吴恒, 田相林, 罗春林. 林分陶径和树高关系评价全国针叶树种立地质量的适用性 [J]. 华南农业大学学报, 2025, 46(3): 370-378. WU Heng, TIAN Xianglin, LUO Chunlin. Applicability of the relationship between stand DBH and height to evaluate the site quality of major coniferous stands in China[J]. Journal of South China Agricultural University, 2025, 46(3): 370-378.

林分胸径和树高关系评价全国针叶树种 立地质量的适用性

吴恒1,2,田相林3,罗春林1

(1 国家林业和草原局 西南调查规划院, 云南 昆明 650031; 2 Department of Forest Sciences, University of Helsinki, Helsinki FI 00014, Finland; 3 西北农林科技大学 林学院, 陕西 杨凌 712100)

摘要:【目的】建立科学的立地质量评价体系,指导林业生产实践。【方法】根据全国主要针叶林分样地数量情况,划分 16 个针叶树种组,采用 Richards、Logistic 和 Korf 模型拟合导线曲线,构建立地形指数模型,并进行落点检验,运用 1999—2018 年连续 4 期清查数据进行立地形等级动态变化分析。【结果】Richards、Logistic 和 Korf 模型拟合导向曲线决定系数均值均大于 0.95,建立的立地形指数模型落点检验值均大于 90.00%,落点检验均值达96.59%,适用于实际生产。20 年间,针叶林分 I 级和 II 级均值合计增长了 7.60 个百分点,III级均值合计减少了3.50 个百分点,IV级和 V 级均值合计减少了 4.10 个百分点,立地质量表现为较好的改善趋势。【结论】基于胸径一树高关系建立全国统一的立地质量评价模型具有可行性和合理性,通过减少气候差异导致基于树龄的生长速率对立地质量评价的影响偏差,使不同地区间相同林分的评价结果具有可比性,在大尺度水平具有较好的适用性,但仍然需要警惕经营措施和小样本数据导致的评价结果不确定。

关键词: 立地质量; 胸径-树高; 动态变化; 针叶林分

中图分类号: S757.2 文献标志码: A 文章编号: 1001-411X(2025)03-0370-09

Applicability of the relationship between stand DBH and height to evaluate the site quality of major coniferous stands in China

WU Heng^{1,2}, TIAN Xianglin³, LUO Chunlin¹

- (1 Southwest Survey and Planning Institute, National Forestry and Grassland Administration, Kunming 650031, China; 2 Department of Forest Sciences, University of Helsinki, Helsinki FI 00014, Finland;
 - 3 College of Forestry, Northwest A & F University, Yangling 712100, China)

Abstract: [Objective] To establish a scientific site quality evaluation system, guide forestry production practice. [Method] Based on the number of major coniferous forest stand plots across the country, 16 coniferous tree groups were classified. The Richards, Logistic, and Korf models were applied to fit the guiding curves and establish a site form index model, which was then validated through a scatter plot test. Data from four consecutive forest inventory periods from 1999 to 2018 were used to analyze dynamic changes in site form levels. [Result] The mean coefficients of determination for guiding curves fitted with the Richards, Logistic,

收稿日期:2024-09-25 网络首发时间:2025-02-26 09:38:10

首发网址:https://link.cnki.net/urlid/44.1110.S.20250225.1814.002

作者简介: 吴 恒, 主要从事林草资源调查监测研究, E-mail: heng.wu@helsinki.fi; 通信作者: 田相林, 主要从事森林碳汇 经营研究, E-mail: xianglin.tian@helsinki.fi

and Korf models were all above 0.95. The scatter plot validation of the established site form index model showed test values exceeding 90.00%, with an average value of 96.59%, indicating its feasibility for practical use. Over 20 years, site quality for coniferous stands improved, with a combined proportion increase of 7.60 percent in grades I and II, a 3.50 percent decrease in grade III, and a combined reduction of 4.10 percent in grades IV and V. 【Conclusion】 Developing a national unified site quality assessment model based on DBH-height relationships is feasible and reasonable. This approach reduces the impact deviations of climate-induced and age-based growth rate on site quality assessment, allowing for comparable site quality evaluations across regions. The model demonstrates good applicability on a large scale, though it is essential to consider potential uncertainties due to management practices and limited sample data.

Key words: Site quality; DBH-height; Dynamic change; Coniferous forest stand

立地质量是影响林分生长的关键因素,准确评 价立地质量是科学经营森林的前提和基础[1-2]。在 "碳达峰碳中和"的战略背景下,科学的立地质量 评价对提高林分生长收获预估准确性、优化抚育经 营设计、提升森林碳汇经营水平以及森林生态系统 应对气候变化能力具有极其重要的意义[3]。林分生 产力的立地质量评价方法分为生物因子法和地理 因子法 2 大类, 其中, 生物因子法的地位级和立地 指数是立地质量评价最常用的指标。采用不同方法 评价立地质量各有优缺点[4-5]。地理因子法易于分 类, 却缺乏立地条件影响林分生长的生物学解释。 地位级法简便易行,但其精度和准确性低于立地指 数的。立地指数的无偏估计要求准确的年龄测量 值。相较基于年龄和树高的地位级和立地指数而 言,已有研究者[6-8] 提出了立地形 (Site form) 的方 法,即用基准胸径时林分优势高表示立地质量,回 避林分年龄,对混交异龄林具有较好的评价效果, 但胸径和树高的关系也受林分的竞争程度影响[9-11]。

林业生产实践中树龄数据往往不准确或缺失,而林分胸径准确数据通过测量即可获取,理论上能修正由于树龄误差而导致的立地质量评价偏差。全国林分的情况复杂多样,天然林与人工林、混交林与纯林、异龄林与同龄林等差异会进一步影响立地质量评价方法的选择和评价结果的准确性[12],缺乏统一的评价模型也导致同一树种各区域间立地质量评价结果不具可比性。采用胸径与树高关系评价森林立地质量在一定程度上减少了其他评价方法的限制条件,同时在森林资源连续清查和森林资源规划设计调查中均有相应的因子调查要求,因此在实际生产管理中应用更便捷[13-15]。建立覆盖全国范围的主要针叶林分类型的胸径与树高模型,并编制指数模型表,不仅是森林经营管理的基础性工作[16],也能为建立大区域尺度的森林立地质量评价体系

提供科学参考。

1 材料与方法

1.1 数据来源及描述性统计

数据来源于全国森林资源连续清查第6次(1999—2003年)、第7次(2004—2008年)、第8次(2009—2013年)和第9次(2014—2018年)结果。根据全国主要针叶林分样地数量,划分为16个针叶树种组。每种树种中样本数量足够的单列,不够的合并为其他,优势树种组中的3种混交类型未纳入主要针叶林分立地形指数模型。主要针叶林分立地形指数模型研建数据描述性统计分析见表1。其中,数量最多的是马尾松林分样地,共15430块,数量最少的是铁杉林分样地,共182块。林分胸径均值为10.6~32.8 cm,林分树高均值为6.1~19.8 m,样地数量及规格均能满足建模和检验要求。

1.2 地位级指数模型构建及编表

1.2.1 导向曲线拟合 导向曲线的选择直接影响模型对立地质量评价的准确性,因此,导向曲线的形式既需要符合树高生长的生物学规律,又要能对数据进行最优化的拟合。良好的导向曲线应该呈平滑的 "S"型,且具有上限渐近线。本文采用 Richards、Logistic 和 Korf 3 个胸径—树高生长模型拟合径阶中值和林分树高均值,如公式 (1)~(3) 所示。根据决定系数 (Coefficient of determination, R^2)、标准估计误差 (Standard estimation error, SEE) 和曲线形式等选择导向曲线模型。

$$H_{\rm S} = 1.3 + a \left(1 - e^{-b{\rm DBH_S}}\right)^c$$
, (1)

$$H_{\rm S} = 1.3 + a / (1 + b e^{c {\rm DBH_S}}),$$
 (2)

$$H_{\rm S} = 1.3 + a e^{\frac{b}{{\rm DBH_S}^c}},$$
 (3)

3.06

Table 1 Descriptive statistics of model establishment data for site form index											
廿八米刑 Cton 1 tom 2	样地数量	林分縣	M径/cm Stan	d DBH	林分树高/m Stand height						
林分类型 Stand types	Number of plots	区间 Range	均值 Mean	标准差 SD	区间 Range	均值 Mean	标准差 SD				
冷杉 Abies fabri	4363	6.5~77.1	32.8	11.05	2.8~43.7	19.8	5.95				
云杉 Picea asperata	11 869	5.0~60.0	27.2	10.61	1.7~41.5	17.0	6.11				
铁杉 Tsuga chinensis	182	6.9~58.0	29.9	9.61	4.0~29.0	16.6	4.42				
油杉 Keteleeria fortunei	217	6.9~27.1	13.0	4.18	2.8~18.3	7.2	2.97				
落叶松 Larix gmelinii	9105	5.0~69.7	16.4	9.19	2.0~36.2	13.5	5.00				
红松 Pinus koraiensis	290	5.0~58.9	17.5	10.52	1.5~29.2	12.1	5.83				
樟子松 Pinus sylvestris	563	5.4~43.2	16.9	7.13	2.8~26.7	11.6	4.78				
赤松 Pinus densiflora	296	5.3~23.1	10.6	3.55	1.8~16.7	6.1	3.06				
黑松 Pinus thunbergii	346	5.3~20.0	10.8	3.13	2.2~16.0	6.3	2.46				
油松 Pinus tabuliformis	4525	5.0~35.0	13.2	5.16	1.5~23.0	7.7	3.27				
华山松 Pinus armandii	1 029	5.0~34.3	13.9	5.60	1.5~25.0	9.3	3.83				
马尾松 Pinus massoniana	15 430	5.0~39.9	12.9	4.90	1.5~28.5	9.2	3.58				
云南松 Pinus yunnanensis	3 5 1 0	5.0~43.0	14.6	6.58	2.2~30.0	9.6	4.48				
思茅松 Pinus kesiya var. langbiane	ensis 478	5.7~33.4	16.5	5.14	2.9~27.2	12.4	4.13				
高山松 Pinus densata	5 125	5.3~40.0	27.9	6.53	2.0~28.0	17.8	4.41				

5~27.4

12.8

表 1 立地形指数模型研建数据描述性统计 Table 1 Descriptive statistics of model establishment data for site form index

其他松类1) Other pines

$$R^{2} = 1 - \sum \frac{(y_{i} - \hat{y}_{i})^{2}}{(y_{i} - \bar{y}_{i})^{2}},$$
(4)

SEE =
$$\sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-p}}$$
, (5)

式中, $H_{\rm S}$ 为林分树高, ${\rm DBH_S}$ 为林分平均胸径,a、b、c 为待求解参数, y_i 为实际观测值, \hat{y}_i 为模型预估值, \hat{y}_i 为样本平均值,n 为样本单元数,p 为参数个数。1.2.2 基准胸径确定 基准胸径对立地形指数模型编表具有十分显著的影响,基准胸径选择不恰当会造成立地质量评价结果的偏差。在确定基准胸径时,本研究利用大量样地历史调查监测数据分析树高的生长过程,同时计算各径阶的树高变异系数及变化幅度,并绘制曲线图,根据曲线图中树高生长趋于平缓且能灵敏反映立地质量的原则确定基准胸径。

1.2.3 指数表编制 适宜的编表方法取决于树种、编表数据量等,编表方法不当会造成较大误差。本文利用林分树高生长及树高标准差曲线,依据±2倍标准差原则确定立地形级的上、下限曲线,根据上、下限曲线所夹的面积及预定的5个指数级,采用相对系数法确定各指数级上、下限,编制全国主

要针叶林分立地形表。该方法按照一定比例将胸径-树高生长曲线平移,在确定导向曲线模型后,将林分胸径代入模型,得到理论树高,将基准胸径代入模型得到树高理论值,调整系数和各指数级树高计算公式如下:

2.5~18.7

4.44

$$K_j = \frac{H_{0j}}{H_{0k}} \times 100\%, \tag{6}$$

8.1

$$H_{ij} = K_j \times H_{ik}, \tag{7}$$

式中, K_j 为立地形曲线簇调整系数, H_{0j} 为基准胸径各指数级树高, H_{0k} 为基准胸径导向曲线树高, H_{ij} 为各指数级树高, H_{ik} 为导向曲线树高。

1.3 模型统计检验

为了检验立地形指数模型对全国针叶林分立 地质量评价的准确性和适用性,对编制的立地形表 进行落点检验和适用性检验。

1.3.1 落点检验 将林分平均胸径-树高数据作成散点图,并绘制到立地形曲线簇中,算出散点落在曲线簇内的概率,即立地形表能够解释林分平均树高生长的概率。一般认为,落点检验值大于90%时,新编的立地形表满足使用要求。否则,应进行必要的调整。

¹⁾ 其他松类指样地数量较少的针叶林分类型。

¹⁾ Other pines indicate stand types with less sample plots.

1.3.2 适用性检验 采用连续的调查监测数据对新编的立地形表进行适用性检验。根据林分平均胸径及树高由立地形指数表确定其立地形等级,然后,比较多期调查数据下林分立地形等级有无跳级的现象,并统计出跳级个数占总个数的百分比。一般认为,跳级个数小于5%时,新编的立地形表满足使用要求。

2 结果与分析

2.1 立地形指数模型拟合结果

由表 2 可知, Richards 模型拟合所有针叶树种

决定系数均值为 0.96,标准估计误差均值为 0.98; Logistic 模型拟合所有针叶树种决定系数均值为 0.96,标准估计误差均值为 1.10; Korf 模型拟合所有针叶树种决定系数均值为 0.96,标准估计误差均值为 1.00。Richards 模型的普遍适用性更强,但油杉和高山松 2 个优势树种林分的上限渐近线参数均超过 45,与 Richards 模型参数所反映的林分生物学规律存在差异,即林分平均树高的上限水平应不超过 45 m。油杉和高山松 2 个优势树种林分的 Korf模型拟合参数也出现了偏离合理值的情况,因此这 2 个优势树种林分应选择 Logistic 模型作为导向曲线。

表 2 主要针叶林分胸径和树高模型参数
Table 2 Model parameters of DBH and height for major coniferous stands

林分	Richards					Logistic					Korf					
Stand types	а	b	С	R^2	SEE	а	b	С	R^2	SEE	а	b	С	R^2	SEE	
冷杉	34.9304	0.0278	1.2032	0.94	2.08	29.7918	6.2168	-0.0711	0.92	2.25	71.0181	-8.2024	0.5228	0.94	2.07	
云杉	35.0515	0.0292	1.2862	0.99	0.83	27.6166	7.9591	-0.0872	0.98	1.12	104.1793	-7.7122	0.4304	0.99	0.82	
铁杉	42.773 1	0.0100	0.7756	0.84	2.36	25.0287	4.3132	-0.0612	0.81	2.52	228.4099	-6.1365	0.2395	0.84	2.35	
油杉	49.4001	0.0217	1.5328	0.96	0.94	17.6832	15.4880	-0.1514	0.95	0.96	356.5069	-9.6653	0.3327	0.96	0.94	
落叶松	21.7763	0.0825	1.6565	0.92	1.54	21.4231	5.7592	-0.1286	0.91	1.63	24.4672	-16.0920	1.1943	0.91	1.63	
红松	23.7699	0.0706	1.9944	0.95	1.54	22.4409	9.9858	-0.1324	0.95	1.64	31.3234	-15.3821	0.9800	0.95	1.60	
樟子松	23.1622	0.0573	1.6375	0.97	1.07	19.8216	9.2197	-0.1350	0.96	1.27	69.4325	-7.1841	0.4718	0.97	1.06	
赤松	11.2997	0.1945	5.7997	0.89	1.32	10.6562	48.3629	-0.3444	0.92	1.14	15.2157	-32.2581	1.4462	0.88	1.43	
黑松	32.0888	0.0315	1.4875	0.97	0.60	13.1164	14.9074	-0.2020	0.98	0.49	646.3492	-8.9301	0.2569	0.97	0.62	
油松	34.1642	0.0217	1.2051	0.99	0.28	17.6943	9.4751	-0.1219	0.99	0.49	474.2441	-8.0463	0.2431	0.99	0.26	
华山松	23.2458	0.0527	1.5916	0.99	0.59	17.9922	10.4218	-0.1496	0.98	0.68	69.1080	-7.7007	0.4897	0.99	0.59	
马尾松	20.7730	0.0585	1.4939	0.99	0.28	17.5935	8.1581	-0.1427	0.99	0.55	41.5400	-7.4772	0.5971	0.99	0.24	
云南松	32.6336	0.0345	1.4617	0.99	0.38	22.9034	10.6239	-0.1183	0.99	0.67	182.4129	-7.9799	0.3567	0.99	0.38	
思茅松	23.3830	0.0688	1.8721	0.97	0.87	19.5171	10.3107	-0.1589	0.96	1.01	42.3634	-10.2905	0.7343	0.98	0.84	
高山松	47.8737	0.0196	1.2483	0.99	0.71	25.0354	10.2222	-0.1076	0.98	0.89	378.0811	-8.2583	0.2902	0.99	0.71	
其他松类□	15.6588	0.0804	1.7907	0.99	0.35	13.0084	10.8083	-0.1960	0.99	0.28	36.7931	-7.3685	0.5885	0.99	0.40	

¹⁾ 其他松类指样地数量较少的针叶林分类型。

导向曲线的选择不仅需要考虑模型的拟合决定系数和参数范围,同时也需要考虑导向曲线的良好形式,尤其是幼龄林阶段。拟合的导向曲线应能反映逻辑合理性,即林分胸径为0cm,林分树高应为1.3m,模型形式需要反映出此特征。大区域尺度的调查数据中,不同径阶段的样地数量呈现正态分布,导致小径阶林分的调查数据较少,也无法全面反映小径阶林分的生长情况,各针叶树种在小径阶的标准差范围也较小,如图1所示。其中,油杉、赤

松、黑松、油松、华山松、马尾松、云南松、思茅松、高山松和其他松类胸径建模数据未超过 60 cm,这也导致林分胸径—树高拟合曲线未出现明显的生长平缓阶段,这就意味着生产实践中应尽可能对中龄林、近熟林和成熟林进行评价,减少采用小径阶林分评价森林立地质量,从而避免出现跳级现象和评价结果的不确定。

2.2 立地形指数模型检验结果

根据主要针叶林分立地形指数模型曲线簇落

¹⁾ Other pines indicate stand types with less sample plots.

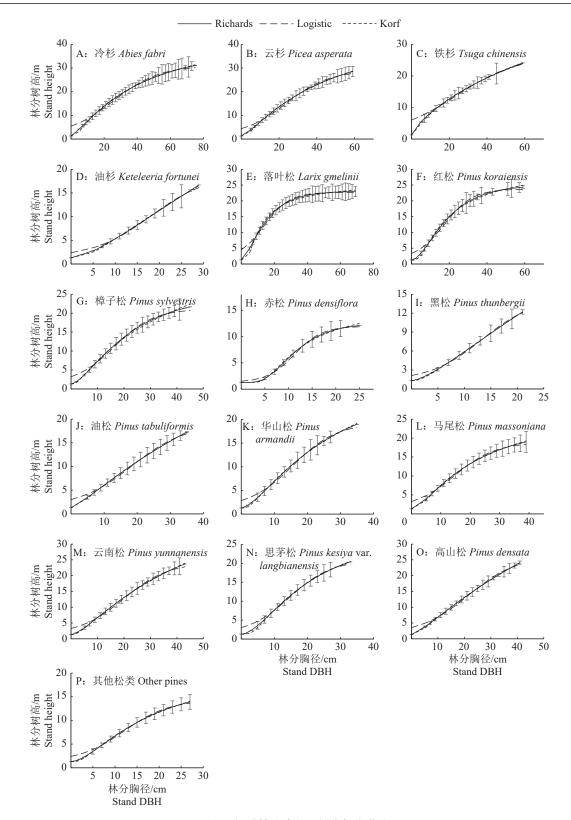


图 1 主要针叶林分胸径和树高拟合曲线图

Fig. 1 Fitted curve plots of DBH and height for major coniferous stands

点检验结果(图 2)可知,冷杉林分落点检验值为95.67%、云杉林分落点检验值为97.42%、铁杉林分落点检验值为96.70%、油杉林分落点检验值为95.39%、落叶松林分落点检验值为97.90%、红松林分落点检验值为94.48%、樟子松林分落点检验值

为 96.80%、赤松林分落点检验值为 92.23%、黑松林 分落点检验值为 97.69%、油松林分落点检验值为 96.40%、华山松林分落点检验值为 96.11%、马尾松 林分落点检验值为 99.16%、云南松林分落点检验值 为 97.55%、思茅松林分落点检验值为 94.98%、高山

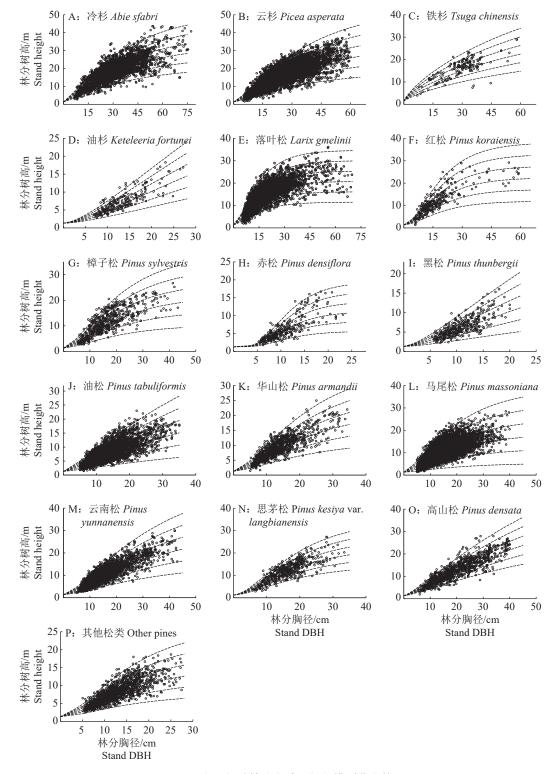


图 2 主要针叶林分立地形指数模型曲线簇

Fig. 2 Curve families of site form index model for major coniferous stands

松林分落点检验值为 98.97%、其他松林分落点检验值为 97.93%。落点检验值均大于 90%,均值达 96.59%,表明可以在实际生产中使用。此外,基于落点检验曲线簇分析可知,由于森林资源连续清查 数据能获取准确的林分胸径数据,因而大区域尺度 立地形指数模型相较于地位级指数模型具有更好

的检验效果。

2.3 林分立地质量动态变化分析

根据主要针叶林分立地形等级占比动态分析结果(图3)可知,2003年16个针叶树种组立地形等级占比均值为 I 级8.09%、II 级23.87%、III级38.28%、IV级24.51%、V级5.25%,2008年16个针

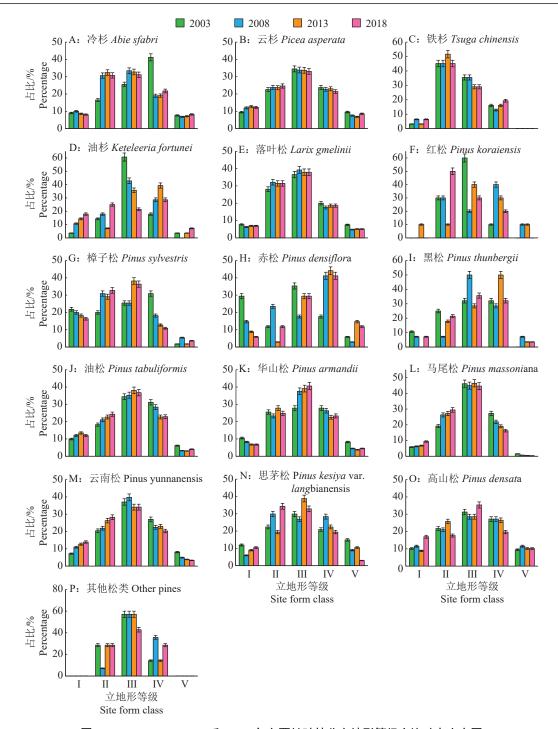


图 3 2003、2008、2013 和 2018 年主要针叶林分立地形等级占比动态直方图

Fig. 3 Proportion dynamic histogram of site form class for major coniferous stands in 2003, 2008, 2013 and 2018

叶树种组立地形等级占比均值为 I 级 8.51%、II 级 24.56%、III 级 36.70%、IV 级 25.19%、V 级 5.04%,2013 年 16 个针叶树种组立地形等级占比均值为 I 级 8.76%、II 级 25.41%、III 级 37.21%、IV 级 23.96%、V 级 4.67%,2018 年 16 个针叶树种组立地形等级占比均值为 I 级 9.64%、II 级 29.91%、III 级 34.79%、IV 级 21.55%、V 级 4.12%。4 次森林资源连续清查期间,针叶林分 I 级和 II 级占比均值合计增长了 7.60 个百分点,III 级均值合计减少了

3.50个百分点,IV级和V级均值合计减少了 4.10 个百分点。基于立地形等级的评价方法, 20 年间中国针叶林分立地质量表现为较好的改善趋势, 比较典型的针叶林分包括冷杉林、云杉林、油杉林、落叶松林、油松林、华山松林、马尾松林、云南松林、高山松林和思茅松林, 其中, 马尾松林分有 15 430 个样地, 样本量大使得立地形等级变化趋势规律更加明显。铁杉林、油杉林、红松林、樟子松林、赤松林、黑松林和其他松类林则出现波动情况, 以红松立地

形Ⅲ级为例,2003、2008、2013 和 2018 年的占比分别为 60.00%、20.00%、40.00% 和 30.00%,出现了明显的跳跃,是因为小样本量分析导致的,20 年间仅有 10 个样地未发生优势树种的变化,整体可用于立地形等级占比变化分析。

3 讨论与结论

3.1 讨论

不同区域间的气候差异导致林木生长速率差 异,进而对林龄-树高关系产生影响,因此,采用林 龄-树高关系评价立地质量主要受树种、气候、土壤 肥力等主导因素的交互作用,无法建立统一的大尺 度立地质量评价模型。相较于传统的立地指数和地 位级法, 胸径-树高关系在不同气候区域和林龄结 构中具备一定的稳定性[17],常用于不同遗传种源林 木的基因表观评估[18],受树种、土壤肥力和林分密 度等主导因素的交互作用影响,这就为相同树种不 同区域建立统一的立地质量评价模型提供了前提 条件[19-20]。本文 16 个林分类型胸径-树高关系的拟 合决定系数 (均值 0.96) 大于林龄-树高关系的 (均 值 0.94), 以冷杉林为例, 林龄-树高和胸径-树高关 系的拟合决定系数分别为 0.86 和 0.93。统一的胸 径-树高立地质量评价模型使不同地区的相同林分 评价结果具有可比性,但在实际应用过程中仍存在 挑战,难以排除经营措施对林分密度等竞争指标的 影响[21],导致胸径-树高关系评价立地质量偏差的 不确定性增加,从而出现跳级现象,这也是后续研 究中需要重点关注的环节。

在实际林业生产实践中,作为森林立地质量的 关键因素, 土壤类型、厚度、质地、养分的状况在无 人为干扰的情况下,将在较长时间内维持在比较稳 定的水平[1,22],因此,立地质量在一定周期内具有稳 定性。与此同时,长期积累和分解的森林凋落物可 以增加土壤中的速效磷、速效氮等养分含量,促进 森林立地质量的改善;不合理的经营措施导致土壤 有机物持续减少、土壤养分流失,也可能导致森林 立地质量的恶化,因此,在一定周期内立地质量也 具有波动性。胸径-树高关系评价森林立地质量的 优势是简便和动态,劣势则是灵敏的动态变化可能 是人为干扰(如采伐、补植)或气候变化(如降雨、 有效积温增加)等综合因素导致,而非真实的立地 质量改善[23-24],同时其也受建模评价样本量的影响, 本文中样地数量小于500的铁杉林、油杉林、红松 林、赤松林、黑松林和思茅松林均出现了不同程度 的跳跃现象,即小样本分析导致的不确定性结果。 因此,在林业生产实践中,应综合利用多种方法进行比较分析^[7],全面、准确、客观和科学地反映森林立地质量及动态变化,这也是本文后续需要持续完善的地方。

3.2 结论

本研究中 Richards、Logistic 和 Korf 模型拟合导向曲线决定系数均值均大于 0.95,结合模型形式和参数分析结果可用于建立全国主要针叶林分立地形指数模型,建立的立地形指数模型落点检验值均大于 90%,均值达 96.59%,可以在实际生产中使用。基于胸径-树高关系建立全国统一的立地质量评价模型具有可行性和合理性,通过减少气候差异导致基于树龄的生长速率对立地质量评价的影响偏差,使不同地区相同林分的评价结果具有可比性,在大尺度水平具有较好的适用性,但仍然需要警惕经营措施和小样本数据导致的评价结果不确定。

参考文献:

- [1] WEISKITTEL A R, HANN D W, KERSHAW J A, et al. Forest growth and yield modeling[M]. New York: John Wiley & Sons, 2011.
- [2] AGUIRRE A, MORENO-FERN'ANDEZ D, ALBERDI I, et al. Mapping forest site quality at national level[J]. Forest Ecology and Management, 2022, 508: 120043. doi: 10.1016/jforece.2022.120043.
- [3] 夏洪涛, 郭晓斌, 张珍, 等. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型[J]. 中南林业科技大学学报, 2023, 43(10): 80-88.
- [4] 李贤伟, 李守剑, 张健, 等. 四川盆周西缘水杉人工林林 地立地质量评价研究[J]. 四川农业大学学报, 2002, 20(2): 106-109.
- [5] 刘智军,朱丽艳,吴恒,等.基于清查数据的立地质量评价方法准确性分析[J].西南林业大学学报(自然科学), 2019, 39(5): 127-135.
- [6] VANCLAY J K, HENRY N B. Assessing site productivity of indigenous cypress pine forest in southern Queensland[J]. The Commonwealth Forestry Review, 1988, 67(1): 53-64.
- [7] 吴恒, 党坤良, 田相林, 等. 秦岭林区天然次生林与人工 林立地质量评价[J]. 林业科学, 2015, 51(4): 78-88.
- [8] 沈剑波, 雷相东, 雷渊才, 等. 长白落叶松人工林地位指数及立地形的比较研究[J]. 北京林业大学学报, 2018, 40(6): 1-8.
- [9] PADILLA-MARTÍNEZ J R, PAUL C, CORRAL-RIVAS J J, et al. Evaluation of the site form as a site productive indicator in temperate uneven-aged multispecies forests in Durango, Mexico[J]. Plants, 2022, 11(20): 2764. doi: 10.3990/plants11202764.

- [10] 张会儒, 雷相东, 张春雨, 等. 森林质量评价及精准提升 理论与技术研究[J]. 北京林业大学学报, 2019, 41(5): 1-18.
- [11] 胡庭兴, 李贤伟, 杨祯禄. 立地质量综合评价及其应用的研究[J]. 四川农业大学学报, 1993,11(3): 397-403.
- [12] PERIN J, HÉBERT J, BROSTAUX Y, et al. Modeling the top-height growth and site index of Norway spruce in Southern Belgium[J]. Forest Ecology and Management, 2013, 298: 62-70.
- [13] 付晓, 曹霖, 王雪军, 等. 吉林省林地立地质量评价及生产潜力研究[J]. 中南林业科技大学学报, 2019, 39(5): 1-9.
- [14] 黄国胜, 马炜, 王雪军, 等. 基于一类清查数据的福建省 立地质量评价技术[J]. 北京林业大学学报, 2014, 36(3):
- [15] MACFARLANE D W, GREEN E J, BURKHART H E. Population density influences assessment and application of site index[J]. Canadian Journal of Forest Research, 2000, 30(9): 1472-1475.
- [16] 雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立 地质量评价方法与应用[J]. 林业科学, 2018, 54(12): 116-126.
- [17] SHARMA M, PARTON J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management, 2007, 249(3): 187-198.
- [18] KROON J, ANDERSSON B, MULLIN T J. Genetic

- variation in the diameter-height relationship in Scots pine (*Pinus sylvestris*)[J]. Canadian Journal of Forest Research, 2008, 38(6): 1493-1503.
- [19] 王彬. 祁连山青海云杉树木生长及其对气候变化的响应[D]. 北京: 中国林业科学研究院, 2020.
- [20] MOTALLEBI A, KANGUR A. Are allometric relationships between tree height and diameter dependent on environmental conditions and management[J]. Trees, 2016, 30(4): 1429-1443.
- [21] 郭小阳, 吴恒, 田相林, 等. 基于优势高模型分析多源数据对立地质量评价的影响[J]. 西北林学院学报, 2017, 32(6): 184-189.
- [22] MOLINA-VALERO J A, DIÉGUEZ-ARANDA1 U, ÁLVAREZ-GONZÁLEZ1 J G, et al. Assessing site form as an indicator of site quality in even-aged *Pinus radiata* D. Don stands in north-western Spain[J]. Annals of Forest Science, 2019, 76(4): 113.
- [23] 刘俊, 孟雪, 高媛赟, 等. 基于不同立地质量的松树林分生物量遥感估测[J]. 中南林业科技大学学报, 2016, 36(5): 41-46.
- [24] GARCIA O. Comparing and combining stem analysis and permanent sample plot data in site index models[J]. Forest Science, 2005, 51(4): 277-283.

【责任编辑 霍 欢】