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Computational biomedical imaging lies at the intersection of physics, computer science, and biome
dicine, aiming to produce visual representations of biological or physiological phenomena that may be 
otherwise imperceptible to measuring instruments. Over the last few decades, breakthroughs in imaging 
physics—as evidenced by modalities like magnetic resonance imaging (MRI), computed tomography 
(CT), ultrasound, optical microscopy, and endoscopy—have profoundly impacted the way clinicians 
visualize and understand living systems. Yet, the task of producing accurate and meaningful images from 
raw sensor data remains non-trivial, often necessitating advanced algorithms capable of dealing with 
noise, incomplete measurements, motion artifacts, or other confounding factors. 

In recent years, artificial intelligence (AI) has emerged as a catalyst for revolutionizing this domain. 
Following two significant trends in AI developments—the shift from discriminative to generative models 
and the transition from single-modality to multi-modal foundation models—many innovative AI tech
nologies for natural image and language processing have been quickly adapted to biomedical imaging, 
offering new methodologies for both image reconstruction and image analysis, thus enabling the de
velopment of innovative imaging technologies that can visualize previously invisible biomarkers of 
diseases and support automated medical diagnosis. 

In this paper, we examine how emerging AI trends are reshaping computational biomedical imaging, 
from enhancing image reconstruction under challenging conditions to revolutionizing diagnostic pipe
lines. At the same time, we also critically assess the pitfalls of directly adopting AI methodologies 
without adapting them to the unique features of biomedical images. We aim to offer both an optimistic 
perspective on the potential of these innovations to revolutionize healthcare and a cautionary note on 
the risks of their misapplication, emphasizing the need to balance these opportunities and risks to fully 
unlock AI’s potential in this field. 
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AI innovations in medical image reconstruction. Biomedical images often require reconstruction from 
indirect measurement data, such as sinograms in CT, k-space data in MRI, or acoustic wavefields in 
ultrasound. Unlike photography, where images directly represent captured light, biomedical imaging 
involves decoding hidden visual signals through advanced algorithms. Mathematically, this process can 
be formulated as a Bayesian inverse problem, commonly known as low-level computer vision tasks: 

x p x y p y x p x( ) ( ) ( ), (1) 

where y represents the measured data, x is the latent image to be reconstructed, p y x( ) models the 
physical process of image formation, and p x( ) encodes prior knowledge about the image. Traditional 
reconstruction methods often make strong assumptions or simplifications about imaging physics p y x( )
and image priors p x( ). For example, they use linearized models and handcrafted priors such as sparsity 
or total variation, which can result in inaccuracies and limit their applicability for complex scenarios. 
Recent AI advancements have revolutionized this process by introducing tools that better model both the 
physics of imaging and the complexities of real-world anatomical structures. 

Deep generative models are powerful tools in approximating the image prior p x( ), which is critical for 
reconstructing high-quality images. Generative models such as variational autoencoders (VAEs), gen
erative adversarial networks (GANs), and diffusion models can learn high-dimensional distributions of 
medical images from large datasets. These models act as learned priors, guiding the reconstruction 
process to compensate for incomplete or noisy measurements. In low-dose and sparse-view CT,1 these 
models reconstruct images with reduced artifacts, enhancing diagnostic accuracy while reducing ra
diation exposure without compromising image quality. Similarly, in compressed sensing MRI,2 gen
erative models recover fine anatomical details from undersampled k-space data, reducing scan times, 
improving patient comfort, and increasing clinical throughput. Beyond CT and MRI, these approaches 
have been extended to other modalities, including ultrasound, optical coherence tomography (OCT), and 
PET-CT (Supplementary Text 1 online), demonstrating their ability to push the limits of reconstruction 
under many constrained measurement conditions. These advances mark a transformative shift in med
ical imaging, leveraging data-driven priors to achieve reconstructions that surpass traditional methods. 

Another key advancement in modeling image priors is the transition from traditional discrete pixel or 
voxel representations to implicit neural representations, also known as neural fields. Unlike conven
tional methods that store images as grids of intensity values and rely on explicit regularization techni
ques, neural fields utilize continuous neural networks to parameterize the entire image domain. This 
approach inherently enforces smoothness in reconstructions, producing more coherent results without 
the need for additional constraints. Furthermore, neural fields offer compact storage for high-dimen
sional data, such as 3D or 4D volumes, making them efficient for both reconstruction and memory 
management. Their ability to render images at arbitrary resolutions or interpolate temporal data enables 
flexible applications, such as time-lapse imaging. In biomedical imaging, neural fields have been suc
cessfully applied to tasks such as reconstructing 3D refractive indices in quantitative phase microscopy, 
where they provide unprecedented detail of biological tissues.3 Similarly, they are used in fluorescent 
microscopy and dynamic CT to achieve long-term, high-resolution time-lapse imaging, capturing dy
namic physiological changes with exceptional accuracy.4,5 By combining implicit regularization, 
memory efficiency, and flexible rendering capabilities, neural fields have expanded the scope of bio
medical imaging applications, enhancing both accuracy and versatility. 

In addition to complete modeling of image priors, accurate modeling of imaging physics is also es
sential for decoding signals from complex measurement data. Biomedical imaging modalities like ul
trasound and optical imaging typically rely on partial differential equations (PDEs), such as acoustic 
equations for wave propagation or Maxwell’s equations for electromagnetic scattering, to describe the 
underlying physics. However, traditional PDE solvers are computationally expensive, often requiring 
simplifying assumptions to ensure practical runtimes. These approximations can result in the loss of 
important details in reconstructed images. AI-driven neural surrogate models provide an innovative 
alternative by approximating PDE-based physics with deep neural networks. Trained on simulated or 
real measurement data, these models bypass the iterative, computationally intensive nature of classical 
solvers while preserving fine details often missed by linearized physical models. For instance, in ultra
sound, these models enable faster and more precise wavefield reconstructions, resolving complex 
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structures like bone-tissue interfaces.6 In optical imaging, they enhance resolution and fidelity in bio
logical samples while delivering over 20 times faster reconstruction.7 By integrating physics-based 
modeling with AI-driven learning, neural PDE models represent a significant step forward in real-time 
imaging systems, paving the way for faster and more precise medical imaging solutions. 

AI innovations in medical image analysis. Medical image analysis involves interpreting visual data to 
identify patterns, detect anomalies, and make diagnostic predictions, often corresponding to high-level 
computer vision tasks such as classification, segmentation, detection, and style transfer. Unlike tradi
tional visual tasks, medical image analysis must account for variability in imaging protocols, data 
quality, and population diversity, necessitating highly specialized algorithms. Recent advancements in 
AI, spanning vision foundation models, multimodal learning, and synthetic data generation, are re
shaping the field. By addressing challenges such as data variability, integration, and scarcity, these 
innovations have the potential to significantly enhance diagnostics, treatment planning, and scientific 
discovery, paving the way for more robust and comprehensive approaches to medical image analysis. 

Vision foundation models (FMs) have introduced a paradigm shift in medical image analysis. These 
large-scale AI models are trained on extensive and diverse datasets using unsupervised, weakly su
pervised, or self-supervised learning, enabling them to acquire general-purpose representations. Once 
trained, these models can be fine-tuned for a variety of downstream tasks, from image segmentation and 
anomaly detection to diagnosis and prognosis. For example, CHIEF,8 pretrained on 44 TB of pathology 
images, demonstrated exceptional diagnostic and prognostic accuracy across 19 cancer types, even when 
tested on datasets with domain shifts caused by diverse population sources and slide preparation 
techniques. Similarly, RETFound,9 a retinal FM trained on 1.6 million unlabeled retinal images, has 
achieved success in diagnosing sight-threatening eye diseases while predicting systemic disorders like 
heart failure and myocardial infarction. More ambitious FMs, such as BME-x,10 a magnetic resonance 
FM, and BiomedParse,11 a model spanning nine imaging modalities, go beyond image-level interpreta
tions to enable detailed intra-image analysis, offering robust capabilities for tasks like tissue segmen
tation and image registration. By leveraging architectures and training methodologies adapted from 
general computer vision, vision FMs have proven remarkably effective in addressing the unique chal
lenges of medical image analysis. 

Beyond vision-only innovations, multimodal AI approaches have further advanced medical image 
analysis by integrating information from multiple data modalities, such as clinical records, omics data, 
and biomedical images (Supplementary Text 2 online). These data inherently involve complementary 
information to biomedical images, so combining these can provide deeper insights into both disease 
mechanisms and patient care. For instance, BiomedGPT,12 the first open-source biomedical multimodal 
FM, was pretrained on 2D/3D biomedical images and texts, achieving state-of-the-art results in tasks 
such as visual question answering and report generation. Similarly, PathChat,13 a vision-language FM 
fine-tuned on over 4 million visual-language instructions, outperformed GPT-4 in pathology-specific 
diagnostic tasks and generated accurate, clinically relevant responses preferred by pathologists. By 
synthesizing information across diverse modalities, multimodal AI offers a more comprehensive per
spective on complex medical problems, advancing both scientific discovery and healthcare delivery. 

Despite these successes, medical image analysis faces a major limitation: the scarcity of large-scale 
datasets compared to fields like general computer vision or natural language processing. While models 
like Google Gemini are trained on billions of image-text pairs, medical datasets are significantly smaller, 
constraining the scale of training and limiting AI performance. This challenge is particularly acute in 
multimodal learning, where missing data modalities are common in biomedical datasets. Synthetic data 
offers a promising solution to address these limitations.14 Generative models, such as GANs and diffusion 
models, can create realistic synthetic images to augment datasets, impute missing modalities, and en
hance model performance across tasks. (Supplementary Text 3 online) However, the use of synthetic 
data still raises some concerns. Its quality must be rigorously validated, as low-quality synthetic data can 
hinder, rather than improve, AI models in biomedicine. Ethical and regulatory safeguards are essential to 
ensure responsible use. Moreover, excessive reliance on synthetic data could diminish efforts to collect 
high-quality real-world data, potentially compromising the reliability and applicability of AI models in 
real-world scenarios. 
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AI pitfalls in biomedical imaging. The rapid progress in computational biomedical imaging largely owes 
to the progress in deep learning-based natural image/language processing. However, directly borrowing 
ideas from these fields also causes problems, as the characteristics of natural images and biomedical 
images can be fundamentally different. As a result, many aspects such as evaluation metrics, algorithmic 
development, and practical deployments should be carefully tailored to adapt the biomedical applica
tions. However, these aspects have not attracted enough attention from the community, leading to 
somewhat reporting biases that may bring over-optimism in machine learning for computational bio
medical imaging. These issues often relate to unrealistic performance claims, misuse of advanced AI 
terminology, and inadequate safety considerations. Below, we outline the three most significant ex
amples of the pitfalls we have observed. 

(1) Inadequate evaluation: average performance vs. rare events 
A pervasive concern is the reliance on inadequate evaluation metrics. Currently, most evaluation 

metrics in biomedical imaging are directly borrowed from computer vision research, however, these 
typical metrics (e.g., SSIM: structural similarity index measure, PSNR: peak signal-to-noise ratio, LPIPS: 
learned perceptual image patch similarity) mainly focus on evaluating a statistical average performance. 
They compress reconstruction quality in large amounts of test data into a single number. Such metrics 
mask the ability—or inability—of models to handle rare but clinically significant events. For instance, if 
a small fraction of the population presents with atypical anatomical variations or rare pathologies, a 
model can score highly overall yet fail these minority cases. This scenario is especially grave in oncology 
or neurology, where early detection of a small tumor or lesion can dramatically alter patient outcomes. 
Generative models, when employed as priors in medical imaging, are especially susceptible to this issue, 
known as mode collapse—a phenomenon where the model only learns the most common patterns in the 
training data while ignoring less frequent ones. This shortfall can lead to reconstructions or analyses that 
hallucinate missing details or segment biological tissues in statistically plausible ways, inadvertently 
erasing or neglecting unique anomalies—precisely the features clinicians and researchers need to ob
serve. A systematic evaluation regime must, therefore, measure performance not just in typical cases but 
also in “long-tail” or outlier scenarios, and incorporate robust uncertainty quantification to flag areas of 
low model confidence. 

(2) Overhyping the “foundation model” concept 
While FMs are undeniably powerful, their potential hinges on access to vast datasets and substantial 

computational resources. True FMs, like GPT-4 and contrastive language–image pre-training (CLIP), are 
trained on billions of diverse data points, enabling broad generalization across tasks. However, the term 
“foundation model” is often misapplied to architectures trained on relatively small, domain-specific 
datasets. While these models may perform well within their specific contexts, labeling them as FMs 
creates confusion and raises unrealistic expectations, implying they can generalize across diverse tasks 
without significant retraining or adaptation—an assumption that rarely holds. Models trained on limited 
data typically lack the breadth and depth required for true generalization, restricting their applicability 
beyond their original scope. This issue is particularly pronounced in biomedical imaging, where data 
scarcity is a persistent challenge. Unlike general-domain FMs trained on massive datasets, biomedical 
models often lack the diversity needed for wide-ranging applicability, leading to limitations in flexibility 
and scalability. Mislabeling such models as FMs risks undermining trust and setting unrealistic ex
pectations among researchers, practitioners, and end users. 

To address this, the research community must establish clearer criteria for defining FMs, emphasizing 
the scale of training data, computational resources, and generalization capabilities required to earn this 
designation. Researchers should also critically assess whether an FM approach is suitable for their 
specific use case. In many biomedical imaging scenarios, domain-specific models tailored to specific 
tasks may be more practical and effective.15 For example, architectures designed explicitly for medical 
imaging or microscopy, integrating domain knowledge such as anatomical structures or cellular pat
terns, often deliver superior results. Hybrid approaches that leverage techniques like attention me
chanisms, rule-based systems, or physics-informed constraints, further enhance performance by em
bedding domain expertise. By promoting a deeper understanding of FMs and their limitations, the 
biomedical imaging field can better align expectations with reality, ensuring that model development 
and deployment remain both responsible and impactful.16 
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(3) Lack of post-deployment monitoring 
AI models, once trained and deployed, are vulnerable to performance degradation over time, parti

cularly in dynamic, real-world environments.17 In biomedical imaging, changes in data dis
tribution—such as shifts in disease prevalence, advancements in imaging technologies, or evolving 
clinical practices—can significantly impact model accuracy. Similarly, in biological imaging, variations 
in experimental protocols, staining techniques, or the introduction of new imaging modalities can alter 
data characteristics. Without timely updates, these shifts can result in diminished model performance, 
unreliable analyses, and potential misuse in clinical and research settings. 

Robust post-deployment monitoring is critical for ensuring model reliability and continued relevance. 
Continuous monitoring enables early detection of dataset shifts and allows for proactive measures to 
mitigate their effects. Regularly updating training data and applying continual learning techniques to 
retrain models ensures they remain responsive to emerging trends and maintain accuracy over 
time (Supplementary Text 4 online). In regulated environments like healthcare, updating deployed 
models can be challenging due to strict approval processes and institutional policies. To address this, 
clear protocols for model evaluation and retraining should be established during the design phase, en
suring compliance while safeguarding performance. The involvement of domain experts—such as clin
icians, radiologists, or biologists—is equally critical. Their insights can identify edge cases, uncover 
areas where models struggle, and provide targeted feedback for improvements, particularly in complex 
biomedical imaging tasks. This collaborative approach not only enhances model performance but also 
strengthens real-world applicability. 

In summary, this paper delves into the transformative impact of AI on computational biomedical 
imaging, emphasizing groundbreaking innovations in image reconstruction, analysis, and integration 
across modalities. These advancements have opened new frontiers in visualizing complex biological and 
physiological phenomena, enabling unprecedented diagnostic capabilities and facilitating the automa
tion of critical tasks. While we remain optimistic about AI’s potential to revolutionize biomedical re
search and healthcare delivery, we also highlight the risks associated with its misapplication. Striking a 
careful balance between these opportunities and risks is essential to fully unlock AI’s potential while 
ensuring its reliability, safety, and fairness in real-world biomedical applications. 
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