitmarsh, except Yao built the shape and intensity model
into one equation, and Hurvitz built an active appearance
model (AAM), which consists of three related components:
the template intensity image, the template bone surface, and
the statistical shape model. SIM-based methods make full use
of the intensity information from 2D X-ray images, which can
achieve higher reconstruction accuracy. However, the
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reconstruction costs a large amount of time because the
probability distribution of the intensity model needs to be
calculated in each iteration in 3D space.

There are also other reconstruction methods to reconstruct
3D model from X-ray images, such as Purisha et al. [23], who
reconstructed a 3D model from sparse data. Vukicevic ef al.
[24] reconstructed directly from X-ray images without using
any 3D prior model. However, none of these methods are
suitable for reconstruction of a complex structure like
vertebra.

In this paper, a novel reconstruction method is proposed by
using two X-ray images and the CT data of a vertebra
specimen. The introduced CT data could provide both the
elastic shape mesh and the intensity model of the vertebra.
DRRs are generated from the intensity model, which are used
to calculate the difference from patient X-ray images. While
the elastic shape model is deformed by the calculated
difference to generate the patient specific model. The novelty
of our method is described in three parts:

1) By taking the advantage of both the intensity-model-
based and elastic-model-based methods, the proposed
algorithm only uses one prior model and makes good use of
all X-ray images.

2) Compared with the elastic-model-based method, the
control points densely distribute on the whole elastic mesh.
Thus, the reconstruction result is smooth.

3) Compared with the statistical-intensity-based method, the
proposed method largely reduces the computational cost.

II. MATERIALS AND METHODS

A. A Brief Introduction to Reconstruction Procedure

The novelty of the proposed method is that we introduce the
CT data of a vertebra specimen in reconstruction. The CT data
can provide both the elastic mesh and the intensity model.
Specifically, we use 2D/3D registration to estimate the
projection parameters and 2D/2D registration to estimate the
deformation field between the intensity model and two
perpendicular X-ray images. Then we use the deformation
field and projection parameters to deform the elastic mesh to
generate the patient-specific 3D model. The whole
reconstruction process is completed in four steps: Firstly,
projection parameters are calculated by 2D/3D registration
between the intensity model and X-ray images. Secondly,
correspondences are built between the intensity model and
DRRs. Thirdly, 2D/2D registration between X-ray images and
DRRs is applied to calculate the deformation fields. Lastly,
the elastic model is deformed using the calculated deformation
field, projection parameters and correspondences. The
flowchart of the vertebra reconstruction is shown in Fig. 1.

B. Specimen Description

The vertebra specimen is provided by Beijing Hospital. It is
the third lumbar vertebra of the human body. Thirteen
landmarks are labeled on the vertebra, six of them are posted
on the vertebral body, two of them on the transverse process,
two of them on the superior articular process, and the last one
on the spinous process. Those landmarks are used to register
the CT data and X-ray images. The resolution of CT is
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Fig. 1. The flowchart of vertebra reconstruction.

0.24 mm x 0.24 mm x 0.7 mm, which is collected from the
GE Discovery HD720. Fig.2(a) shows the real vertebra
specimen model and its landmarks location. Fig. 2(b) is the
3D model reconstructed from the CT data and the landmarks’
location.

Fig. 2.
model; (b) on the reconstructed 3D model. Red circles are the location of

The location of landmarks on vertebra specimen: (a) on the physical

landmarks, the numbers near the red circles are the serial number of the
landmarks, which are fixed.

C. Pose Estimation

Projection parameters include the projection direction and
the position of ray sources when putting the 3D CT and X-ray
images into the same space. Projection parameters are
calculated in two steps: labeling landmarks on segmented
vertebrac and 2D/3D landmark based rigid registration
between the CT data and the segmented vertebra. The
schematic of pose estimation is shown in Fig. 3.

1) Vertebra Segmentation and Landmarks Labeling:
Precisely segmenting the vertebra from X-ray images is a
challenging job because of the complex background and the
overlap between adjacent vertebras. In this paper, Intelligent
Scissorsis [25] is used to segment the reconstruction part.
Intelligent Scissoris is an interactive algorithm which uses
mouse gesture motions to extract objects from the image. A
live-wire boundary wraps around the segmented object when
the mouse location coming proximately to the object edge.
Fig. 4(a) is the presentation of Intelligent Scissors on original
image and Fig. 4(b) is the segmentation result.

The next step is labeling the landmarks on the segmented
images. The position of the landmarks is based on the
markers’ position on the physical model, which is shown in
Fig.2(a). The principle of labeling landmarks on two
perpendicular segmented images is that 1) seen from the ray
source, only visible landmarks are labeled; 2) landmark
numbers which are labeled in two images can be different.
Fig. 4(c) shows the labeled landmarks on the two
perpendicular segmented images. The number in two images
is different.

2) 2D/3D Registration Based on Landmarks: A 2D/3D
landmark-based registration strategy is applied to compute the
projection parameter between X-ray images and the intensity
model. In this paper, two X-ray images are from perpendicular
positions, which called the sagittal image and coronal image.
As shown in Fig. 4(a). Q represents projection parameters, P
represents the projection of landmarks from the intensity
model, and Q represents the landmarks labeled on the X-ray
image, then projection parameters can be solved by

2= g Y (tp@+alPi@-ck@lf)
ke(s.c)

where 6,
and landmark line on the k plane. Here, the projection line
means that the line connects two projection points, and the
landmark line means that the line connects two landmarks.
The unit of the angle is radians. k =s and k = ¢ mean the
sagittal and coronal plane, respectively. i and [ represents
landmark sets (see in Fig. 2). When /=8, i €{1,2,3,4,9,10},
and [ =13, i€{5,6,7,11,12}. We should notice that the value
of i is not a constant value and it can be a partial or entire
value in its set. The value depends on the landmarks’ position
which are marked on X-ray images. For example, as shown in
Fig. 5, we only use seven landmarks to estimate the pose of
the CT data, and the landmarks in two projection planes are
different. || e || means the Euclidean distance, « is the ratio to
balance the distance and angle in the optimization process,
a =0.017 is empirically found to be effective in registration.
Q= (9;,9,), Q; and Q. are the projection parameters of two
ray source, which includes three translation parameters and
three rotations along three axes. P/% represents the projection
of the 8th landmark on the kth plane, Pz =[x,y]7, Qlf
represents the 8th landmark on the kth X-ray image plane,
0} =[x.yl", and [x,y]" represents the pixel location. The
center of the CT data is the original coordinate, and the
coordinate of ray source is S = [O,O,tZ]T. d represents the
distance value from the projection plane to the ray source.
Three points are chosen from the projection plane, which are
po=[x0,y0,t.—d1", p1=[x1,y1,t:—d]", and py =[xz, y2,1,—d]".
The coordinate of the ith landmark is /; = [x;,y;,z;]7. For the
projection of landmark i on sagittal plane, the transformed ray
source S is calculated in

represents the angle between the projection line
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(Red dots are manually added landmarks in X-ray images, the green dots are the projection of landmarks from CT image).

Sagittal image (a)m
Fig. 4.
of Intelligent Scissors on original image (b) segmentation result by Intelligent

Vertebra segmentation and landmarks labeling: (a) The presentation

Scissors (c) the result of adding landmarks to segmented images.

Sy =T(R2:)S = [xs,y5.25]" . )

The transformed points in the projection plane are

calculated by
Py =T Qo)po =[x, y5. 251"
Py =TQyp1 = [x.y}.211"
ph=T(Q)p2 = [x5.¥5. 251"
So, the projection of the landmark on the transformed
projection plane is the intersection point of the line and plane,

3)

which is P’ = [x’,y’,7z']", calculated by
¥ Xg—Xj X|—X) Xj—X -1 X5 — X,
P =1y |=|ys=yi Y=Yy Y=Yo| [Ys=Y|- 4
71 lzs—z -z -z lzs—%
Then after transforming back to the transformed projection
plane, the projection of point i is P = [%,,7]7, calculated by
P=[xy.2" =T7'(Qs)P. ©)

We assume the pixel space in the X-ray image is
= [pxpty]7, and the projection of landmark Pl =[x,y]" is
represented as

Py =[xyl ==, 2.
Hx Hy

The projection in the coronal plane can be calculated in the
same way. Equation (1) is a non-convex function, in this
paper, two optimization stages are used to solve the equation.
We first optimize the distance component and then optimize
the angle component. Specifically, the optimization of the
distance component makes the projection of landmark 8
overlap with the manually labeled landmark 8 on the X-ray
image. We then fix the translation parameters and optimize

(6)

the rotation parameters. Gradient descent is used to iteratively
optimize the distance component. For rotation parameters,
greedy search is used to seek the optimal parameters.
Particularly, we first search in a search domain every 5
degrees and select 2 rotation parameters which make the top 2
minimal values for (1) as the new search center. Then we
search in these sub-regions by every 1 degree, and select the
rotation parameters that minimize the (1) as the search domain
and search in this subregion in every 0.2 degrees to get the
optimal result. These two stages are optimized iteratively. In
this method, the number of iterations is set to 3. Fig. 5 is the
schematic of 2D/3D registration based on landmarks. Red dots
are the landmarks labeled by hand in X-ray images, and green
dots are the projection of landmarks.

Fig. 5.
are the landmarks labeled by hand in X-ray images while green dots represent

The schematic of 2D/3D registration based on landmarks; red dots
the projection of landmarks.

D. Correspondence Building

As we have mentioned before, CT data can be used to
generate the surface mesh of the specimen and the intensity
model. Because the surface mesh and projection images are
generated from the same source, we can build a connection
between pixels of the projection image and vertexes of the
surface mesh. This process can be achieved in three steps:
extract the elastic mesh from the CT data, generate DRRs
from the intensity model, and build the correspondence
between the projection of control points and DRRs. The
flowchart of the whole procedure is shown in Fig. 6, red
points are examples where control points are projected in two
planes and blue dots represent the ray sources.
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while blue dots represent the ray sources.

1) Elastic Mesh Extraction: We use the OTSU [26]
algorithm to segment lumbar vertebra model from the CT data
of the vertebra specimen and then use open source software
Medical Image Interaction Toolkit (MITK)! to extract its
surface. OTSU is a threshold-based segmentation method that
can automatically choose the best threshold to segment the
data. This algorithm is integrated into MITK. MITK is a
medical image processing software that was written based on
the open source code Visualization Toolkit (VTK) and Insight
Segmentation and Registration Toolkit (ITK). The extracted
surface, also called an elastic mesh, is stored in a triangular
format. The mesh vertexes are the control points to control the
deformation of the elastic model.

2) DRRs Generation: DRRs, also called projection images,
are the projections of the intensity model. A ray casting [27] is
used to generate the DRRs. Ray-casting algorithm simulates
the generation process of the X-ray image. It equidistant
samples the volume and calculates the attenuation value of the
sampling point when the ray gets through the CT volume, and
then synthesizes the value of all the sampling points along the
ray path to generate the pixel intensity of this ray. Projection
parameters calculated from (1) are used to generate the DRRs.
Two perpendicular DRRs are shown in Fig. 7(a).

3) Control Points Projection: After we generate DRRs and
the elastic mesh, we can build the correspondence between
control points and two DRRs. Extending the lines, which
connects the ray source and control points, to the projection
plane, the intersection points are the projected control points.
Basically, the calculated value is not an integer, thus we use
linear interpolation to find the correspondence location in the
DRR image. In this way, the projection of control points
moves with the moving of correspondence pixels in DRRs.
Projections which are generated from the same control point
in two DRRs are a control point pair, and are used to generate
the 3D point by back projection. The projection of the control
points is shown in Fig. 7(b). Blue points are the projection of
control points, and the red ones in two planes are generated
from the same control point.

E. Registration

Deformable registration between DRRs and X-ray images
involves finding deformation fields that can deform the DRRs
into X-ray images. A lot of algorithms are proposed to
improve the deformable registration. Du et al. [28] built the

Thttp://mitk.org/wiki/MITK
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(2) (b) (©) (d) (e) 0]

Fig. 7. The intermediate results for computing deformation fields of
projection images: (a) DRRs that generated in two perpendicular directions;
(b) project control points into DRRs; (c) the deformation field from DRRs to
X-ray images; (d) the overlap of the X-ray images and the DRRs before

registration; (e¢) the overlap of the X-ray images and the DRRs after
registration. The red dots shown in the figure represent the projection points
generated from the same control point.

dynamic population graph for accurate correspondence
detection between X-rays images. In their following works
[29], [30], they proposed two new algorithms to handle the
noise and outliers of the image. Balakrishnan ef a/. [31] used a
learning strategy to register the medical image. Here, B-Spline
and mutual information [32] techniques are used to register
these two modalities images. Mutual information is commonly
used to register images from different modality, and achieve a
good result.

The deformation field from DRRs to X-ray images is shown
in Fig. 7(c). The overlap of the X-ray images and the DRRs
before the registration are shown in Fig. 7(d), and the overlap
of the X-ray images and the DRRs after the registration are
shown in Fig. 7(e). Red dots in Fig. 7 represent the projection
points generated from the same control point.

F. Mesh Deformation

After we determine the deformation field, the elastic mesh
of the vertebra which is generated in Section 1I-D-1) can be
deformed to build the patient-specified vertebra. The
projections of control point i in the two planes are represented
by VZ.(.QC)z [xi.,yi]T and Vf,(QAy)z [xf;.,yf;.]T, respectively.
D.,D represents the deformation vector in the coronal
projection image and sagittal projection image respectively,
where D! = [d{.x,di.y]T, D = [dix,df;y]T, and [d.y,d.y]" is the
deformation in position [x, y]”, and NZ., Ni is the new position
after deformable registration in two planes. Thus, we can
calculate the new position by

{NiC(Qc) = Vi(Qc)+ DL = [xL+dl .y +d. " @

N¢(Qc) = Vi(Qs) + D = [x§ +d5,, ¥ +d§y]T
Assuming the ray sources of the coronal direction and
sagittal direction are S. and S, the intersection point M’ of
the line S ¢N.(Qc) and line S5 N§(Qs) is the control point i’s
new position. The whole reconstruction is finished after
moving all the control points. Fig. 8 is the schematic diagram
of the reconstruction of a specific patient vertebra. Red dots
are the example of projections of one control point before
deformation, while yellow dots are the example of the same
control point’s projections after deformation.

III. EXPERIMENTS
In the proposed method, we do not use the learning strategy
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Fig. 8.

original location and yellow dots are the reconstruct control point.

The schematic diagram of mesh deformation; red dots are the

for reconstruction, the proposed method does not involve any
training phase. We just use the cadaver data collected to
design our reconstruction algorithm, and then validate the
performance on the clinical dataset and public dataset.

A. Validation on the Public Synthetic Dataset

The proposed method is tested on the second dataset of
spine public dataset? [33]. This dataset includes ten spine CT
scans and their manual segmentation, while the spine CT
includes the lumbar vertebrae and the thoracic vertebrae. The
resolution of the CT data is 0.31 mm x 0.45 mm x 1 mm . We
need to generate the simulated X-ray image since this dataset
only provides CT data. The coronal and sagittal position DRR
images are used as X-ray images in two perpendicular
positions. The resolution of the DRR image is 0.58 mm X
0.58 mm. In this paper, we reconstruct L2, L3, and L4 lumbar
vertebrac. The amount of control points is set to 3000. The
manual segmentation provided by the dataset is used to
calculate the reconstruction accuracy, the average distance and
its standard deviation of the control points to ground truth
surface is regarded as reconstruction error. They are
calculated by the open source software CloudCompare3.

B. Validation on the Clinical Dataset

X-ray images in the two perpendicular positions of six
patients acquired from the Beijing Hospital are used to
validate our reconstruction algorithm. One of them is
collected from a cadaver, and the other five data are real
patient data. The X-ray image collection device is Siemens
Axiom Multix M, and the resolution of the image is 0.16 mm x
0.16 mm. To validate the reconstruction results, the
corresponding CT data is also collected. The resolution of the
CT data is 0.61 mm x 1 mm. L2, L3, and L4 vertebra are
reconstructed. This study was approved by the ethical
committee of Institute of Automation, Chinese Academy of
Sciences. All of the subjects signed consent forms in advance.
If not specified in the following paragraphs, the influence of
parameters are evaluated on the clinical dataset.

C. The Influence of Control Points’ Number

In previous experiments, the amount of control points is set

Zhttp://opendatacommons.org/licenses/pddl/1.0/
3http://www.danielgm.net/cc
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to 3000. We choose a different amount to validate the
influence of the number of control points on reconstruction
accuracy. The numbers we choose are 500, 1000, 2000, 3000,
5000, 10 000, 20 000, and 30 000.

D. The Influence of Projection Parameters

The projection parameters are calculated by 2D/3D rigid
registration. However, the calculated projection parameters
may possibly have a deviation from the real projection
parameters since the landmarks are labeled manually.
Therefore, the robustness of the proposed method is tested by
using different projection parameters near real projection
parameters. Specifically, we test this on the public synthetic
dataset mentioned in Section III-A. We manually generate two
perpendicular images as input, and the projection parameters
are regarded as real projection parameters. Then we shift the
projection parameters in a small range. In this experiment, we
neglect the influence of translation and examine the influence
of rotation because of the 2D/2D deformable registration
robustness to translation. We shift the rotation angle from real
projection parameters for +1°, +2°, +3° respectively. Then
we have 117 649 results. In order to display the results, the
shifts of the rotation angle along three axes are simultaneous.
For example, the initial projection parameter in the sagittal
plane is ry, =0, ry, =0, ry; = 0, where the result of a shift of
1° s rex=1, ryy =1, ri; =1, and the number of results is
reduced to 49.

E. The Influence of Image Sizes on Reconstruction Time

The image size has a big influence on registration time since
the time cost of 2D/2D deformable registration between DRRs
and X-ray images relies on image size. Here, we evaluate the
influence of different image sizes on reconstruction time.
Image sizes we choose are 512x512, 450 %450, 350 x 350,
and 220 x 220. The default image size is 512 x512.

We run the experiments on the CentOS6.3 operating
system, and the configuration of the machine is: Intel(R)
Xeon(R) CPU e5-2687w, the frequency of CPU is 3.10 GHz,
the memory of the machine is 64G RAM. We use C++ and
MATLAB to write the code.

IV. RESULT AND DISCUSSION

The average reconstruction error on the public synthetic
dataset is 1.1+0.9 mm, and the average reconstruction error on
clinic dataset is 1.2+1.0 mm. For the reconstruction time, each
vertebra requires 3 minutes. This time cost includes the time
used for manual segmentation and labeling. The visualization
of reconstruction results on the public dataset and clinical
dataset are listed in Fig. 9, and L2, L3, and L4 represent the
second, third and the fourth vertebra in the human body. The
final reconstructions are listed in the left column, and ground
truths with the colored error are listed in the right column.

A. The Influence of Control Points’ Number

The reconstruction time and accuracy vary with the number
of control points. Fig. 10(a) shows the relationship between
reconstruction time and the number of control points. Seen
from the figure, the reconstruction accuracy increased with the
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Fig.9. The reconstruction results in the synthetic dataset and clinical

dataset. L2, L3, and L4 represent the second, third, and fourth vertebra in the
human body. Reconstruction results are listed in left and ground truths with
the colored error in right.

increase of the number of control point. But the reconstruction
accuracy does not increase significantly when the number is
more than 3000. This can be easily explained by examining
our method. When we use fewer control points, which means
the elastic mesh has less vertex, it is hard to present anatomic
details clearly using limited vertices, so the reconstruction
accuracy is lower. When the number of the control points
increasing, anatomy detail can be represented clearly, thus
increasing the accuracy. However, after the number of control
points is sufficient to describe the detail of the elastic model,
the accuracy will hardly increase by increasing the vertex
number. On the other hand, the reconstruction time has a
positive relationship with the control points’ number, as
shown in Fig. 10(a). The reconstruction of the patient-specific
model uses the back projection strategy, it needs to back
project each point pair to generate the vertex of the model in
3D space; thus calculation time has a positive relationship to
control points’ number. From Fig. 10(a), we also find that the
reconstruction error decreases sharply from 1.2 mm to 1 mm
when the control points number increases from 500 to 3000,
but remains stable at 1 mm between 3000 and 10 000. When
the control points number is more than 10 000, it needs more
points to reduce the error by 0.1 mm . On the other hand,
reconstruction time increases with control points’ number.
Balancing the reconstruction error and time cost, in our
experiments, 3000 is the best choice to fulfill the accuracy and
time demand.

B. The Influence of Projection Parameters

Table I shows the reconstruction error by different
projection parameters. The average reconstruction error does
not increase much (the biggest error divergence is 0.2 mm)
even when the shift in three directions is three degrees. We
also randomly test the projection parameters that do not shift
the same angle simultaneously, and find that the error
divergence is also within 0.2 mm. For elastic-model-based
methods, which restrict the mean shape model only by using
boundaries of X-ray images, the contour that is generated by
projecting the mean shape model is prone to be affected by
projection parameters. For example, a slight variation in
projection parameters will lead to a large shape variation in
the projection contour and thus will cause the wrong
correspondence being built between projection contours and
boundaries of the X-ray image. In our method, the projection
of the control points is densely distributed on the whole
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vertebra. 2D/2D registration uses the full information of the
X-ray images, which is more stable than the boundary
information. Therefore, our method is robust to the bias of
projection parameters.

C. The Influence of Image Sizes on Reconstruction Time

Fig. 10(b) shows the result of different image sizes on
reconstruction time. The reconstruction time has a positive
relationship with the image size. For the proposed method, the
reconstruction time can be divided into five parts. Manual
segmentation, 2D/3D registration, DRRs generation and
elastic mesh extraction, 2D/2D registration, and elastic mesh
deformation. The first three parts use a fixed amount of time,
which is not influenced by different variables in the proposed
method. The fifth part, elastic mesh deformation, is influenced
by the control points’ number, as discussed in Section IV-A.
The fourth part, 2D/2D registration between X-ray images and
DRRs, is the most time-consuming step aside from the manual
segmentations. For a large image size, it needs to calculate
more interpolation points and needs more time to calculate the
probability distribution. Thus, the time cost increases with the
increase of image size.

V. CONCLUSION

In this paper, we propose a new method to reconstruct the
lumbar vertebra by using the CT data of a vertebra specimen
and X-ray images. The introduced CT data can provide both
the elastic shape mesh and the intensity model of the vertebra.
DRRs are generated from the intensity model, and they are
used to calculate the difference from X-ray images. Finally,
the elastic mesh model is deformed by the calculated
difference to generate the patient specific model. Our method
is evaluated on both the public synthetic dataset and clinical
dataset. The average reconstruction errors on these two
datasets are 1.1 mm and 1.2 mm, respectively, and the average
construction time for both datasets is 3 minutes. This
reconstruction accuracy is a commonly achieved level
[34]-[36] but we use much less time. For application in the
surgery, the reconstruction error needs to be less than 1.5 mm,
and our method can fulfill this requirement. We also discuss
the influence of some parameters in the proposed method on
the reconstruction accuracy and reconstruction time, like the
number of control points, the deviation of projection
parameters, and the image size.

The main contribution of the proposed technique is that we
use the CT data of a vertebra specimen as prior knowledge.
The introduced CT data not only provides an intensity model
of the vertebra, which is used to generate the DRRs for 2D/2D
intensity-based deformable registration but also can provide
the elastic mesh. The proposed method is a combination of the
elastic-mesh-based method and statistical-intensity-model-
based method. Compared with the elastic-mesh-based method,
the control points are evenly distributed on the surface of the
whole mesh, not just on the edge of the mesh. This will
improve the robustness of the method with regards to the
projection parameters and can provide fine control when
deforming the vertebral mesh. Moreover, the proposed
method makes full use of all information on X-ray images, not
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just the segmented boundary. On the other hand, compared
with the SIM-based method, the proposed method does not
need to calculate the intensity distribution in each iteration,
which needs less time for reconstruction.

Despite its appealing aspects, the proposed method is
limited by manual operation when calculating projection
parameters. The proposed method needs to segment the
vertebra from X-ray images manually to reduce the segment
error caused by the overlap between two adjacent vertebrae. In
the future, we will mainly focus on how to segment vertebrae
automatically, e.g., using a neural network for automatic
segmentation.
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