超声变幅杆设计用表的计算机编制(I)

阮世 勋 (广西大学) 1981年12月21日收到

本文介绍定义三个新系数——半波谐振长度系数、位移节点长度系数、应变极大点长度系数,对一般使用的超声变幅杆设计计算公式和方程作适当变换,使其只含直径比一个自变量,进而用电子计算机编制设计用表的方法和结果。第(I)部分介绍指数型、圆锥型、悬链线型和两段等长圆柱的阶梯型半波谐振空载变幅杆计算公式和方程的变换、数字计算结果概述及设计用表的使用举例。

变幅杆是超声振动系统的关键元件之一。设计时常按半波空载考虑,再在实际应用中加以调整。即使如此,设计计算也比较烦琐,例如圆锥型和悬链线型变幅杆,每设计一个尺寸要解两个超越方程。要使超越方程的解正好满足一些性能要求,设计计算便更加烦杂。为此,我们参考中国科学院物理研究所 1973 年写的《超声变幅杆的理论和设计》一文*,对一些一般常用的计算公式和方程作了变换,用计算机编制了设计用表,以简化计算手续。

一、半波长空载变幅杆设计 公式和方程的变换

表 1 "变换前"部分列出了最常用的四种类型变幅杆——指数型、圆锥型、悬链线型和阶梯型的一般使用的计算公式和方程。对这些式子细加分析便会发现,由于变幅杆工作于谐振状态,它们的工作状态归根结蒂是由直径比 N、谐振长度 L 和波长 λ 决定的。 这样,可以定义三个新的系数: (1) $H = L / \frac{\lambda}{2}$,叫半波谐振长度系数,其中 x_0 是位移节点到大端的距离; (3) $E = x_M / \frac{\lambda}{2}$,叫应变极大点长度系数,其中 x_M 是应变极大点到大端距离。将"变换前"的

应用声学

计算公式和方程变换成只含N一个自变量,推导出不同类型变幅杆的这三个系数表达式,变幅杆尺寸参数及形状因数 φ 、限制条件CN等性能参数均可用这三个系数表达。具体变换结果也列于表 1,为"变换后"部分。

二、数字计算结果

根据表 1 所列几种变幅杆的"变换后"公式,用 ALGOL60 语言编成程序,设定不同的直径比 N,进行数值运算。 结果列于表 2 及表 3.1—3.3。 图 1.1—1.7 给出几种变幅杆的主要参数与N值的关系曲线。

由下面图表可以看出:

1. 半波谐振长度 L

指数型、圆锥型的 L 值随 N 的增大而增长。 悬链线型在 $N=1.01\sim1.81$ 时 L 随 N 的增大而变短,N=1.81 附近最短,以后随 N 的增大而增长,在 $N=1.01\sim3.29$ 范围内 $L<\frac{\lambda}{2}$.

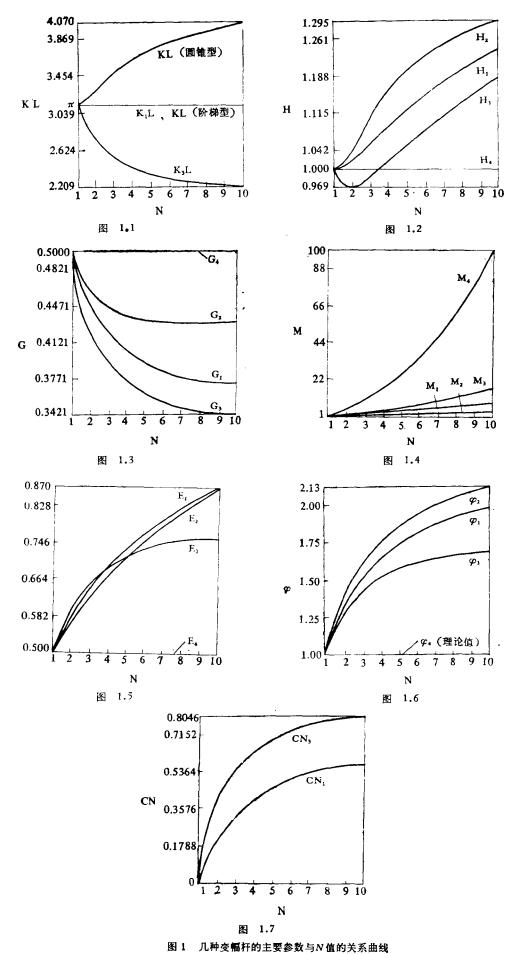
> 在 N < 3.30 时, $L_2 > L_1 > L_4 > L_3$ $3.30 \le N \le 10$ 时, $L_2 > L_1 > L_3 > L_4$

2. 位移节点坐标 x。

除阶梯型变幅杆位移节点处于中点外,其 它三种变幅杆的位移节点都随 N 的增大而向大

^{*} 作者林仲茂现在声学研究所

四种简单型半波谐振变幅杆设计计算公式和方程 表1


業	指数型	圆 籍 型	最 链 线 型	型 安 语
· 长 / 種 - 医纽	D ₁		D ₁ O O O O O O O O O O O O O O O O O O O	D ₁ O O X O X O X O X O X O X O X O X O X
# 44 41 11	u	$N = \sqrt{\frac{S_1}{S_2}} = \frac{D_1}{D_2}$	$=\frac{D_1}{D_1}$	
形大多数及截面 自 x 坐板 配列 不够的关系	$\Delta S = \frac{1}{N}$ $\beta = \frac{1}{N}$	$D = D_1(1 - \alpha x)$ $\alpha = \frac{N - 1}{N} \cdot \frac{1}{L}$	$D = D_{i} \cdot \operatorname{ch}[r(L - x)]$ $r = \frac{\operatorname{ch}^{-l}N}{L}$	$\begin{cases} D = D_1 & 0 \leqslant x \leqslant \frac{\lambda}{4} \\ D = D_2 & \frac{\lambda}{4} < x \leqslant \frac{\lambda}{2} \end{cases}$
频率方程	$\sin(K_1L) = 0$ $\mathbb{R} K_1L = \pi$	$\operatorname{tg}(KL) = \frac{KL}{1 + \frac{N}{(N-1)^2} (KL)^2}$	$(K_3L)_{1}g(K_3L) = -\sqrt{1-\frac{1}{N^2}\cdot ch^{-1}N}$	$KL = \pi$
安挽 前 半 波	$ L = \frac{\lambda}{2} \sqrt{1 + \left(\frac{\ln N}{\pi}\right)^2} $	$L = \frac{\lambda}{2} \cdot \frac{RL}{\pi}$	$L = \frac{\lambda}{2} \cdot \frac{1}{\pi} \sqrt{(K_3 L)^2 + (\operatorname{ch}^{-1} N)^2}$	$L = \frac{\lambda}{2}$
谐 振 水	ll li	$L = H \cdot \frac{\lambda}{2}$	دا 5	
I.	$H_1 = \sqrt{1 + \left(\frac{\ln N}{\pi}\right)^2}$	$H_2 = \frac{KL}{\pi}$	$H_3 = \frac{1}{\pi} \sqrt{(K_3 L)^4 + (ch^{-1}N)^2}$	$H_i = 1$
位移 使换前	及前 $x_0 = \frac{1}{\pi} \operatorname{ctg}^{-1} \left(\frac{\ln N}{\pi} \right)$	$\lg(Kx_0) = \frac{K}{\alpha}$	$\operatorname{tg}\left(K_{3}x_{0}\right)=rac{K_{3}}{\gamma}\operatorname{cth}\left(\gamma L ight)$	$x_0 = \frac{\lambda}{4}$
书长点度	· · · · · · · · · · · · · · · · · · ·	$x_0 = G$. 1 /2	
χ. Ψ	$G_1 = \frac{H_1}{\pi} \operatorname{tg}^{-1} \left(\frac{\pi}{\ln N} \right)$	$G_2 = \frac{1}{\pi} \operatorname{tg}^{-1} \left(\frac{N}{N-1} \cdot KL \right)$	$G_3 = \frac{H_3}{K_3 L} \operatorname{tg}^{-1} \left[\frac{K_3 L}{\operatorname{ch}^{-1} N} \operatorname{cth} \left(\operatorname{ch}^{-1} N \right) \right]$	$G_4 = \frac{1}{2}$
放大系数M	$M_1 = N$	$ M_1 = N \left[\cos(KL) - \frac{N-1}{N} \cdot \frac{1}{KL} \sin(KL) \right] $	$M_s = \left \frac{N}{\cos(K_s L)} \right $	$M_4 = N^2$

• 24 •

1 卷 4 期

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		由超離方程	由超離方程	
## $\operatorname{tg}(K,r_N) = -\frac{K}{\rho}$	1R*($tg(Kx_M + \theta) = \frac{\alpha}{K} \cdot \frac{1}{1 - \alpha x_M}$	$\operatorname{tg}(K_{b}x_{M} + \psi) = \frac{r}{K_{b}} \operatorname{th}[\tau(L - x_{M})]$	
# 出 s_{ik}			$-\frac{K}{2a}(1-ax_{H})$	$-\frac{1}{2}\left(\frac{r}{K_3}+\frac{K_3}{r}\right) \operatorname{cth}\left[r(L-x_N)\right]$	√ = πχ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	——	*	新出 xx.	和田 zw	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\sharp \varphi \; \theta = \mathfrak{tg}^{-1}\left(\frac{\alpha}{K}\right)$		
(4) $\frac{1}{8}$ (4) $\frac{1}{8}$ (4) $\frac{1}{8}$ (4) $\frac{1}{8}$ (4) $\frac{1}{8}$ (5) $\frac{1}{8}$ (5) $\frac{1}{8}$ (5) $\frac{1}{8}$ (6) $\frac{1}{8}$ (6) $\frac{1}{8}$ (7) (1 $\frac{E_1}{H_1}$)] (2 $\frac{1}{8}$			# MX	$E \cdot \frac{\lambda}{2}$	
$E_{1} = H_{1} - G_{1} \qquad \frac{1}{1 - \pi \left(\frac{N-1}{N} \cdot \frac{1}{KL} \right) E_{1}} - \frac{1}{2} \left(\frac{N}{N-1} \cdot KL \right) \cdot \left(1 - \frac{E_{1}}{H_{1}} \right) \right] - \frac{1}{2} \left(\frac{ch^{-1}N}{KL} + \frac{ch^{-1}}{ch^{-1}N} \right)$ $\varphi_{1} = N_{K} \frac{1}{K} e^{-fx} M \qquad \varphi_{2} = \frac{2aN}{K} \cdot \frac{\cos(KL + \theta)}{\cos(Kx_{M} + \theta)} \qquad \frac{\varphi_{3} = 2\frac{T}{K} \cdot \cos(K_{2}L + \psi)}{\sin(K_{1}x_{M})}$ $\varphi_{1} = N_{K} \frac{1}{k} e^{-fx} M \qquad \varphi_{2} = \frac{2aN}{K} \cdot \frac{\cos(KL + \theta)}{\cos(Kx_{M} + \theta)} \qquad \varphi_{3} = \frac{T}{K} \cdot \frac{ch^{-1}N}{k} \cot(ch^{-1}N) \left[1 - \frac{E_{1}}{H_{1}} \right]$ $\varphi_{1} = N_{K} \cdot \frac{1}{k} e^{-fx} M \qquad \varphi_{2} = \frac{2aN}{K} \cdot \frac{\cos(KL + \theta)}{c^{-1}K} \qquad \varphi_{3} = \frac{T}{K} \cdot \frac{ch^{-1}N}{k} + e^{-fx} \left[\frac{T}{K} \cdot h(TL) \right]$ $\varphi_{1} = N_{K} \cdot \frac{1}{k} + \theta = ig^{-1} \left(\frac{a}{N} \right) \qquad \frac{1}{k} + \theta = ig^{-1} \left(\frac{T}{K} \cdot h(TL) \right]$ $\varphi_{2} = \frac{2ch^{-1}N}{K} \cdot \frac{Ch^{-1}N}{k} \qquad \frac{cos(KL + \theta)}{k} \qquad \frac{\varphi_{3} = \frac{2ch^{-1}N}{K}}{m!} \cdot \frac{cos(KL + \theta)}{m!} \qquad \frac{\varphi_{3} = \frac{2ch^{-1}N}{M}}{m!} \cdot \frac{cos(KL + \theta)}{m!} \qquad \frac{\varphi_{3} = $		ليو	由超越方程 $ (\mathbf{g}(\pi E_{i} + \theta)) = \frac{N-1}{2} \cdot \frac{1}{2} $	由超越方程 $(\mathbf{g}(\mathbf{K},\mathbf{L}) - \frac{\mathbf{c}_3}{\mathbf{c}_3} + \phi) = \frac{\mathbf{ch}^{-1}N}{\mathbf{c}_3} \operatorname{tr} \left[(\mathbf{ch}^{-1}N) \right]$	
$\phi_1 = N \frac{K_1}{K} e^{-js} M \qquad \vdots \left[1 - \pi \left(\frac{N-1}{N} \cdot \frac{1}{KL} \right) E_1 \right] \qquad \vdots \left[\frac{h}{K} E_1 \right] \qquad \vdots \left[\frac{h}$			$\left \frac{1}{1-\pi\left(\frac{N-1}{N} \cdot \frac{1}{K!}\right)E_s} - \frac{1}{2} \left(\frac{N}{N-1} \cdot KL\right) \right $	$\left[\cdot \left(1 - \frac{E_2}{H_2} \right) \right] - \frac{1}{2} \left(\frac{ch^{-1}N}{K_2L} + \frac{K_2L}{ch^{-1}N} \right)$	ы Т
$ \varphi_{1} = N \frac{K_{1}}{K} e^{-\beta s} M $ $ \varphi_{1} = N \frac{K_{1}}{K} e^{-\beta s} M $ $ \varphi_{2} = \frac{2aN}{K} \cdot \frac{\cos(KL + \theta)}{\cos(Kx_{1} + \theta)} $ $ \varphi_{3} = \frac{2aN}{K} \cdot \frac{\cos(KL + \theta)}{\cos(Kx_{1} + \theta)} $ $ \varphi_{4} = \frac{2aN}{K} \cdot \frac{\cos(KL + \theta)}{\cos(Kx_{1} + \theta)} $ $ \varphi_{5} = \frac{2}{K} \cdot \frac{\cos(K_{1} + \theta)}{\cos(K_{1} + \theta)} $ $ \varphi_{7} = \frac{2}{K} \cdot \frac{\cos(KL + \theta)}{(K^{2} + \theta)} $ $ \varphi_{1} = N e^{(-1aN)} \frac{E_{1}}{H_{1}} $ $ \varphi_{2} = \frac{2(N - 1)}{K} \cdot \frac{\cos(KL + \theta)}{(x_{1} + x_{1} + x_{2})} $ $ \varphi_{2} = \frac{2ch^{-1}N}{K} \cdot \frac{E_{1}}{\cos(KL + \theta)} $ $ \varphi_{3} = \frac{2ch^{-1}N}{K} \cdot \frac{E_{1}}{K} \cdot \frac{E_{1}}{K} \cdot \frac{E_{1}}{K} \cdot \frac{E_{1}}{K} $ $ \varphi_{1} = \frac{2(N - 1)}{K} \cdot \frac{1}{K} \cdot \frac{1}{K$	<u>т</u>		$\cdot \left[1 - \pi \left(\frac{N-1}{N} \cdot \frac{1}{KL}\right) E_{*}\right]$	$\frac{1}{\ln\left[\left(\cosh^{-1}N\right)\left(1-\frac{E_{3}}{H_{3}}\right)\right]}$	7 1 1
$\varphi_{1} = N \frac{K_{1}}{K} e^{-\beta x_{M}} \qquad \varphi_{2} = \frac{2\alpha N}{K} \cdot \frac{\cos(KL + \theta)}{\cos(Kx_{M} + \theta)} \qquad \varphi_{3} = 2 \frac{r}{K} \cdot \frac{\cos(K_{1}L + \phi)}{\cos(K_{1}L + \phi)}$ $\vdots \sin(K_{1}x_{M})$ $\varphi_{1} = N e^{(- \alpha N)} \frac{E_{1}}{H_{1}} \qquad \varphi_{2} = \frac{2(N - 1)}{KL} \cdot \frac{\cos(KL + \theta)}{\cos(KL + \theta)} \qquad \varphi_{3} = \frac{2ch^{-1}N}{K^{2}} \cdot \frac{\cos(K_{1}L + \phi)}{\cos(K_{1}L + \phi)}$ $\varphi_{1} = N e^{(- \alpha N)} \frac{E_{1}}{H_{1}} \qquad \varphi_{3} = \frac{2(N - 1)}{KL} \cdot \frac{\cos(KL + \theta)}{\cos(KL + \theta)} \qquad \varphi_{3} = \frac{2ch^{-1}N}{K^{2}} \cdot \frac{r}{H_{3}} + \psi$ $\varphi_{1} = N e^{(- \alpha N)} \frac{E_{1}}{H_{1}} \qquad \varphi_{3} = \frac{2(N - 1)}{KL} \cdot \frac{\cos(KL + \theta)}{\cos(KL + \theta)} \qquad \varphi_{3} = \frac{2ch^{-1}N}{R^{2}} \cdot \frac{r}{H_{3}} + \psi$ $\varphi_{1} = N e^{(- \alpha N)} \frac{E_{1}}{H_{1}} + \psi$ $\varphi_{2} = \frac{2(N - 1)}{2\pi} \cdot \frac{\log(KL + \theta)}{N} \qquad \varphi_{3} = \frac{2ch^{-1}N}{R^{2}} \cdot \frac{r}{H_{3}} + \psi$ $\varphi_{1} = N e^{(- \alpha N)} \frac{E_{1}}{H_{1}} + \psi$ $\varphi_{2} = \frac{2(N - 1)}{2\pi} \cdot \frac{1}{N} \cdot \frac{1}{KL} \qquad \varphi_{3} = \frac{2ch^{-1}N}{R^{2}} \cdot \frac{cos(K_{1}L + \psi)}{H_{1}} - \frac{r}{H_{3}} + \psi$ $\varphi_{1} = N e^{(- \alpha N)} \frac{E_{1}}{H_{1}} + \psi$ $\varphi_{1} = N e^{(- \alpha N)} \frac{E_{1}}{H_{1}} + \psi$ $\varphi_{2} = \frac{2(N - 1)}{2\pi} \cdot \frac{r}{N} \cdot \frac{1}{N} - \frac{1}{N} \cdot \frac{1}{N} - \frac{1}{N} \cdot \frac{1}{N} - \frac{1}{N} - \frac{1}{N} \cdot \frac{1}{N} - \frac{1}$			$ \sharp \oplus \theta = \mathfrak{tg}^{-1} \left(\frac{N-1}{N} \cdot \frac{1}{KL} \right)$	解出さ, 其中 $\psi = i g^{-i} \left[\frac{\mathrm{ch}^{-i} N}{K_i L} \mathrm{th} (\mathrm{ch}^{-i} N) \right]$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 7 ≸	$\varphi_1 = N \frac{K_1}{K}$	$\varphi_s = \frac{2\alpha N}{K} \cdot \frac{\cos(KL + \theta)}{\cos(Kx_M + \theta)}$	$\varphi_3 = 2 \frac{\tau}{K} \cdot \frac{\cos(K_3 L + \psi)}{\cos(K_3 x_M + \psi)}$	
$\phi_1 = Ne^{(-1aN)} \frac{g_1}{H_1} \qquad \phi_2 = \frac{2(N-1)}{KL} \cdot \frac{\cos(KL+\theta)}{\cos(\pi E_1 + \theta)} \qquad \phi_3 = \frac{2ch^{-1}N}{\pi H_2} \cdot \frac{\cos(K_1L + \psi)}{\cos(K_1L + \psi)} .$ $\downarrow \phi_1 = Ne^{(-1aN)} \frac{g_1}{H_1} \qquad \downarrow \psi = ig^{-1} \left(\frac{N-1}{N} \cdot \frac{1}{L_1} \right) \qquad \cdot ib \left[(ch^{-1}N) \left(1 - \frac{E_1}{H_2} \right) \right] \qquad \downarrow \psi = ig^{-1} \left[\frac{ch^{-1}N}{K_L} th (ch^{-1}N) \right] \qquad \downarrow \psi = ig^{-1} \left[\frac{ch^{-1}N}{K_L} th (ch^{-1}N) \right] \qquad \downarrow \psi = \frac{r_1}{2\pi} \qquad \downarrow \psi = \frac{r_2}{2\pi} \qquad \downarrow \psi = \frac{r_1}{2\pi} \qquad \downarrow$	A 400		$\sharp \varphi \ \theta = \mathfrak{tg}^{-1}\left(\frac{a}{K}\right)$		
$\phi_{1} = Ne^{(-1aN)} \frac{1}{H_{1}} $	**	1	$\varphi_1 = \frac{2(N-1)}{n} \cdot \frac{\cos(KL+\theta)}{n}$	$\varphi_{s} = \frac{2\operatorname{ch}^{-1}N}{\pi H_{s}} \cdot \frac{\cos(K_{s}L + \psi)}{\cos\left(K_{s}L \cdot \frac{E_{s}}{H_{s}} + \psi\right)}.$	編改上 φ. = 1 状原 φ. < 0.8
$t > \frac{\beta C}{2\pi}$ $CN_1 = \frac{\ln N}{\pi H_1} < 1$	—————————————————————————————————————		$\sharp \varphi = \operatorname{tg}^{-1} \left(\frac{N-1}{N} \cdot \frac{1}{KL} \right)$	$\cdot sh\left[(ch^{-1}N) \left(1 - \frac{E_3}{H_3} \right) \right]$ $ \not \equiv \psi = tg^{-1} \left[\frac{ch^{-1}N}{K_3L} th(ch^{-1}N) \right]$	
$CN_1 = \frac{\ln N}{\pi H_1} < 1$	数	<i>t</i> >		$t > \frac{rC}{2\pi}$	
	<u> </u>	$CN_1 = \frac{\ln N}{\pi H_1}$		$CN_s = \frac{ch^{-1}N}{\pi H_s} < 1$	

应用声学

?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 2 四种变幅杆参数对照总表*

	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		<u> </u>	* *		<u> </u>						
N	$H_{\mathbf{i}}$	H ₂	Н,	G ₁	G ₂	G,	М,	м,	M ₄	φ_{ι}	φ2	φ,
1.01	1,0000	1.0000	0.9990	0.4990	0.4 99 0	0.4985	1.01	1.01	1.02	1.00	1.01	1.00
1.20	1.0017	1.0034	0.9841	0.4824	0.4832	0.4737	1.20	1.21	1.44	1.09	1.09	1.07
1.40	1.0057	1.0113	0.9750	0.4687	0.4715	0.4537	1.39	1.43	1.43	1.17	1.18	1.13
1.60	1.0111	1.0218	0.9705	0.4578	0 .46 30	0.4381	1.58	1.66	2.56	1.24	1.25	1.18
1.80	1.0174	1.0336	0.9692	0.4488	0 .4567	0.4257	1.76	1.91	3.24	1.30	1.32	1.23
2.00	1.0241	1,0460	0.9700	0.4412	0.4519	0.4156	1.94	2.17	4.00	1.35	1.38	1.27
2.20	1.0310	1.0585	0.9725	0.4348	0.4482	0.4072	2.10	2.43	4.84	1.39	1.43	1.30
2.40	1.0381	1.0709	0.9762	0.4292	0.4454	0.4002	2.25	2.70	5.76	1.44	1.48	1.34
2.60	1.0452	1.0830	0.9806	0.4244	0.4430	0.3942	2.39	2.99	6.76	1.47	1.53	1.37
2.80	1.0523	1.0947	0.9857	0.4201	0.4412	0.3891	2.52	3.28	7.84	1.51	1.57	1.40
3.00	1.0594	1.1059	0.9912	0.4163	0.4397	0.3847	2.65	3.57	9.00	1.54	1.61	1.42
3.20	1.0663	1.1167	0.9970	0.4128	0.4384	0.3808	2.76	3.88	10.24	1.57	1.64	1.44
3.40	1.0732	1,1270	1.0031	0.4097	0.4374	0.3774	2.87	4.19	11.56	1.60	1.68	1.46
3.60	1.0799	1.1368	1.0093	0.4069	0.4365	0.3743	2.97	4.51	12.96	1.62	1.71	1.48
3.80	1.0865	1.1461	1.0156	0.4043	0.4357	0.3716	3.06	4.83	14.44	1.64	1.74	1.50
4.00	1.0930	1.1550	1.0219	0.4019	0.4351	0.3692	3.15	5.15	16.00	1.66	1.76	1.51
4.20	1.0994	1.1635	1.0282	0.3997	0.4346	0.3670	3.23	5.49	17.64	1.69	1.79	1.53
4.40	1.1056	1.1715	1.2346	0.3977	0.4341	0.3650	3.30	5.82	19.36	1.70	1.81	1.54
4.60	1.1117	1.1792	1.0409	0.3958	0.4337	0.3632	3.37	6.17	21.16	1.72	1.83	1.56
4.80	1.1177	1.1865	1.0471	0.3941	0.4334	0.3015	3.44.	6.51	23.04	1.74		1.57
5.00	1.1236	1.1934	1.0533	0.3925	0.4331	0.3600	3.50	6.87	25.00	1.75	1.87	1.58
5.20	1.1293		1,0595	0.3909	0.4328	0.3586	3.55	7.22	27.04	1.77	1.89	1.59
5.40	1.1350	1.2063	1.0656	0.3894	0.4326	0.3573	3.60	7.58	29.16	1.78	1.91	1.60
5.60	1.1405	1.2123	1.0716	0.3882 0.3869	0.4324 0.4422	0.3561 0.3550	3.65 3.70	7.95 8.32	31.36	1.80 1.81	1.93 1.94	1.61 1.62
5.80	1.1459	1.2180	1.0775	0.3857	0.4320	0.3540	3.74	8. 6 9	33.64 36.00	1.82	1.96	1.62
6.00	1.1512	1.2234	1.0834	0.8345	0.4319	0.3530	3.78	9.06	38.44	1.83	1.97	1.63
6.20	1.1564 1.1615	1.2286 1.2336	1.0891 1.0948	0.3834	0.4319	0.3521	3.82	9.44	40.96	1.85	1.98	1.64
6.40 6.60	1.1665	1.2384	1.1004	9.3824	0.4316	0.3513	3.85	9.83	43.58	1.86	1.99	1.65
6.80	1.1715	1.2429	1.1059	0.3814	0.4315	0.3505	3.89	10.21	46.24	1.87	2.01	1.65
7.00	1.1763	1.2473	1.1114	0.3805	0.4315	0.3497	3.92	10.60	49.00	1.88	2.02	1.66
7.20	1.1810	1.2515	1.1168	0.3796	0.4314	0.3490	3.95	10.99	51.84	1.89	2.03	1.67
7.40	1.1857	1.2555	1.1220	0.3788	0.4313	0.3483	3.97	11.39	54.76	1.90	2.04	1.67
7.60	1.1903	1.2593	1.1272	0.3779	0.4312	0.3477	4.00	11.79	57.76	1.90	2.05	1.68
7.80	1.1948	1.2630	1.1324	0.3772	0.4312	0.3471	4.02	12.19	60.84	1.91	2.06	1.68
8.00	1.1992	1.2666	1.1374	0.3764	0.4311	0.3465	4.05	12.59	64.00	1.92	2.06	1.68
8.20	1,2036	1.2700	1.1424	0.3757	0.4310	0.3460	4.07	13.00	67.24	1.93	2.07	1.69
8.40	1.2079	1.2733	1.1473	0.3750	0.4310	0.3455	4.09	13.41	70.56	1.94	2.08	1.70
8.60	1.2121	1.2764	1.1522	0.3743	0.4310	0.3450	4.11	13.83	73.96	1.94	2.09	1.70
8.80	1.2162	1.2795	1.1569	0.3737	0.4309	0.3445	4.13	14.24	77.44	1.95	2.09	1.70
9.00	1.2203	1.2824	1.1616	0.3731	0.4309	0.3441	4.15	14.66	81.00	1.96	2.10	1.71
9.20	1.2243	1.2852	1.1662	0.3725	0.4308	0.3436	4.16	15.08	84.64	1.96	2.11	1.71
9.40	1.2283	1.2879	1.1708	0.3719	0.4308	0.3432	4.18	15.50	88.36	1.97	2.11	1.72
9.60	1.2322	1.2906	1.1753	0.3714	0.4308	0.3428	4.19	15.93	92.16	1.98	2.12	1.72
9.80	1.2360	1.2931	1.1798	0.3708	0.4308	0.3425	4.21	16.36	96.04	1.98	2.12	1.72
10.00	1.2398	1.2955	1.1841	0.3703	0.4307	0.3421	4.22	16.79	100.00	1.99	2.13	1.73

应用声学

表 3.1 指数型变幅杆参数表

N	K_iL	$\mathbf{H}_{\mathbf{i}}$	G_{i}	M ₁	$\mathbf{E_i}$	φ_i	CN,
1.01	3.141593	1.000005	0.498994	1.01000	0.50101	1.00498	0.00317
1.02 4.00	3.141593 	1.000020 1.093033	0.498003 	1.02000 4.00000	0.50202 	1.00991 	0.00630
4.01	3.141593	1.093354	0.401816	4.01000	0.69154	1.66594	0.40432
9.99 10.00	3.141593 3.141593	1.239648 1.239837	0.370330 0.370305	9.99000 10.00000	0.86932 0.86953	1.98888 1.98917	0.59019 0.59169

表 3.2 圆锥型变幅杆参数表(含阶梯型放大系数)

N	K,L	H ₂	G,	M,	E,	φ,	M,
1.01	3.141624	1.000010	0.498997	1.01000	0.50101	1.00551	1.02010
1.02	3.141718	1.000040	0.498013	1.02000	0.50203	1.00948	1.04040
7.59	3.955713	1.259142	0.431224	3.99926	0.76464	2.04571	57.60810
7.60	3.956305	1.259331	0.431221	4.00051	0.74770	2.04617	57 .7600 0
9.99	4.069680	1.295419	0.430729	4.21941	0.75779	2.12848	99 .80 010
10.00	4.070058	1.295540	0.430728	4.22006	0.75782	2.12875	100.00000

表 3.3 悬链线型变幅杆参数表

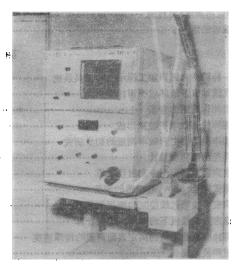
N	K ₃ L	Н,	G_3	M ₃	E ₃	9 23	CN,
1.01	3.135266	0.998999	0.498492	1.01002	0.50051	1.00487	0.04502
1.02	3.129019	0.998023	0.497006	1.02008	0.50102	1.00817	0.06368
3.28	2.531881	0.999437	0.379379	4.00091	0.63295	1.45063	0.59140
3.29	2.530710	0.999738	0.379207	4.01640	0.63347	1.45164	0.59224
							•
9.99	2.209181	1.183918	0.342115	16.76458	0.86665	1.72685	0.80449
10.00	2.208979	1,184135	0.342098	16.78618	0.86689	1.72701	0.80461

表 4 M=4 的四种变幅杆主要尺寸及性能参数

	项 目	指数型	圆锥型	悬链线型	阶梯型
	N	4.00	7.60	3.28	2.00
	М	4.00	4.00	4.00	4.00
	K'L	π	3.956305	2.531881	π
_	H	1.093033	1.259331	0.999437	1.000000
L	$L = H \cdot \frac{\lambda}{2} (mm)$	142.09	163.71	129.93	130.00
	G	0.401929	0.431221	0.379379	0.500000
<i>x</i> ₀	$x_0 = G \cdot \frac{\lambda}{2} (mm)$	52.25	56.06	49.32	65.00
	E	0.69110	0.74770	0.63295	0.50000
x _M	$x_{M} = E \cdot \frac{\lambda}{2} (mm)$	89.84	97.20	82.28	65.00
	φ	1.66490	2.04617	1.45063	<0.8

(下转第53页)

新仪器·新设备


XJY-8 型 超 声 显 像 仪

武汉市无线电研究所研制的 XJY-8型超声电子聚 焦腹部断层显像仪,最近由四机部委托武汉市科委主 特鉴定获得通过。 来自全国各地六十多个单位的 医学超声专家和理工专家对该研制成果给予了较高的评价。

本仪器是一种适合我国国情易于普及推广的中档产品。它采用快速电子扫描,故能实时显示动态或静态脏器,完成一幅图像仅需数十毫秒,亦通称为实时 B超。它可以把腹部的脏器如肝、胆、胰等和子宫、妊娠、胎儿等切面形态在萤光屏上重接加以显示。 由于脏器形态的直观性强,因而具有较高的临床诊断价值。超声被断层显像为目前医学界中的三大映像技术之

本仪器能获得较为清晰的图像,主要是由于采用了二维聚焦技术(即透镜聚焦与电子聚焦技术)和宽动态范围对数放大器等信号处理技术。 前者使 波 束变细,从而提高了横向分辨力,后者使信息量丰富,图像层次清楚。采用上述等技术后,使超声 B型图像的成像质量有了一个大的提高。

本仪器经上海第六人民医院和武汉医学院第二附 属医院临床试用证明,图像清晰,灵敏度高,穿透力强.

XJY-8 型超声显像仪

经现场性能测试,主要技术指标横向分辨力和纵向分辨力均在 2mm 以内,进入国际水平。

本机不仅性能好,而且体积小,造价低,易推广普及

(武汉市无线电研究所 **范炳琪)**

(上接第 28 页) 端移动. 在相同N值时,节点距大端距离 x_0 为 $x_{04} > x_{02} > x_{01} > x_{03}$.

3. 放大系数 M

N相同时 $M_4 > M_3 > M_1 > M_2$

4. 形状因数 φ

N相同时 $\varphi_2 > \varphi_1 > \varphi_3 > \varphi_4$

5. 限制条件

指数型: N = 10 时仍有 $f \approx 1.69 \frac{\beta C}{2\pi}$; 悬链线型: N = 10 时仍有 $f \approx 1.24 \frac{\gamma C}{2\pi}$.

作为设计例子,表 4 列出了利用本文所给设计用表得到的 M=4 的四种变幅杆的主要

尺寸及性能参数,其设定的工作频率为 20kHz,材料声速取 $5.20 \times 10^6 mm/s$.

三、结 语

利用三个新定义的系数可以把超声变幅杆设计计算公式和方程变换成可用电子计算机编制设计用表的形式;使用编制出的图表,求取变幅杆的主要尺寸及性能参数只需象查三角函数表一样简单,且可保证较高精度,还便于进行各种变幅杆间尺寸及性能参数的对比选择;这些图表校核了指数型、悬链线型杆的限定条件。因而,这些图表对于超声工程中进行这些变幅杆的设计是实用而方便的.

应用声学