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Abstract Let π be a self-dual irreducible cuspidal automorphic representation of GL2(AQ) with trivial central

character. Its Hecke eigenvalue λπ(n) is a real multiplicative function in n. We show that λπ(n) < 0 for some

n ≪ Q
2/5
π , where Qπ denotes (a special value of) the analytic conductor. The value 2

5
is the first explicit

exponent for Hecke-Maass newforms.
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1 Introduction

In the past decade, there were delicate investigations devoted to the size of the first sign change of Hecke

eigenvalues of holomorphic cusp forms (see [8,14,15,21,34]). Let g be a primitive holomorphic cusp form

of weight k for the Hecke congruence group Γ0(N) with trivial nebentypus, and λg(n) be its n-th Hecke

eigenvalue. The eigenvalue λg(n) is a real multiplicative function in n satisfying the Hecke relation

λg(m)λg(n) =
∑

d | (m,n)

λg

(
mn

d2

)
for (mn,N) = 1. (1.1)

Denote by ng the smallest integer n such that λg(n) < 0 and (n,N) = 1. Write Qg = k2N . By using the

convexity bound of L(s, g) and some consequences of the Hecke relation (1.1), it is quite easy (see, for

example, [8, Section 3]) to get

ng ≪ Q1/2+ε
g , (1.2)

regarded as the trivial bound for ng. Apparently the bound size in (1.2) will be reduced if one has an

improvement over the convexity bound—the subconvexity bound—for L(1/2 + it, g).
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Interestingly, Iwaniec et al. [8] sharpened (1.2) without using any subconvexity bound for L(1/2

+ it, g) but instead invoked some sieve techniques. Their result was refined by Kowalski et al. [15] and

Matomäki [21] subsequently. Matomäki [21] showed that

ng ≪ Q
1
2−

1
8

g , (1.3)

which remains the most effective approach to date. One of the ingredients required in this approach is

Deligne’s bound for λg(p):

|λg(p)| 6 2 for any prime p - N (1.4)

when constructing the sieve function. In general this bound is not proved, though being anticipated, and

known as the (generalized) Ramanujan conjecture. Hence the method in (1.3) is not directly applicable

to Hecke-Maass cusp forms.

In this case (of Hecke-Maass cusp forms), one can prove the trivial bound as in (1.2) and there is an

improvement due to Qu [25] by adopting a subconvexity bound of the L-function. Qu proved

nf ≪ Q
1/2−δ
f , (1.5)

where f is a Hecke-Maass newform for the Hecke congruence group Γ0(N) of the spectral parameter νf .

Here, nf denotes the smallest integer n such that the Hecke eigenvalue λf (n) < 0 and (n,N) = 1,

Qf = (3 + |νf |2)N and δ is a positive absolute constant. However, the value of δ in (1.5) is unspecified,

which comes from the uniform subconvexity bound

L

(
1

2
+ it, f

)
≪ Q

1
4−δ

f

shown by Michel and Venkatesh [23]1). The sieving argument in [21] does not fit because of the absence

of Deligne’s bound for Maass cusp forms, i.e., (1.4) is not known for Maass cusp forms.

In this paper, we modify the sieve function (see Subsection 4.2) used in [15,21] to control the possible

exceptional Hecke eigenvalues (not fulfilling (1.4)) and work out a result in the more general context—for

the Hecke eigenvalues of an automorphic representation of GL2(AQ) (see Section 2). Consequently, we

improve Qu’s result (1.5) in the direction of an explicit bound exponent, though ∼ 6.7% bigger than the

result in (1.3), without using the subconvexity bound for the L-function.

Theorem 1.1. Let f be a Hecke-Maass primitive form (newform) on Γ0(N). Then there exists a

positive integer n satisfying

n ≪ Q
1
2−δ

f , (n,N) = 1

such that λf (n) < 0, where δ = 1
10 .

2 Set-up and the main result

Let d ∈ N and π =
⊗

p6∞ πp be an irreducible cuspidal automorphic representation of GLd(AQ) with

trivial central character2). The L-function associated with π is a Dirichlet series of the form

L(s, π) =
∑
n>1

λπ(n)n
−s (ℜe s ≫ 1)

that factors into an Euler product
∏

p<∞ Lp(s, π) with

Lp(s, π) = L(s, πp) :=
∏

16i6d

(1− απ,i(p)p
−s)−1 (p < ∞)

1) Recently, Wu [33] gave the explicit value 1−2θ
32

for δ, where θ = 7
64

.
2) See [1, p. 92], [3, Definition 3.2] or [7, Definition 5.1.14]; we reserve p for (usually finite) primes/places.
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for some complex numbers απ,i(p). Hence the reciprocal Lp(s, π)
−1 is a polynomial in p−s of degree at

most d with constant term 1. The coefficients λπ(n)’s (n ∈ N) are the Hecke eigenvalues. The L-function

L(s, π) accounts for the finite part and is completed with the local factor L∞(s, π). At p = ∞, the

local representation π∞ is given as a Langlands quotient and the local factor L∞(s, π) is expressible as a

product of gamma factors (see [30, Appendix A.3]),

L∞(s, π) = L(s, π∞) =
∏

16i6d

ΓR(s+ µπ,i)

for some µπ,i ∈ C, where ΓR(s) := π−s/2Γ(s/2). Readers interested in (a broader class of) these L-

functions are referred to [5] for a recent comprehensive account.

The completed L-function L∞(s, π)L(s, π) extends to an entire function which is of finite order and

bounded in vertical strips, and it satisfies the functional equation

qs/2π L∞(s, π)L(s, π) = w(π)q(1−s)/2
π L∞(1− s, π̃)L(1− s, π̃), (2.1)

where π̃ is the contragredient of π, w(π) ∈ S1 is the root number and qπ > 1 is an integer, called the

arithmetic conductor of π. Note that π is ramified at every prime p dividing qπ and unramified at any

other finite primes, qπ̃ = qπ and Lp(s, π̃) = Lp(s, π) for all p 6 ∞ (hence {απ̃,i(p) : 1 6 i 6 d} =

{απ,i(p) : 1 6 i 6 d} as multi-sets). If π is self-dual (i.e., π ≃ π̃), then λπ(n)’s are real. Define the

analytic conductor Qπ(t) of π by

Qπ(t) := qπ
∏

16i6d

(1 + |it+ µπ,i|)

and set Qπ := Qπ(0)
3).

We confine to the case where d = 2. The classification for π∞ is known, and for the irreducible cuspidal

automorphic representation π with trivial central character, we have4)

• discrete series: {µπ,1, µπ,2} = {m− 1
2 ,m+ 1

2} for some m ∈ N;
• unitary principal series: {µπ,1, µπ,2} = {ν + δ,−ν + δ}, where ν ∈ iR and δ ∈ {0, 1};
• complementary series: {µπ,1, µπ,2} = {ν + δ,−ν + δ}, where 0 < ν < 1

2 and δ ∈ {0, 1}.
At finite prime p, an infinite-dimensional irreducible admissible representation of GL2(Qp) must be

either principal series, special or supercuspidal5). Since the central character is trivial, we infer from the

known classification (see [20, p. 1182]) that

• principal series:
∏

i=1,2 απ,i(p) ∈ {0, 1};
• special: απ,1(p) ∈ {±p−1/2}, απ,2(p) = 0;

• supercuspidal: απ,1(p) = απ,2(p) = 0.

When πp is unramified, it is a principal series by [7, Proposition 11.7.3] and∏
i=1,2

απ,i(p) = 1.

The representation π is unramified at all but finitely many primes p (dividing qπ for finite p). The

generalized Ramanujan conjecture (GRC) asserts that |απ,i(p)| = 1, which is only settled for the case of

discrete series (see [31, (9)]). The current known result towards the GRC is

|απ,i(p)| 6 pθ with θ = 7/64 (2.2)

obtained by Kim and Sarnak [12]. Under the GRC, θ = 0 and |λπ(p)| 6 2 for p < ∞.

3) See [22, Lecture 1].
4) By [7, Theorems 11.14.2 and 11.16.1], π∞ is B∞(χ1, χ2) with χ1(x) = |x|ν1sgn(x)δ1 and χ2(x) = |x|ν2sgn(x)δ2

(ν1, ν2 ∈ C, δ1, δ2 ∈ {0, 1}), or a discrete series representation in B∞(χ1, χ2) with χ1(x) = |x|(m+1)/2+itsgn(x)m and

χ2(x) = |x|−(m+1)/2+it (m ∈ N0). As the central character is trivial, we have χ1χ2 = 1; thus ν2 = −ν1 and δ1 = δ2 in the

former case, and t = 0 and m ∈ 2N0 in the latter case. (Note m = (m − 2)/2.) By [7, Corollary 9.5.10], π is unitarizable.

The unitaricity implies that ν = it (t ∈ R) or ν ∈ (− 1
2
, 1
2
) (see [7, Proposition 9.4.5]).

5) See [7, Theorem 6.16.1].
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Theorem 2.1. Let π be a self-dual irreducible cuspidal automorphic representation of GL2(AQ) with

trivial central character. Write λπ(n) for the Hecke eigenvalue and Qπ for the analytic conductor at

t = 0. Then there exists a positive integer n satisfying

n ≪ Q
1
2−δ
π , (n, qπ) = 1

such that λπ(n) < 0, where δ = 1
10 .

Remark 2.2. We have not used the subconvexity bound of Michel and Venkatesh [23] or Wu [33] to

further refine the value of δ.

Specialization. Let Γ0(N) ⊂ SL2(Z) be the Hecke congruence subgroup and H be the upper half-

plane. A holomorphic (resp. Hecke-Maass) newform f is a modular form of weight k ∈ 2N (resp. a Maass

cusp form with the eigenvalue λ = 1
4 + ν2f ∈ C×) such that f is a common eigenfunction of the family

of Hecke operators {Tn : (n,N) = 1} and lies in the orthogonal complement of the space of oldforms

(see [9, Subsection 14.7]). The multiplicity-one theorem implies that f is a common eigenfunction of all

the Hecke operators Tn (n ∈ N), and thus its associated L-function L(s, f) factors into an Euler product.

The analytic conductor of L(s, f) is ≍ k2N (resp. |λ|N) for holomorphic (resp. Hecke-Maass) f . The

function f is lifted to a square-integrable function f in L2(GL2(Q)\GL2(AQ)) and associated with a self-

dual irreducible cuspidal automorphic representation πf of GL2(AQ) with trivial central character. Their

L-functions are identical, i.e., L(s, f) = L(s, πf ), and in particular λf (n) = λπf
(n), where Tnf = λf (n)f

for (n,N) = 1. Theorem 2.1 implies Theorem 1.1.

3 Preliminaries

This section is devoted to preparing some tools for the proof of Theorem 2.1.

3.1 Number-theoretic tools

We collect some results from Liu and Ye [19], Lau et al. [16] and Matomäki [21].

Lemma 3.1. Let

f(s) =
∞∑

n=1

an
ns

be absolutely convergent for σ > σa. Let

B(σ) =

∞∑
n=1

|an|
nσ

for σ > σa. Then for b > σa, x > 2, T > 2 and H > 2,

∑
n6x

an =
1

2πi

∫ b+iT

b−iT

f(s)
xs

s
ds+O

( ∑
x− x

H <n6x+ x
H

|an|
)
+O

(
xbHB(b)

T

)
.

This is a modified version of Perron’s formula in [19, Theorem 2.1].

Lemma 3.2. Let κ > 0 be a constant, N ∈ N and write

Dκ,N := (log(ω(N) + 3))eκ+2.

There is a positive constant Cκ depending on κ such that uniformly for x > exp(CκDκ,N ),

∑♭

n6x
(n,N)=1

κω(n) =
ΠN,κ

Γ(κ)
x(log x)κ−1

{
1 +Oκ

(
Dκ,N√
log x

)}
,
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where Γ(·) is the Gamma function and

ΠN,κ :=

(
φ(N)

N

)κ ∏
p -N

(
1− 1

p

)κ(
1 +

κ

p

)
≫ (log logN)−κ. (3.1)

This is [16, Lemma 4.1] (see [15, p. 398] for a more precise result).

Lemma 3.3. Let U ∈ [1,∞) and M,N ∈ N. Define hy(n) to be the multiplicative function supported

on squarefree integers such that

hy(p) =



−2, if p > y,

2 cos

(
π

m+ 1

)
, if y

1
m+1 6 p < y

1
m for some integer m < M,

2 cos

(
π

M + 1

)
, if p 6 y

1
M .

(3.2)

Uniformly for exp(C0(logω(N) + 3)eχ0+4) 6 y and U−1 6 u 6 U , we have∑♭

n6yu

(n,N)=1

hy(n) = (σM (u) + oM,U (1))
ΠN,χ0

Γ(χ0)
(log y)χ0−1yu,

where C0 = C0(M,U) is a suitable large constant, σM (u) is a continuous function, χ0 = 2 cos(π/(M+1)),

Γ(·) is the Gamma function and ΠN,χ0 is defined as in (3.1).

In particular for M = 100, we have the following: the lower bounds for σ100(u) are 0.0924, 0.0718,

0.0445 and 0.008 for u = 11
9 , u = 5

4 , u = 9
7 and u = 4

3 , respectively.

This is a special case of [21, Lemmas 6 and 8 and Remark 7]. Note that σM (u) is the function σ(u)

given by [21, (2.3)] and the lower bounds of σ100(u) in the above table is evaluated by a C++ program

provided by Professor Matomäki.

3.2 Tools from Rankin-Selberg L-functions

We start with the theory of the Rankin-Selberg L-function discussed in [22] and some important results

on symmetric power L-functions due to [6, 11, 13].

Let π and π′ be automorphic representations of GLd(AQ) and GLd′(AQ) as in Section 2 (and keep

using the notation therein). The Rankin-Selberg L-function L(s, π × π′) is given by an Euler product

L(s, π × π′) =
∏
p<∞

Lp(s, π × π′),

where Lp(s, π×π′)−1 is a polynomial of degree less than or equal to dd′ in p−s. The L-function L(s, π×π′)

extends to either a meromorphic function on C with two simple poles at s = 0 and s = 1 or an entire

function according as π′ ≃ π̃ or not. It satisfies the functional equation

q
s/2
π×π′L∞(s, π × π′)L(s, π × π′) = w(π × π′)q

(1−s)/2
π×π′ L∞(1− s, π̃ × π̃′)L(1− s, π̃ × π̃′),

where qπ×π′ ∈ N, |w(π × π′)| = 1 and

L∞(s, π × π′) =
∏

16i6d

16j6d′

ΓR(s+ µπ×π′,i,j).

Suppose that π is unramified at p. Then

Lp(s, π × π′) =
∏

16i6d

16j6d′

(1− απ,i(p)απ′,j(p)p
−s)−1 (if p < ∞) (3.3)
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and

{µπ×π′,i,j : 1 6 i 6 d, 1 6 j 6 d′} = {µπ,i + µπ′,j : 1 6 i 6 d, 1 6 j 6 d′}

if p = ∞. The arithmetic conductor satisfies (see [2])

qπ×π′ 6 qd
′

π qdπ′/(qπ, qπ′). (3.4)

Lemma 3.4. Let π be a self-dual irreducible cuspidal automorphic representation of GLd(AQ) with

trivial central character, and 0 < δ < 1 be arbitrary but fixed. Write Qπ×π for the analytic conductor of

L(s, π × π) at t = 0.

(a) We have

Qπ×π ≪d q2d−1
π

∏
16i,j6d

(1 + |µπ,i + µπ,j |)2

and

−L′

L
(1 + δ, π × π) 6 1

2
logQπ×π + δ−1 +O(1).

(b) For any 1 6 σ 6 3 and t ∈ R, there exists an absolute constant C > 0 such that

(σ − 1)L(σ + it, π × π) ≪ exp

(
C

logQπ×π

log logQπ×π

)
and

L(σ + it, π × π)−1 ≪ (σ − 1)−1 exp

(
C

logQπ×π

log logQπ×π

)
,

where the implied ≪-constants are absolute.

Proof. As π is self-dual, the L-function L(s, π × π) has a simple pole at s = 1 and

λπ×π(n) > |λπ(n)|2 = λπ(n)
2. (3.5)

(a) We follow the proof of [9, Proposition 5.7]. The Hadamard factorization theorem for the entire

function gives

s(1− s)L∞(s, π × π)L(s, π × π) = ea+bs
∏
ρ

(
1− s

ρ

)
e

s
ρ ,

where ρ runs over all zeros of the left-hand side. Note that

−L′

L
(s, π × π) =

1

s− 1
− 1

s
+

1

2
log qπ×π +

L′
∞

L∞
(s, π × π)− b−

∑
ρ

(
1

s− ρ
+

1

ρ

)
.

As in [9, (5.29)], we have

ℜe b = −ℜe
∑
ρ

ρ−1.

With Stirling’s formula
Γ′

Γ
(s) = log s+O(|s|−1), |arg s| < π,

we obtain

−L′

L
(1 + δ, π × π) = δ−1 +

1

2
logQπ×π −ℜe

∑
ρ

1

1 + δ − ρ
+O(1).

The result follows with the observation

ℜe
∑
ρ

1

1 + δ − ρ
> 0.

(b) The first assertion follows from [18, Theorem 2] with the facts: for 1 < σ 6 3 and t ∈ R,

L(σ, π × π) > 0
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and

|L(σ + it, π × π)| 6 L(σ, π × π)

by (3.5). As the Euler product of L(s, π × π) is absolutely convergent for σ > 1, we infer from (3.3)

and (2.2) that for σ > 1,

logL(σ + it, π × π) =
∑
p - qπ

|λπ(p)|2

ps
+O

(∑
p

p−2(σ−2θ) +
∑
p | qπ

1

)
, (3.6)

where the sum over all the primes p in the O-term is O(1) by (2.2). Hence,

|logL(σ + it, π × π)| 6 logL(σ, π × π) +O(ω(qπ)),

where ω(q) =
∑

p | q 1. The proof is completed with the asserted upper bound and

log |L(s, π × π)|−1 = −ℜe logL(s, π × π) 6 |logL(s, π × π)|. �

The Rankin-Selberg theory produces L-functions of higher degree from two automorphic L-functions6).

When d = d′ = 2, the Rankin-Selberg L-function L(s, π × π′) is known to be automorphic by Ramakr-

ishnan [26, Theorem M]. In addition, for 1 6 r 6 4, the r-th symmetric power L-function L(s, symrπ) of

a cuspidal automorphic representation π of GL2(AQ) is automorphic, corresponding to an automorphic

representation of GLr+1(AQ), by the work of Gelbart and Jacquet [6] (r = 2), Kim and Shahidi [13]

(r = 3) and Kim [11] (r = 4). At the unramified prime p < ∞, the local factor Lp(s, sym
rπ) is

Lp(s, sym
rπ) =

∏
06i6r

(1− απ,1(p)
r−iαπ,2(p)

ip−s)−1

(see Section 2 for απ,i(p)). The L-functions L(s, symrπ) (r = 2, 3, 4) are entire, unless π is a solvable

polyhedral7), and satisfy a functional equation of the form (2.1). For our purpose, we need a good

estimate for qsymrπ for a self-dual irreducible cuspidal automorphic representation π of GL2(AQ) with

trivial central character.

Lemma 3.5. Let π be defined as in Theorem 2.1. Write qsymrπ for the arithmetic conductor of

L(s, symrπ) and Qr for the analytic conductor of L(s, symrπ × symrπ) at t = 0. For r = 2 (resp.

r = 3, r = 4), qsymrπ is at most q3π (resp. q7π, q
12
π ). Also we have the following bounds for Qr : the upper

bounds for Qr are Q3
π, Q

15
π , Q49

π and Q108
π for r = 1, r = 2, r = 3 and r = 4, respectively.

Proof. As symrπ is an automorphic representation of GLr+1(AQ) for 1 6 r 6 4, the following Rankin-

Selberg L-functions are well defined and factor with the known identities into

L(s, π × π) = ζ(s)L(s, sym2π),

L(s, π × sym2π) = L(s, π)L(s, sym3π),

L(s, sym2π × sym2π) = ζ(s)L(s, sym2π)L(s, sym4π)

(see [24] and [29, p. 194]). Let p be a ramified prime (of π) and fr be the exponent such that pfr ∥ qsymrπ.

It follows from (3.4) that

3f1 > f2, 3f1 + 2f2 −min(f1, f2) > f1 + f3, 5f2 > f2 + f4

and qsymrπ×symrπ 6 q2r+1
symrπ. Hence qsymrπ×symrπ is at most q3π, q

15
π , q49π and q108π for r = 1, r = 2, r = 3

and r = 4, respectively.

6) An automorphic L-function is the L-function associated with an automorphic representation.
7) That means π is dihedral, tetrahedral or octahedral. The L-function L(s, symrπ) is entire for r = 2, r = 3 and r = 4

if and only if π is not dihedral, tetrahedral and octahedral, respectively. The representation π is dihedral if π is monomial

attached to a character of a quadratic extension K/Q (or π admits a self-twist by a quadratic character), and π is tetrahedral

(resp. octahedral), if sym2π is not monomial attached to a character of a cyclic cubic (resp. non-normal cubic extension

E/Q) (or sym2π (resp. sym3π) is cuspidal and admits a non-trivial self-twist by a cubic (resp. quadratic, character))

(see [27, 28]).
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The gamma factors of L(s, symrπ × symrπ) can be computed by the local Langlands correspondence

for GLd(R) (see [17, Section 2], [4, Subsection 3.1.1] and [32, p. 205]). For the discrete series representa-

tion π∞ with {µπ,1, µπ,2} = {m− 1/2,m+ 1/2}, we have

L∞(s, symrπ × symrπ) = ΓR(s+ 1)[
r
2 ]+1ΓR(s)

[ r+1
2 ]

r∏
j=0

ΓC(s+ j(2m− 1))r−j+1,

where ΓC(s) := ΓR(s)ΓR(s+ 1); for the principal series representation {µπ,1, µπ,2} = {ν + δ, ν − δ},

L∞(s, symrπ × symrπ) =
∏

06a,b6r

ΓR(s+ 2(a+ b− r)ν).

The result follows by the direct check.

Lemma 3.6. Let π be as in Theorem 2.1 and 1 6 u 6 3
2 . Set y = Q

1
2u , where Q := Qπ. As Q → ∞,

we have ∑
y<p6yu

p - qπ

(max{0, |λπ(p)| − 2})8p−1 6 uA8 +B8 log u+ o(1),

where the constants A8 and B8 are less than 131 and 138, respectively.

Proof. Observing (x− 2)8 6 x8 − 6x6 for x > 5/2, we infer that if x+ := max(0, x), then

(x− 2)8+ 6 x8 − 6x6 +
37

16
+

1

28
(3.7)

for all x > 0. [10, Lemma 11] gives that for R ∈ N,

λπ(p)
2R =

R∑
j=0

aR,jλsym2(R−j)π(p),

where aR,0 = 1 and

aR,j =

(
2R

j

)
−

(
2R

j − 1

)
for 1 6 j 6 R. Using the automorphicity of symrπ, 1 6 r 6 4 and

symrπp ⊗ symrπp =
r⊕

j=0

sym2jπp,

we may replace λsym2rπ(p) by

λsym2rπ(p) = λsymrπ×symrπ(p)− λsymr−1π×symr−1π(p),

where λsym0π×sym0π(p) := 1. After a little computation, we obtain

λπ(p)
8 − 6λπ(p)

6 =
4∑

j=0

b4,jλsym4−jπ×sym4−jπ(p),

where b4,0 = 1, b4,1 = 0, b4,2 = −11, b4,3 = −16 and b4,4 = 10. Set B8 = 10 + 37/16 + 1/28 = 137.69 · · · .
By (3.7) and the positivity of λsymjπ×symjπ(p), it follows that∑

y<p6yu

p - qπ

(|λπ(p)| − 2)8+ p−1 6
∑

y<p6yu

p - qπ

λsym4π×sym4π(p)p
−1 +B8

∑
y<p6yu

p−1

= Σ(y, u) +B8 log u+ o(1),
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where

Σ(y, u) :=
∑

y<p6yu

p - qπ

λsym4π×sym4π(p)p
−1 6 yδu

log y

∑
p

λsym4π×sym4π(p)
log p

p1+δ

for any δ > 0, by Rankin’s trick. Using the known bound for the Ramanujan conjecture, we may

replace the sum over p by −L′

L (1 + δ, sym4π × sym4π) up to a term of O(1) whose implied O-constant is

independent of its (analytic) conductor Q4. Suppose logQ4 6 f logQ. Let

λ =
4√

1 + 4f + 1
and δ =

λ

logQ
.

By Lemma 3.4, we get

Σ(y, u) 6 yδu

log y

(
δ−1 +

f

2
logQ+O(1)

)
6 ueλ/2

(
2

λ
+ f

)
+ o(1)

as Q → ∞. By Lemma 3.5, we may take f = 108. Our result hence follows with

A8 := eλ/2
(
2

λ
+ f

)
< 131.

The proof is completed.

4 Proof of Theorem 2.1

Define

Sπ(x) =
∑♭

n6x
(n,qπ)=1

λπ(n),

recalling the sum
∑♭

ranges over squarefree integers n.

4.1 The upper bound

We derive an upper bound for Sπ(x). Via the Euler products of L(s, π) and L(s, π × π̃), we have∑♭

n>1
(n,qπ)=1

λπ(n)

ns
=
∏
p - qπ

(
1 +

λπ(p)

ps

)
=

L(s, π)ζ(2s)

L(2s, π × π̃)
Dπ(s)

for ℜe s > 1, where Dπ(s) is the Dirichlet series given by

Dπ(s) :=
∏
p | qπ

Lp(2s, π × π̃)

(1− p−2s)−1Lp(s, π)

∏
p - qπ

(1 + λπ(p)p
−3s +O(p4(θ−σ))).

Let ε > 0 be any sufficiently small number. The Euler product defining Dπ(s) converges absolutely in

the half plane ℜe s > 1
2 + ε, and Dπ(s) ≪ε Qε

π uniformly for ℜe s > 1
2 + ε. With (3.5), we infer from

Lemma 3.4 that for σ = ℜe s > 1 + ε,

L(s, π) ≪ε L(σ, π × π̃) ≪ε Q
ε
π.

The Perron-type formula in Lemma 3.1 gives

∑♭

n6x
(n,qπ)=1

λf (n) =
1

2πi

∫ 1+ε+iT

1+ε−iT

L(s, π)ζ(2s)

L(2s, π × π̃)
Dπ(s)

xs

s
ds
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+O

( ∑
x− x

H <n<x+ x
H

|λπ(n)|
)
+O

(
x1+εQε

πH

T

)
.

The first O-term is ≪ x1+εQε
π/

√
H. To see it, we apply Cauchy’s inequality to get

∑
x− x

H <n<x+ x
H

|λπ(n)| ≪
x√
H

( ∑
x− x

H <n<x+ x
H

|λπ(n)|2

n1+α

) 1
2

,

where α = (log x)−1, and observe the bound (using (3.5) and Lemma 3.4(b))

∑
x− x

H <n<x+ x
H

|λπ(n)|2

n1+α
6

∑
x− x

H <n<x+ x
H

λπ×π̃(n)

n1+α
6 L(1 + α, π × π̃) ≪ (xQπ)

ε.

For the integral, we shift the line of integration ℜe s = 1
2 + ε and then∫ 1+ε+iT

1+ε−iT

L(s, π)ζ(2s)

L(2s, π × π̃)
Dπ(s)

xs

s
ds

=

∫ 1
2+ε+iT

1
2+ε−iT

L(s, π)ζ(2s)

L(2s, π × π̃)
Dπ(s)

xs

s
ds+O

(
x1+εQε

π

T
+

x
1
2+εQ

1
4+ε
π

T
1
2

)
≪ x

1
2+ε(QπT

2)
1
4+ε +

x1+εQε
π

T
.

Here, we have used Dπ(s) ≪ Qε
π, Lemma 3.4(b) and the convexity bound

L

(
1

2
+ ε+ it, π

)
≪ Q

1
4+ε
π (|t|+ 2)

1
2+ε.

Altogether we get

Sπ(x) ≪ (xT )
1
2+εQ

1
4+ε
π +

x1+εQε
π√

H
+

x1+εHQε
π

T
.

Taking

H = T
2
3 and T = x12ε,

we obtain

Sπ(x) ≪ x
1
2+7εQ

1
4+ε
π + x1−3εQε

π. (4.1)

4.2 The conditional lower bound

We evaluate a lower bound for Sπ(y
u) under the condition of positive λπ(n)’s. Suppose

λπ(n) > 0 for all n 6 y and (n, qπ) = 1. (4.2)

By the argument in [8, Section 3], we know y 6 Q
1
2+ε
π when Qπ is sufficiently large. For our purpose, we

consider y > Q
1
3
π , and Theorem 2.1 is obviously true for the other case. Hence we assume

y = Q
1
2u
π , where 1 6 u 6 3

2
.

To get the lower bound of Sπ(x), a multiplicative function is constructed to approximate λπ(n). For

the case of holomorphic cusp forms, Matomäki [21] introduced the function hy(n) defined as in Lemma 3.3

and showed that

Sπ(y
u) ≫

∑♭

n6yu

(n,N)=1

hy(n),
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for which the Deligne bound (1.4) is utilized.

The GRC is still open for Maass cusp forms, so we need to get around this condition in Kowalski-Lau-

Soundararajan-Wu-Matomäki’s approach. We refine their construction and consider the multiplicative

function wy(n) supported on squarefree integers with

wy(p) =



−|λπ(p)|, if p > y,

2 cos

(
π

m+ 1

)
, if y

1
m+1 6 p < y

1
m for some integer 1 6 m < M,

2 cos

(
π

M + 1

)
, if p 6 y

1
M .

(4.3)

Lemma 4.1. Let M > 4 be an integer, y = Q
1
2u
π (1 6 u 6 3

2 ) and define wy as in (4.3). Uniformly

for 1 6 u 6 3
2 , we have

∑♭

n6yu

(n,qπ)=1

wy(n) > {σM (u)− (A8u+B8 log u)
1
8 I(u)

7
8 + o(1)}Πqπ,χ0

Γ(χ0)
(log y)χ0−1yu,

where the notations σM (u), Πqπ,χ0 , Γ(χ0), A8 and B8 are defined as in Lemmas 3.3 and 3.6, and

I(u) :=

∫ u

1

(u− t)
8
7 (χ0−1) dt

t
.

Besides, the upper bounds for I(u) are 0.017439, 0.02227, 0.02936 and 0.040324 for u = 11
9 , u = 5

4 , u = 9
7

and u = 4
3 , respectively.

Proof. In view of (4.3) and (3.2) (with N = qπ), we see that wy(n) = hy(n) when the largest prime

factor P (n) of n is less than or equal to y. Thus for 1 6 u 6 3/2,∑♭

n6yu

(n,qπ)=1

wy(n) =
∑♭

n6yu

P (n)6y

wy(n)−
∑

y<p6yu

(p,qπ)=1

|λπ(p)|
∑♭

n6 yu

p
(n,qπ)=1

wy(n)

=
∑♭

n6yu

(n,qπ)=1

hy(n) + 2
∑

y<p6yu

(p,qπ)=1

∑♭

n6 yu

p
(n,qπ)=1

hy(n)−
∑

y<p6yu

(p,qπ)=1

|λπ(p)|
∑♭

n6 yu

p
(n,qπ)=1

hy(n)

=: S1 − S2, (4.4)

where S1 denotes the first summation and

S2 =
∑

y<p6yu

(p,qπ)=1

(|λπ(p)| − 2)
∑♭

n6 yu

p
(n,qπ)=1

hy(n).

Since, in S2, 0 6 hy(n) 6 χ
ω(n)
0 , we may bound S2 as follows:

S2 6
∑

y<p6yu, (p,qπ)=1
|λπ(p)|>2

(|λπ(p)| − 2)
∑♭

n6 yu

p
(n,qπ)=1

hy(n) 6 S2,1 + S2,2,

where for any Z > 1,

S2,1 =
∑

y<p6yu/Z
(p,qπ)=1, |λπ(p)|>2

(|λπ(p)| − 2)
∑♭

n6 yu

p
(n,qπ)=1

χ
ω(n)
0



2392 Lau Y-K et al. Sci China Math November 2021 Vol. 64 No. 11

and

S2,2 =
∑

yu/Z<p6yu

(p,qπ)=1

|λπ(p)|
∑♭

n6 yu

p
(n,qπ)=1

χ
ω(n)
0 .

Take Z = Z(y) so that

logZ = o(1)(log y)(χ0−1/8)/(χ0+7/8)

with the term o(1) → 0 as y → ∞. By Rankin’s trick, we see that

S2,2 6 yu
∑

yu/Z<p6yu

(p,qπ)=1

|λπ(p)|
p

∑♭

n6Z

χ
ω(n)
0

n

≪ yu
(logZ)χ0+7/8

(log yu)7/8

( ∑
yu/Z<p6yu

(p,qπ)=1

λπ(p)
8

p

)1/8

= o(1)yu(log y)χ0−1,

where we have bounded the sum over n by
∏

p6Z(1 + χ0/p) and applied Hölder’s inequality to the sum

over p with Lemma 3.6. As y < p 6 yu/Z, Lemma 3.2 can be applied to S2,1:

S2,1 = (1 + o(1))
ΠN,χ0

Γ(χ0)
yu

∑
y<p6yu/Z
(p,qπ)=1

(|λπ(p)| − 2)+
p

(
log

yu

p

)χ0−1

,

where x+ := max(x, 0). We apply Hölder’s inequality to the sum over p and deduce that

∑
y<p6yu/Z
(p,qπ)=1

· · · 6
( ∑

y<p6yu

1

p

(
log

yu

p

) 8
7 (χ0−1))7/8( ∑

y<p6yu

(p,qπ)=1

(|λπ(p)| − 2)8+
p

)1/8

.

By the prime number theorem,

∑
y<p6yu

1

p

(
log

yu

p

) 8
7 (χ0−1)

= (1 + o(1))(log y)
8
7 (χ0−1)

∫ u

1

(u− t)
8
7 (χ0−1) dt

t
.

Together with Lemma 3.6, we infer that

S2 6 (1 + o(1))(uA8 +B8 log u)
1
8

(∫ u

1

(u− t)
8
7 (χ0−1) dt

t

) 7
8 ΠN,χ0

Γ(χ0)
yu(log y)χ0−1.

Inserting it into (4.4), we obtain the required inequality with Lemma 3.3.

Remark 4.2. One may keep hy(n), in lieu of χ
ω(n)
0 , in the inner sum over n in S2,1. This will lead to

the integral ∫ u

1

σM (u− t)8/7dt/t

in place of I(u), which is manageable though being more complicated. The saving is however not enough

for us to take u = 9/7 in the next section.

4.3 Completion of the proof

Let y be the largest positive integer for which (4.2) holds. Under the positivity condition (4.2), we have

λπ(p
j) > 0
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for any 1 6 j 6 m and any prime p - qπ with y
1

m+1 6 p < y
1
m . If, moreover, λπ(p) 6 2, the arguments

in [15, Section 2] (based on the fact that λπ(p
j) is given by a Chebyshev polynomial of the second kind)

will give

λπ(p) > 2 cos
π

m+ 1
. (4.5)

If λπ(p) > 2, clearly (4.5) will also hold. In view of (4.3), we have the following:

Sπ(y
u) >

∑♭

n6yu

(n,qπ)=1

wy(n) subject to (4.2).

Next, we invoke Lemma 4.1 with M = 100. Since σM is continuous, we take u = 5
4 + ε′ for some

sufficiently small ε′ > 0. Then

σ100(u)− (uA8 +B8 log u)
1/8I(u)7/8 > 2.5× 10−3

and

yu ≪ Sπ(y
u) ≪ y

u
2 +10εQ

1
4+ε
π + yu−4εQε

π

by (4.1). This implies

y ≪ Q
1
2u+10ε
π ≪ Q

2
5
π

by taking ε = ε′/100. The proof is now completed.
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C++ code.

References

1 Bump D. Automorphic Forms and Representations. Cambridge: Cambridge University Press, 1997

2 Bushnell C J, Henniart G. An upper bound on conductors for pairs. J Number Theory, 1997, 65: 183–196

3 Cogdell J, Kim H, Murty M R. Lectures on Automorphic L-Functions. Providence: Amer Math Soc, 2004

4 Cogdell J, Michel P. On the complex moments of symmetric power L-functions at s = 1. Int Math Res Not IMRN,

2004, 31: 1561–1617

5 Farmer D W, Pitale A, Ryan N, et al. Analytic L-functions: Definitions, theorems, and connections. Bull Amer Math

Soc NS, 2019, 56: 261–280

6 Gelbart S, Jacquet H. A relation between automorphic representations of GL(2) and GL(3). Ann Sci École Norm Sup
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