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   Abstract—Structure  reconstruction  of  3D  anatomy  from  bi-
planar  X-ray  images  is  a  challenging  topic.  Traditionally,  the
elastic-model-based method was used to reconstruct 3D shapes by
deforming  the  control  points  on  the  elastic  mesh.  However,  the
reconstructed  shape  is  not  smooth  because  the  limited  control
points  are  only  distributed  on  the  edge  of  the  elastic  mesh.
Alternatively,  statistical-model-based  methods,  which  include
shape-model-based  and  intensity-model-based  methods,  are
introduced  due  to  their  smooth  reconstruction.  However,  both
suffer from limitations. With the shape-model-based method, only
the  boundary  profile  is  considered,  leading  to  the  loss  of  valid
intensity  information.  For  the  intensity-based-method,  the
computation  speed  is  slow  because  it  needs  to  calculate  the
intensity distribution in each iteration. To address these issues, we
propose a new reconstruction method using X-ray images and a
specimen’s  CT data.  Specifically,  the  CT data  provides  both  the
shape  mesh  and  the  intensity  model  of  the  vertebra.  Intensity
model  is  used  to  generate  the  deformation  field  from  X-ray
images,  while  the  shape  model  is  used  to  generate  the  patient
specific  model  by  applying  the  calculated  deformation  field.
Experiments  on  the  public  synthetic  dataset  and  clinical  dataset

show  that  the  average  reconstruction  errors  are  1.1  mm  and
1.2 mm, separately. The average reconstruction time is 3 minutes.
    Index Terms—2D/2D  registration,  2D/3D  registration,  3D
reconstruction, vertebra model, X-ray image.
 

I.  Introduction

IMAGE  guided  radiotherapy  is  widely  applied  in  the
hospital-setting  because  it  provides  valuable  anatomical

model  information  to  help  doctors  understand  pathology
[1]–[4].  Images  shown  in  3D  form  provide  more  clear  ana-
tomical structures and spatial information than 2D images [4],
[5].  However,  it  is  inconvenient  to  get  3D  form  data  during
surgery  since  3D  data  collecting  devices  used  in  the  surgery
are  so  expensive  that  ordinary  hospitals  cannot  afford  it.  For
ordinary  hospitals,  a  2D  X-ray  image  collecting  device  is
widely  used  in  the  surgery.  Recently,  3D  anatomy  shape
reconstruction  using  2D  X-ray  images  has  been  developed
[6]–[9].  Several  corresponding  methods  have  been  proposed,
such  as  the  elastic-mesh-based  method  and  statistical  based
model.

For  elastic-mesh-based  methods,  an  priori  elastic  mesh
model,  which  is  also  called  the  base  model,  is  introduced  to
reconstruct the 3D shape. Control points are distributed along
the  edges  of  the  base  model.  For  reconstruction,  the  based
model  is  deformed  through  an  optimal  procedure  so  that  the
projection of control points match the corresponding points in
X-ray images. The most commonly used strategy for this kind
of method is using the stereo or non-stereo correspondence of
control  points  [10]–[12].  Mitton et  al. [10]  and  Mitulescu
et  al. [11]  deformed  an  elastic  mesh  by  using  stereo-
corresponding  points  (SCPs)  and  non-stereo-corresponding
points  (NSCPs)  that  available  in  different  projections.  The
correspondence  was  built  by  rigid  registration  of  control
points  with  the  identified  points  in  X-ray  images.  Then  3D
SCPs  were  reconstructed  by  applying  the  direct  linear
transformation  (DLT)  algorithm.  Subsequently,  NSCPs  and
their  3D  coordinates  were  reconstructed  by  defining  lines
connecting  the  projections  of  anatomical  landmarks  and  the
ray source in  the 2D image.  The optimization procedure was
achieved  by  finding  the  best  position  on  these  lines  by
calculating  shape  similarity  with  the  base  elastic  mesh.
Laporte et  al. [13]  improved  the  NSCP  by  offering  a  non-
stereo corresponding contour (NSCC) in their method. Instead
of using non-stereo points, they applied non-stereo contours to
increase the number of control points. The main idea of their
method was to build the correspondence of 2D contours which
were  generated  from  radiographs  to  3D  outlines  that  were
projected from the surface of the elastic mesh. A coarse to fine
strategy  was  also  used  to  improve  reconstruction  accuracy.
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Mitton et  al. [14]  improved  NSCC  by  progressively
reconstructing  a  coarse,  intermediate,  and  fine  personalized
model.  The  elastic-model-based  methods  just  use  a  single
priori  model  to  reconstruct  the  patient-specific  model.  The
advantage of elastic-mesh-based methods is that they only use
a  single  priori  model  for  the  reconstruction.  However,  the
limitation is  that  the control  points are only distributed along
the model edge, which may lead to the un-smooth reconstruction.

For  statistical-model-based  methods,  a  deformable  mean
model and characteristic factors are extracted from a series of
prior  models.  The  mean  model  is  deformed  through  a
characteristic  factors  selection  optimal  procedure  until  the
projection of  the deformed mean model  can match the X-ray
images. According to the status of the mean model, statistical-
model-based  methods  can  be  classified  into  two  categories:
statistical  shape  model  (SSM)  methods  which  use  shape
model as the mean model and statistical intensity model (SIM)
methods  which  use  an  intensity  model  as  the  mean  model.
SSM based methods project the outlines of the mean model to
match  the  profiles  of  the  X-ray  images.  A  distance  metric  is
widely  used  in  the  SSM  method  for  building  the
correspondence  between  profiles  of  the  X-ray  images  and
projection outlines of the training geometry [15], [16]. Fleute
et  al. [17]  built  the  correspondence  by  using  an  iterative
closest  point  (ICP)  algorithm.  Zhu et  al. [18]  restricted  the
SSM  to  the  contours  of  X-ray  images  by  using  a  constraint
equation.  Unlike  ICP,  this  equation  did  not  deform  the
projected  outlines.  Baka et  al. [19]  did  not  build  the
correspondence  using  a  distance  metric  which  was  used  in
[17], [18]. Instead, the correspondences were weighted by the
orientation  difference  of  the  X-ray  images  edges  and  the
projected silhouettes. The limitation of SSM based methods is
that  they  only  use  the  boundary  information  from  X-ray
images. Thus, the abundant intensity information inside X-ray
images is wasted. Moreover, the restriction is only distributed
along the projection outlines, which may not provide adequate
restrictions for a good reconstruction. SIM-based methods can
avoid  this  limitation.  The  projection  of  the  intensity  mean
model  is  known  as  digital  reconstructed  radiography  (DRR).
The  optimal  procedure  of  SIM-based  methods  is  achieved
until the intensity distribution of the projected DRR can match
the  intensity  distribution  of  the  X-ray  image.  SIM-based
methods  make  full  use  of  the  intensity  information  from  2D
X-ray  images,  and  they  can  achieve  a  higher  reconstruction
accuracy.  Whitmarsh et  al. [20]  used  an  intensity-based
2D/3D  registration  strategy  to  register  the  DRRs  onto  two
bone densitometry (DXA) images. The best model was found
by  adjusting  the  parameters  of  the  mean  intensity  model
which  resulted  in  the  DRRs  having  the  smallest  difference
compared  to  the  DXA  images.  Yao et  al. [21]  and  Hurvitz
et  al. [22]  shared  a  similar  reconstruction  strategy  with
Whitmarsh,  except  Yao  built  the  shape  and  intensity  model
into  one  equation,  and  Hurvitz  built  an  active  appearance
model  (AAM),  which  consists  of  three  related  components:
the  template  intensity  image,  the  template  bone  surface,  and
the statistical shape model. SIM-based methods make full use
of the intensity information from 2D X-ray images, which can
achieve  higher  reconstruction  accuracy.  However,  the

reconstruction  costs  a  large  amount  of  time  because  the
probability  distribution  of  the  intensity  model  needs  to  be
calculated in each iteration in 3D space.

There  are  also  other  reconstruction  methods  to  reconstruct
3D model from X-ray images, such as Purisha et al. [23], who
reconstructed  a  3D model  from sparse  data.  Vukicevic et  al.
[24]  reconstructed  directly  from  X-ray  images  without  using
any  3D  prior  model.  However,  none  of  these  methods  are
suitable  for  reconstruction  of  a  complex  structure  like
vertebra.

In this paper, a novel reconstruction method is proposed by
using  two  X-ray  images  and  the  CT  data  of  a  vertebra
specimen.  The  introduced  CT  data  could  provide  both  the
elastic  shape  mesh  and  the  intensity  model  of  the  vertebra.
DRRs are generated from the intensity model, which are used
to  calculate  the  difference  from patient  X-ray  images.  While
the  elastic  shape  model  is  deformed  by  the  calculated
difference to generate the patient specific model. The novelty
of our method is described in three parts:

1)  By  taking  the  advantage  of  both  the  intensity-model-
based  and  elastic-model-based  methods,  the  proposed
algorithm only  uses  one  prior  model  and  makes  good  use  of
all X-ray images.

2)  Compared  with  the  elastic-model-based  method,  the
control  points  densely  distribute  on  the  whole  elastic  mesh.
Thus, the reconstruction result is smooth.

3) Compared with the statistical-intensity-based method, the
proposed method largely reduces the computational cost. 

II.  Materials and Methods
 

A.  A Brief Introduction to Reconstruction Procedure
The novelty of the proposed method is that we introduce the

CT data of a vertebra specimen in reconstruction. The CT data
can  provide  both  the  elastic  mesh  and  the  intensity  model.
Specifically,  we  use  2D/3D  registration  to  estimate  the
projection  parameters  and  2D/2D  registration  to  estimate  the
deformation  field  between  the  intensity  model  and  two
perpendicular  X-ray  images.  Then  we  use  the  deformation
field and projection parameters to deform the elastic mesh to
generate  the  patient-specific  3D  model.  The  whole
reconstruction  process  is  completed  in  four  steps:  Firstly,
projection  parameters  are  calculated  by  2D/3D  registration
between  the  intensity  model  and  X-ray  images.  Secondly,
correspondences  are  built  between  the  intensity  model  and
DRRs. Thirdly, 2D/2D registration between X-ray images and
DRRs  is  applied  to  calculate  the  deformation  fields.  Lastly,
the elastic model is deformed using the calculated deformation
field,  projection  parameters  and  correspondences.  The
flowchart of the vertebra reconstruction is shown in Fig. 1. 

B.  Specimen Description
The vertebra specimen is provided by Beijing Hospital. It is

the  third  lumbar  vertebra  of  the  human  body.  Thirteen
landmarks are labeled on the vertebra, six of them are posted
on the vertebral body, two of them on the transverse process,
two of them on the superior articular process, and the last one
on the spinous process.  Those landmarks are  used to  register
the  CT  data  and  X-ray  images.  The  resolution  of  CT  is
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0.24  mm ×  0.24  mm ×  0.7  mm,  which  is  collected  from the
GE  Discovery  HD720. Fig. 2(a) shows  the  real  vertebra
specimen  model  and  its  landmarks  location. Fig. 2(b) is  the
3D model reconstructed from the CT data and the landmarks’
location. 

C.  Pose Estimation
Projection  parameters  include  the  projection  direction  and

the position of ray sources when putting the 3D CT and X-ray
images  into  the  same  space.  Projection  parameters  are
calculated  in  two  steps:  labeling  landmarks  on  segmented
vertebrae  and  2D/3D  landmark  based  rigid  registration
between  the  CT  data  and  the  segmented  vertebra.  The
schematic of pose estimation is shown in Fig. 3.

1)  Vertebra  Segmentation  and  Landmarks  Labeling:
Precisely  segmenting  the  vertebra  from  X-ray  images  is  a
challenging  job  because  of  the  complex  background  and  the
overlap  between  adjacent  vertebras.  In  this  paper,  Intelligent
Scissorsis  [25]  is  used  to  segment  the  reconstruction  part.
Intelligent  Scissoris  is  an  interactive  algorithm  which  uses
mouse  gesture  motions  to  extract  objects  from  the  image.  A
live-wire  boundary wraps around the segmented object  when
the  mouse  location  coming  proximately  to  the  object  edge.
Fig. 4(a) is the presentation of Intelligent Scissors on original
image and Fig. 4(b) is the segmentation result.

The  next  step  is  labeling  the  landmarks  on  the  segmented
images.  The  position  of  the  landmarks  is  based  on  the
markers’ position  on  the  physical  model,  which  is  shown  in
Fig. 2(a).  The  principle  of  labeling  landmarks  on  two
perpendicular  segmented  images  is  that  1)  seen  from the  ray
source,  only  visible  landmarks  are  labeled;  2)  landmark
numbers  which  are  labeled  in  two  images  can  be  different.
Fig. 4(c) shows  the  labeled  landmarks  on  the  two
perpendicular  segmented  images.  The  number  in  two  images
is different.

Ω P

Q

2)  2D/3D  Registration  Based  on  Landmarks: A  2D/3D
landmark-based registration strategy is applied to compute the
projection parameter  between X-ray images  and the  intensity
model. In this paper, two X-ray images are from perpendicular
positions,  which called the sagittal  image and coronal  image.
As shown in Fig. 4(a).  represents projection parameters, 
represents  the  projection  of  landmarks  from  the  intensity
model,  and  represents  the  landmarks  labeled  on  the  X-ray
image, then projection parameters can be solved by
 

Ω̂ = argmin
Ω

∑
i,l

k∈(s,c)

(
θil(k)(Ω)+α

∥∥∥P8
k(Ω)−Q8

k(Ω)
∥∥∥2) (1)

θil(k)
k

k = s k = c
i l

l = 8 i ∈ {1,2,3,4,9,10}
l = 13 i ∈ {5,6,7,11,12}

i

∥ • ∥ α

α = 0.017
Ω = (Ωs,Ωc) Ωs Ωc

P8
k

k P8
k = [x,y]T Q8

k
8 k

Q8
k = [x,y]T [x,y]T

S = [0,0, tz]T d

p0= [x0,y0, tz−d]T p1= [x1,y1, tz−d]T p2= [x2,y2, tz−d]T

i li = [xi,yi,zi]T

i
S s

where  represents  the  angle  between  the  projection  line
and  landmark  line  on  the  plane.  Here,  the  projection  line
means  that  the  line  connects  two  projection  points,  and  the
landmark  line  means  that  the  line  connects  two  landmarks.
The  unit  of  the  angle  is  radians.  and  mean  the
sagittal  and  coronal  plane,  respectively.  and  represents
landmark  sets  (see  in Fig. 2).  When , ,
and , .  We should notice that the value
of  is  not  a  constant  value  and  it  can  be  a  partial  or  entire
value in its set. The value depends on the landmarks’ position
which are marked on X-ray images. For example, as shown in
Fig. 5,  we  only  use  seven  landmarks  to  estimate  the  pose  of
the  CT  data,  and  the  landmarks  in  two  projection  planes  are
different.  means  the  Euclidean distance,  is  the  ratio  to
balance  the  distance  and  angle  in  the  optimization  process,

 is  empirically  found to  be  effective  in  registration.
,  and  are the projection parameters of two

ray  source,  which  includes  three  translation  parameters  and
three  rotations  along  three  axes.  represents  the  projection
of  the  8th  landmark  on  the th  plane, , 
represents  the th  landmark  on  the th  X-ray  image  plane,

,  and  represents  the  pixel  location.  The
center  of  the  CT  data  is  the  original  coordinate,  and  the
coordinate  of  ray  source  is .  represents  the
distance  value  from  the  projection  plane  to  the  ray  source.
Three points are chosen from the projection plane, which are

, ,  and .
The  coordinate  of  the th  landmark  is .  For  the
projection of landmark  on sagittal plane, the transformed ray
source  is calculated in
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Fig. 1.     The flowchart of vertebra reconstruction.
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Fig. 2.     The location of landmarks on vertebra specimen: (a) on the physical
model;  (b)  on  the  reconstructed  3D  model.  Red  circles  are  the  location  of
landmarks,  the  numbers  near  the  red  circles  are  the  serial  number  of  the
landmarks, which are fixed.
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S s = T (Ωs)S = [xs,ys,zs]T . (2)
The  transformed  points  in  the  projection  plane  are

calculated by
 

p′0 = T (Ωs)p0 = [x′0,y
′
0,z
′
0]T

p′1 = T (Ωs)p1 = [x′1,y
′
1,z
′
1]T

p′2 = T (Ωs)p2 = [x′2,y
′
2,z
′
2]T .

(3)

P′ = [x′,y′,z′]T

So,  the  projection  of  the  landmark  on  the  transformed
projection plane is the intersection point of the line and plane,
which is , calculated by
 

P′ =


x′

y′

z′

 =

xs− xi x′1− x′0 x′2− x′0
ys− yi y′1− y′0 y′2− y′0
zs− zi z′1− z′0 z′2− z′0


−1 

xs− x′0
ys− y′0
zs− z′0

 . (4)

i P̄ = [x̄, ȳ, z̄]T
Then after  transforming back to  the transformed projection

plane, the projection of point  is , calculated by
 

P̄ = [x̄, ȳ, z̄]T = T−1(ΩS )P′. (5)

µ = [µx,µy]T Pi
s = [x,y]T

We  assume  the  pixel  space  in  the  X-ray  image  is
,  and  the  projection  of  landmark  is

represented as
 

Pi
S = [x,y]T = [

x̄
µx
,

ȳ
µy

]T . (6)

The projection in the coronal plane can be calculated in the
same  way.  Equation  (1)  is  a  non-convex  function,  in  this
paper, two optimization stages are used to solve the equation.
We  first  optimize  the  distance  component  and  then  optimize
the  angle  component.  Specifically,  the  optimization  of  the
distance  component  makes  the  projection  of  landmark  8
overlap  with  the  manually  labeled  landmark  8  on  the  X-ray
image.  We  then  fix  the  translation  parameters  and  optimize

the rotation parameters. Gradient descent is used to iteratively
optimize  the  distance  component.  For  rotation  parameters,
greedy  search  is  used  to  seek  the  optimal  parameters.
Particularly,  we  first  search  in  a  search  domain  every  5
degrees and select 2 rotation parameters which make the top 2
minimal  values  for  (1)  as  the  new  search  center.  Then  we
search in  these sub-regions by every 1 degree,  and select  the
rotation parameters that minimize the (1) as the search domain
and  search  in  this  subregion  in  every  0.2  degrees  to  get  the
optimal  result.  These  two  stages  are  optimized  iteratively.  In
this method, the number of iterations is set  to 3. Fig. 5 is the
schematic of 2D/3D registration based on landmarks. Red dots
are the landmarks labeled by hand in X-ray images, and green
dots are the projection of landmarks. 

D.  Correspondence Building
As  we  have  mentioned  before,  CT  data  can  be  used  to

generate  the  surface  mesh  of  the  specimen  and  the  intensity
model.  Because  the  surface  mesh  and  projection  images  are
generated  from  the  same  source,  we  can  build  a  connection
between  pixels  of  the  projection  image  and  vertexes  of  the
surface  mesh.  This  process  can  be  achieved  in  three  steps:
extract  the  elastic  mesh  from  the  CT  data,  generate  DRRs
from  the  intensity  model,  and  build  the  correspondence
between  the  projection  of  control  points  and  DRRs.  The
flowchart  of  the  whole  procedure  is  shown  in Fig. 6,  red
points are examples where control points are projected in two
planes and blue dots represent the ray sources.
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Fig. 3.     Flowchart of pose estimation: (a) input images; (b) segmentation results (Red dots are the labeled landmarks); (c) the schematic of 2D/3D registration
(Red dots are manually added landmarks in X-ray images, the green dots are the projection of landmarks from CT image).
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Fig. 4.     Vertebra segmentation and landmarks labeling: (a) The presentation
of Intelligent Scissors on original image (b) segmentation result by Intelligent
Scissors (c) the result of adding landmarks to segmented images.
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Fig. 5.     The  schematic  of  2D/3D registration  based  on  landmarks;  red  dots
are the landmarks labeled by hand in X-ray images while green dots represent
the projection of landmarks.
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1)  Elastic  Mesh  Extraction: We  use  the  OTSU  [26]
algorithm to segment lumbar vertebra model from the CT data
of  the  vertebra  specimen  and  then  use  open  source  software
Medical  Image  Interaction  Toolkit  (MITK)1 to  extract  its
surface. OTSU is a threshold-based segmentation method that
can  automatically  choose  the  best  threshold  to  segment  the
data.  This  algorithm  is  integrated  into  MITK.  MITK  is  a
medical image processing software that was written based on
the open source code Visualization Toolkit (VTK) and Insight
Segmentation  and  Registration  Toolkit  (ITK).  The  extracted
surface,  also  called  an  elastic  mesh,  is  stored  in  a  triangular
format. The mesh vertexes are the control points to control the
deformation of the elastic model.

2) DRRs Generation: DRRs, also called projection images,
are the projections of the intensity model. A ray casting [27] is
used  to  generate  the  DRRs.  Ray-casting  algorithm  simulates
the  generation  process  of  the  X-ray  image.  It  equidistant
samples the volume and calculates the attenuation value of the
sampling point when the ray gets through the CT volume, and
then synthesizes the value of all the sampling points along the
ray path to generate the pixel intensity of this ray. Projection
parameters calculated from (1) are used to generate the DRRs.
Two perpendicular DRRs are shown in Fig. 7(a).

3) Control Points Projection: After we generate DRRs and
the  elastic  mesh,  we  can  build  the  correspondence  between
control  points  and  two  DRRs.  Extending  the  lines,  which
connects  the  ray  source  and  control  points,  to  the  projection
plane, the intersection points are the projected control points.
Basically,  the  calculated  value  is  not  an  integer,  thus  we  use
linear interpolation to find the correspondence location in the
DRR  image.  In  this  way,  the  projection  of  control  points
moves  with  the  moving  of  correspondence  pixels  in  DRRs.
Projections  which  are  generated  from the  same  control  point
in two DRRs are a control point pair, and are used to generate
the 3D point by back projection. The projection of the control
points is shown in Fig. 7(b). Blue points are the projection of
control  points,  and  the  red  ones  in  two  planes  are  generated
from the same control point. 

E.  Registration
Deformable  registration  between  DRRs  and  X-ray  images

involves finding deformation fields that can deform the DRRs
into  X-ray  images.  A  lot  of  algorithms  are  proposed  to
improve  the  deformable  registration.  Du et  al. [28]  built  the

dynamic  population  graph  for  accurate  correspondence
detection  between  X-rays  images.  In  their  following  works
[29],  [30],  they  proposed  two  new  algorithms  to  handle  the
noise and outliers of the image. Balakrishnan et al. [31] used a
learning strategy to register the medical image. Here, B-Spline
and  mutual  information  [32]  techniques  are  used  to  register
these two modalities images. Mutual information is commonly
used to register images from different modality, and achieve a
good result.

The deformation field from DRRs to X-ray images is shown
in Fig. 7(c).  The  overlap  of  the  X-ray  images  and  the  DRRs
before the registration are shown in Fig. 7(d), and the overlap
of  the  X-ray  images  and  the  DRRs  after  the  registration  are
shown in Fig. 7(e). Red dots in Fig. 7 represent the projection
points generated from the same control point. 

F.  Mesh Deformation
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After  we  determine  the  deformation  field,  the  elastic  mesh
of  the  vertebra  which  is  generated  in  Section  II-D-1)  can  be
deformed  to  build  the  patient-specified  vertebra.  The
projections of control point  in the two planes are represented
by  and ,  respectively.

 represents  the  deformation  vector  in  the  coronal
projection  image  and  sagittal  projection  image  respectively,
where , ,  and  is  the
deformation in position , and ,  is the new position
after  deformable  registration  in  two  planes.  Thus,  we  can
calculate the new position by
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Assuming  the  ray  sources  of  the  coronal  direction  and
sagittal  direction  are  and ,  the  intersection  point  of
the line  and line  is the control point ’s
new  position.  The  whole  reconstruction  is  finished  after
moving all the control points. Fig. 8 is the schematic diagram
of  the  reconstruction  of  a  specific  patient  vertebra.  Red  dots
are  the  example  of  projections  of  one  control  point  before
deformation,  while  yellow  dots  are  the  example  of  the  same
control point’s projections after deformation. 

III.  Experiments

In the proposed method, we do not use the learning strategy
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Fig. 6.     Flowchart of correspondence building between the elastic mesh and
DRRs.  Red points  are  examples  that  a  control  point  projected  in  two planes
while blue dots represent the ray sources.
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Fig. 7.     The  intermediate  results  for  computing  deformation  fields  of
projection  images:  (a)  DRRs  that  generated  in  two  perpendicular  directions;
(b) project control points into DRRs; (c) the deformation field from DRRs to
X-ray  images;  (d)  the  overlap  of  the  X-ray  images  and  the  DRRs  before
registration;  (e)  the  overlap  of  the  X-ray  images  and  the  DRRs  after
registration. The red dots shown in the figure represent the projection points
generated from the same control point.
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for reconstruction, the proposed method does not involve any
training  phase.  We  just  use  the  cadaver  data  collected  to
design  our  reconstruction  algorithm,  and  then  validate  the
performance on the clinical dataset and public dataset. 

A.  Validation on the Public Synthetic Dataset
The  proposed  method  is  tested  on  the  second  dataset  of

spine public dataset2 [33]. This dataset includes ten spine CT
scans  and  their  manual  segmentation,  while  the  spine  CT
includes the lumbar vertebrae and the thoracic vertebrae. The
resolution of the CT data is 0.31 mm × 0.45 mm × 1 mm . We
need to generate the simulated X-ray image since this dataset
only provides CT data. The coronal and sagittal position DRR
images  are  used  as  X-ray  images  in  two  perpendicular
positions.  The  resolution  of  the  DRR  image  is  0.58  mm  ×
0.58 mm. In this paper, we reconstruct L2, L3, and L4 lumbar
vertebrae.  The  amount  of  control  points  is  set  to  3000.  The
manual  segmentation  provided  by  the  dataset  is  used  to
calculate the reconstruction accuracy, the average distance and
its  standard  deviation  of  the  control  points  to  ground  truth
surface  is  regarded  as  reconstruction  error.  They  are
calculated by the open source software CloudCompare3. 

B.  Validation on the Clinical Dataset
X-ray  images  in  the  two  perpendicular  positions  of  six

patients  acquired  from  the  Beijing  Hospital  are  used  to
validate  our  reconstruction  algorithm.  One  of  them  is
collected  from  a  cadaver,  and  the  other  five  data  are  real
patient  data.  The  X-ray  image  collection  device  is  Siemens
Axiom Multix M, and the resolution of the image is 0.16 mm ×
0.16  mm.  To  validate  the  reconstruction  results,  the
corresponding CT data is also collected. The resolution of the
CT  data  is  0.61  mm  ×  1  mm.  L2,  L3,  and  L4  vertebra  are
reconstructed.  This  study  was  approved  by  the  ethical
committee  of  Institute  of  Automation,  Chinese  Academy  of
Sciences. All of the subjects signed consent forms in advance.
If  not  specified  in  the  following  paragraphs,  the  influence  of
parameters are evaluated on the clinical dataset. 

C.  The Influence of Control Points’ Number
In previous experiments, the amount of control points is set

to  3000.  We  choose  a  different  amount  to  validate  the
influence  of  the  number  of  control  points  on  reconstruction
accuracy. The numbers we choose are 500, 1000, 2000, 3000,
5000, 10 000, 20 000, and 30 000. 

D.  The Influence of Projection Parameters

±1◦ ±2◦ ±3◦

rsx = 0 rsy = 0 rsz = 0
rsx = 1 rsy = 1 rsz = 1

The  projection  parameters  are  calculated  by  2D/3D  rigid
registration.  However,  the  calculated  projection  parameters
may  possibly  have  a  deviation  from  the  real  projection
parameters  since  the  landmarks  are  labeled  manually.
Therefore, the robustness of the proposed method is tested by
using  different  projection  parameters  near  real  projection
parameters.  Specifically,  we  test  this  on  the  public  synthetic
dataset mentioned in Section III-A. We manually generate two
perpendicular  images  as  input,  and  the  projection  parameters
are  regarded as  real  projection parameters.  Then we shift  the
projection parameters in a small range. In this experiment, we
neglect the influence of translation and examine the influence
of  rotation  because  of  the  2D/2D  deformable  registration
robustness to translation. We shift the rotation angle from real
projection  parameters  for , , ,  respectively.  Then
we  have  117  649  results.  In  order  to  display  the  results,  the
shifts of the rotation angle along three axes are simultaneous.
For  example,  the  initial  projection  parameter  in  the  sagittal
plane is , , ,  where the result  of a shift  of
1°  is , , ,  and  the  number  of  results  is
reduced to 49. 

E.  The Influence of Image Sizes on Reconstruction Time

512×512 450×450 350×350
220×220 512×512

The image size has a big influence on registration time since
the time cost of 2D/2D deformable registration between DRRs
and X-ray images relies on image size. Here, we evaluate the
influence  of  different  image  sizes  on  reconstruction  time.
Image  sizes  we  choose  are , , ,
and . The default image size is .

We  run  the  experiments  on  the  CentOS6.3  operating
system,  and  the  configuration  of  the  machine  is:  Intel(R)
Xeon(R) CPU e5-2687w, the frequency of CPU is 3.10 GHz,
the  memory  of  the  machine  is  64G  RAM.  We  use  C++  and
MATLAB to write the code. 

IV.  Result and Discussion

1.1±
1.2±

The  average  reconstruction  error  on  the  public  synthetic
dataset is 0.9 mm, and the average reconstruction error on
clinic dataset is 1.0 mm. For the reconstruction time, each
vertebra  requires  3  minutes.  This  time cost  includes  the  time
used for manual segmentation and labeling. The visualization
of  reconstruction  results  on  the  public  dataset  and  clinical
dataset  are  listed  in Fig. 9,  and  L2,  L3,  and  L4  represent  the
second, third and the fourth vertebra in the human body. The
final reconstructions are listed in the left column, and ground
truths with the colored error are listed in the right column. 

A.  The Influence of Control Points’ Number
The reconstruction time and accuracy vary with the number

of  control  points. Fig. 10(a) shows  the  relationship  between
reconstruction  time  and  the  number  of  control  points.  Seen
from the figure, the reconstruction accuracy increased with the
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Fig. 8.     The  schematic  diagram  of  mesh  deformation;  red  dots  are  the
original location and yellow dots are the reconstruct control point.
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increase of the number of control point. But the reconstruction
accuracy  does  not  increase  significantly  when  the  number  is
more  than  3000.  This  can  be  easily  explained  by  examining
our method. When we use fewer control points, which means
the elastic mesh has less vertex, it is hard to present anatomic
details  clearly  using  limited  vertices,  so  the  reconstruction
accuracy  is  lower.  When  the  number  of  the  control  points
increasing,  anatomy  detail  can  be  represented  clearly,  thus
increasing the accuracy. However, after the number of control
points is sufficient to describe the detail of the elastic model,
the  accuracy  will  hardly  increase  by  increasing  the  vertex
number.  On  the  other  hand,  the  reconstruction  time  has  a
positive  relationship  with  the  control  points’ number,  as
shown in Fig. 10(a). The reconstruction of the patient-specific
model  uses  the  back  projection  strategy,  it  needs  to  back
project each point pair to generate the vertex of the model in
3D space;  thus calculation time has a  positive relationship to
control points’ number. From Fig. 10(a), we also find that the
reconstruction error decreases sharply from 1.2 mm to 1 mm
when the  control  points  number  increases  from 500  to  3000,
but remains stable at 1 mm between 3000 and 10 000. When
the control points number is more than 10 000, it needs more
points  to  reduce  the  error  by  0.1  mm  .  On  the  other  hand,
reconstruction  time  increases  with  control  points’ number.
Balancing  the  reconstruction  error  and  time  cost,  in  our
experiments, 3000 is the best choice to fulfill the accuracy and
time demand. 

B.  The Influence of Projection Parameters
Table I shows  the  reconstruction  error  by  different

projection  parameters.  The  average  reconstruction  error  does
not  increase  much  (the  biggest  error  divergence  is  0.2  mm)
even  when  the  shift  in  three  directions  is  three  degrees.  We
also randomly test  the projection parameters that  do not shift
the  same  angle  simultaneously,  and  find  that  the  error
divergence  is  also  within  0.2  mm.  For  elastic-model-based
methods,  which restrict  the  mean shape model  only by using
boundaries  of  X-ray images,  the  contour  that  is  generated by
projecting  the  mean  shape  model  is  prone  to  be  affected  by
projection  parameters.  For  example,  a  slight  variation  in
projection  parameters  will  lead  to  a  large  shape  variation  in
the  projection  contour  and  thus  will  cause  the  wrong
correspondence  being  built  between  projection  contours  and
boundaries of the X-ray image. In our method, the projection
of  the  control  points  is  densely  distributed  on  the  whole

vertebra.  2D/2D  registration  uses  the  full  information  of  the
X-ray  images,  which  is  more  stable  than  the  boundary
information.  Therefore,  our  method  is  robust  to  the  bias  of
projection parameters. 

C.  The Influence of Image Sizes on Reconstruction Time
Fig. 10(b) shows  the  result  of  different  image  sizes  on

reconstruction  time.  The  reconstruction  time  has  a  positive
relationship with the image size. For the proposed method, the
reconstruction  time  can  be  divided  into  five  parts.  Manual
segmentation,  2D/3D  registration,  DRRs  generation  and
elastic  mesh  extraction,  2D/2D registration,  and  elastic  mesh
deformation. The first three parts use a fixed amount of time,
which is not influenced by different variables in the proposed
method. The fifth part, elastic mesh deformation, is influenced
by the  control  points’ number,  as  discussed in  Section IV-A.
The fourth part, 2D/2D registration between X-ray images and
DRRs, is the most time-consuming step aside from the manual
segmentations.  For  a  large  image  size,  it  needs  to  calculate
more interpolation points and needs more time to calculate the
probability distribution. Thus, the time cost increases with the
increase of image size. 

V.  Conclusion

In  this  paper,  we  propose  a  new method  to  reconstruct  the
lumbar vertebra by using the CT data of a vertebra specimen
and  X-ray  images.  The  introduced  CT data  can  provide  both
the elastic shape mesh and the intensity model of the vertebra.
DRRs  are  generated  from  the  intensity  model,  and  they  are
used  to  calculate  the  difference  from  X-ray  images.  Finally,
the  elastic  mesh  model  is  deformed  by  the  calculated
difference to generate the patient specific model. Our method
is  evaluated  on  both  the  public  synthetic  dataset  and  clinical
dataset.  The  average  reconstruction  errors  on  these  two
datasets are 1.1 mm and 1.2 mm, respectively, and the average
construction  time  for  both  datasets  is  3  minutes.  This
reconstruction  accuracy  is  a  commonly  achieved  level
[34]–[36]  but  we  use  much  less  time.  For  application  in  the
surgery, the reconstruction error needs to be less than 1.5 mm,
and  our  method  can  fulfill  this  requirement.  We also  discuss
the  influence of  some parameters  in  the  proposed method on
the  reconstruction  accuracy  and  reconstruction  time,  like  the
number  of  control  points,  the  deviation  of  projection
parameters, and the image size.

The main contribution of the proposed technique is that we
use  the  CT  data  of  a  vertebra  specimen  as  prior  knowledge.
The introduced CT data not only provides an intensity model
of the vertebra, which is used to generate the DRRs for 2D/2D
intensity-based  deformable  registration  but  also  can  provide
the elastic mesh. The proposed method is a combination of the
elastic-mesh-based  method  and  statistical-intensity-model-
based method. Compared with the elastic-mesh-based method,
the control points are evenly distributed on the surface of the
whole  mesh,  not  just  on  the  edge  of  the  mesh.  This  will
improve  the  robustness  of  the  method  with  regards  to  the
projection  parameters  and  can  provide  fine  control  when
deforming  the  vertebral  mesh.  Moreover,  the  proposed
method makes full use of all information on X-ray images, not
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Fig. 9.     The  reconstruction  results  in  the  synthetic  dataset  and  clinical
dataset. L2, L3, and L4 represent the second, third, and fourth vertebra in the
human body.  Reconstruction  results  are  listed  in  left  and  ground truths  with
the colored error in right.
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just  the  segmented  boundary.  On  the  other  hand,  compared
with  the  SIM-based  method,  the  proposed  method  does  not
need  to  calculate  the  intensity  distribution  in  each  iteration,
which needs less time for reconstruction.

Despite  its  appealing  aspects,  the  proposed  method  is
limited  by  manual  operation  when  calculating  projection
parameters.  The  proposed  method  needs  to  segment  the
vertebra  from  X-ray  images  manually  to  reduce  the  segment
error caused by the overlap between two adjacent vertebrae. In
the future, we will mainly focus on how to segment vertebrae
automatically,  e.g.,  using  a  neural  network  for  automatic
segmentation. 
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Fig. 10.     Reconstruction accuracy and time by different parameters: (a) Reconstruction time and accuracy by different vertex number; (b) Reconstruction time
by different image size.
 

 

TABLE I  
The Reconstruction Error by Different Projection Parameters

Sagittal
Coronal

–3 –2 –1 0 1 2 3

–3 1.0 ± 0.7 1.0 ± 0.8 1.0 ± 0.7 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8

–2 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 1.1 ± 0.8

–1 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 1.1 ± 0.8 1.1 ± 0.8

0 1.0 ± 0.7 1.0 ± 0.8 1.0 ± 0.7 1.0 ± 0.7 1.0 ± 0.7 1.0 ± 0.8 1.1 ± 0.8

1 1.0 ± 0.7 1.0 ± 0.7 1.0 ± 0.7 1.0 ± 0.7 1.0 ± 0.7 1.0 ± 0.7 1.0 ± 0.8

2 1.0 ± 0.7 1.0 ± 0.7 1.0 ± 0.7 0.9 ± 0.7 1.0 ± 0.7 1.0 ± 0.7 1.0 ± 0.7

3 0.9 ± 0.7 0.9 ± 0.7 0.9 ± 0.7 0.9 ± 0.7 0.9 ± 0.7 1.0 ± 0.7 1.0 ± 0.7

Note: the unit is mm.
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