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Abstract
Transcription factors (TFs) modulate gene expression by regulating the accessibility of promoter DNA to RNA
polymerases (RNAPs) in bacteria. The MerR family TFs are a large class of bacterial proteins unique in their
physiological functions and molecular action: they function as transcription repressors under normal circum-
stances, but rapidly transform to transcription activators under various cellular triggers, including oxidative stress,
imbalance of cellular metal ions, and antibiotic challenge. The promoters regulated by MerR TFs typically contain an
abnormal long spacer between the –35 and –10 elements, where MerR TFs bind and regulate transcription activity
through unique mechanisms. In this review, we summarize the function, ligand reception, DNA recognition, and
molecular mechanism of transcription regulation of MerR-family TFs.

Key words RNA polymerase, gene transcription, gene expression, transcription factor, MerR

Introduction
Unlike in eukaryotes, where the labor of gene transcription is split to
three DNA-dependent RNA polymerases, i.e., polymerases I, II, and
III [1], the gene transcription in bacteria solely replies on the single
DNA-dependent RNA polymerase (RNAP) [2]. The bacterial RNAP
partners with a set of transcription initiation factors (named σ fac-
tors) to form RNAP holoenzymes that are responsible for tran-
scription of distinct gene programs [3]. In addition, a bacterial
genome encodes hundreds of transcription factors (TFs) (~ 6% of
their total gene count), which respond to environmental and cel-
lular signals through their signal-reception domain (or ligand-
binding domain) and modulate transcription of genes by directly
binding to promoter DNA through their DNA-binding domain [4].

Bacterial transcription repressors occupy core promoter regions
and inhibit transcription through preventing RNAP from engaging
with promoter DNA, while the mechanism of bacterial transcription
activation is much more complicated than that of transcription re-
pression. The canonical Class I and Class II transcription activation
models suggest that transcription activators interact with both
RNAP and the upstream of core promoter region to increase local
enrichment of RNAP at their regulated gene promoters and/or to
facilitate subsequent promoter unwinding process [5,6]. Distinct
from the canonical transcription repression/activation models, the
MerR-family TFs occupy the core promoter region to either repress

or activate transcription of downstream genes depending on the
cellular signals [7,8].

In this review, we summarize the physiological function, ligand
reception, DNA recognition, and mechanism of transcription regula-
tion of MerR-family TFs. Recent comprehensive reviews are re-
commended for readers who are interested in mechanism of bacterial
transcription and general bacterial transcription regulation [5,6,9,15].

Transcription Initiation by Bacterial RNAP
Most bacterial RNAP core enzymes are composed of five subunits,
two identical α subunits, one β subunit, one β′ subunit, and one ω
subunit [16]. The ω subunit is absent in certain bacterial species and
additional small accessory subunits are gained in specific bacterial
phyla [17]. The bacterial RNAP holoenzyme is composed of the
RNAP core enzyme and one of σ factors which anchor their DNA-
recognition domains (σ2, σ3.1, and σ4 of σ70-type factors; region I and
III for σ54-type factors) on the surface of RNAP core enzyme and
thread the linker domain (σ3.2 of σ70-type factors; region II for σ54-
type factors) into the active-site cleft [18–23].

During transcription initiation, a RNAP-σ holoenzyme first re-
cognizes the distal end of double-stranded core promoter DNA, i.e.,
the –35 element and/or extended –10 element, through sequence-
specific interaction with σ4 and/or σ3.1 [24–26]. The engagement of
the distal end of promoter DNA presents its proximal end, i.e.,
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the –10 element, on the surface of σ2, where the DNA unwinding
initiates [27,28]. The σ4/σ2 distance and the –35/–10 spacer length
(optimally 17 base pairs; bp) are matched to allow the –35 and –10
elements to be recognized by σ4 and σ2 in concert [24,29]. At the
beginning of DNA unwinding, the base pair at the –11 position of
the –10 element is disrupted and the most-conserved adenosine at
the –11 position of non-template strand is flipped out and secured
by a pocket of σ2 domain [28,30,31]. The DNA unwinding subse-
quently propagates to the downstream of promoter DNA and the
unwound region of promoter DNA is stabilized in the main cleft of
RNAP through base-specific pocket recognition at specific positions
(T–7, G–6, and G+2 of the non-template strand) and electrostatic at-
traction interactions with the phosphate backbone [30,32]. The
resulting RNAP-promoter open complex (RPo) containing a ~13 bp
unwound transcription bubble is competent for primer-dependent
initiation (using a short RNA primer typically in length of 2–5 nt and
one initiating NTP) or de novo initiation (using two initiating NTPs)
of RNA synthesis (Figure 1A) [24,27,29,33–35].

Class I and Class II Transcription Activation
The E. coli catabolic-activated protein (CAP), also named cAMP-
responsive protein (CRP), servers as the prototype of bacterial
transcription factor for studying the molecular mechanism of tran-
scription activation [5,36]. The mode of transcription activation by
CAP could be divided into two major classes based on the locations
of CAP-binding cis element (CAP box) on promoter DNA. In the
Class I mode of transcription activation, the CAP box is located at
the upstream of core promoter region on the same face of the DNA
helix as the UP and –35 elements (for example, the CAP boxes are
usually centered at positions –62, –72, –83, and –93 of promoter
DNA) [37,38]. The E. coli CAP dimer, which binds to the CAP box at

these positions, bends the upstream promoter towards RNAP to
establish interaction with RNAP-α C-terminal domain (CTD) in the
cryo-EM structure of E. coli CAP Class I transcription activation
complex [39,40]. The Class II CAP box is located at the proximal
upstream of core promoter DNA, i.e., the CAP box is centered at
position –41.5, that partially overlaps with the –35 element [38,41].
The crystal structure of T. thermophilus TAP (a homolog of E. coli
CAP) Class II transcription activation complex shows that the DNA-
bound TAP makes interactions with both RNAP-α CTD and the σ4

domain [42]. Despite differences in location of cis elements and
contact regions on RNAP, transcription factors bind to the upstream
of promoter DNA and make bipartite interactions with promoter
DNA and RNAP in both Class I and Class II transcription activation
models (Figure 1B) [5,6,36,37].

The MerR-family TFs
MerR-family TFs are a large family of bacterial TFs that share unique
structural and mechanistic features. They typically contain an N-
terminal DNA-binding domain (DBD), a central dimerization helix
(DH), and a C-terminal ligand-binding domain (LBD) (Figure 2A) [7].
Like most bacterial TFs, MerR-family TFs function as dimers. The two
protomers interact with each other in a ‘head-to-head’ manner. The
dimer interface is mainly contributed by the coiled-coil interaction of
the central dimerization helices and inter-protomer DBD-LBD inter-
action (Figure 2B). The MerR-family TFs could be further categorized
into three subfamilies based on their physiological functions: the
metal-responsive MerR-family TFs, the redox-responsive MerR-family
TFs, and the multidrug-resistance MerR-family TFs.

The metal-responsive MerR-family TFs
The metal-responsive MerR-family TFs contain members that spe-

Figure 1. Models for bacterial transcription initiation and canonical transcription activation (A) The model of RNAP-promoter DNA closed
complex (RPc; upper panel) and RNAP-promoter DNA open complex (RPo; lower panel). In RPc, the double-stranded –35 element is recognized by
σ4 in a sequence-specific manner, while the double-stranded –10 element is presented onto the surface of σ2 and restrained by sequence non-
specific electrostatic attraction interactions. In RPo, a ~13 bp transcription bubble is unwound and stabilized inside of RNAP. The base pair of –11
position is forced open by the W-dyad (W433 and W434 in E. coli RNAP σ70), and the adenine base of –11A of the non-template strand is recognized
and secured in the –11 pocket. The other domains of σ factors are hidden for clarity. (B) The models for Class I (upper panel) and Class II (lower
panel) transcription activation. A Class I transcription activator binds to the upstream of core promoter region and makes interactions with the C-
terminal domain of the RNAP-α subunit (RNAP-αCTD). A Class II transcription activator binds to the proximal upstream of the core promoter region
and makes interactions with both the RNAP-αCTD and σ4.
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cifically recognize various metal cations with +1 charge, for ex-
ample Cu+, Ag+, and Au+, or +2 charge, for example Cd2+, Zn2+,
Pb2+, Ni2+, and Co2+ (Table 1). These patrol metal sensors rapidly
respond to the elevated cellular ion concentration and subsequently
ignite defense programs by activating expression of their regulated
operons. For example, MerR, the founding member of MerR-family
TFs, regulates the expression of the mercury-resistance operons
that encode an enzyme catalyzing reduction of Hg2+ to volatile Hg
(MerA), transcription factors (MerD and MerR), a Hg2+ scavenging
protein Hg2+ (MerP), and Hg2+ transporters [43–47]. The R. me-
tallidurans PbrR regulates expression of the Pb2+-resistance operon
pbrABCD that encodes a Pb(II) efflux transporter (PbrA), a Pb(II)-
binding protein(PbrD), and two function unknown proteins (PbrB
and PbrC) [48,49]. The P. putida CadR maintains cellular con-
centration of Cd2+ by controlling the expression of a cadmium
transporter (CadA) [50,51].

These patrol metal sensors also sense overloaded essential metal
ions and activate gene programs to maintain their homeostasis. For
example, the E. coli CueR responds to the elevated concentration of
cellular free Cu+ and activates the expression of copper efflux AT-
Pase (CopA) and multi-copper oxidase (CueO) [63,97,98]. E. coli
ZntR maintains the cellular homeostasis of Zn2+ by regulating the
expression of a zinc transporter (ZntA) [59,99].

The redox-responsive MerR-family TFs
Reactive oxygen species (ROS) that induce cellular and genetic
damages are produced as an unavoidable consequence of the
aerobic lifestyle [100]. The redox-responsive MerR-family TFs are

one of the guardians sensing cellular oxidative stress in bacteria
[101]. SoxR [71] and NmlR (also named AdhR) [75,102] are two of
the currently reported members of the redox-responsive MerR-fa-
mily TFs. Although SoxR and NmlR fall into the same group, they
employ distinct mechanisms to sense oxidative stress. The C-
terminal metal binding loop of SoxR coordinates a [2Fe-2S] metal
cluster that is proposed to change its overall charge state upon
oxidation [103–105]. Once activated, SoxR increases the expression
of soxS gene, encoding an AraC-family transcription factor that
controls the expressions of various antioxidant and damage repair
proteins [71,72]. NmlR detoxifies oxidative damages induced by
formaldehyde as well as other ROS generators [75,76,106]. In H.
influenzae, NmlR controls the expressions of AdhC and EstD that
work sequentially to convert formaldehyde into formic acid in a
glutathione (GSH)-dependent manner [107]. Although biochemical
studies suggested that the activity of NmlR is zinc-dependent [75],
the crystal structures of apo or DNA-bound NmlR revealed absence
of any coordinated metal ions [76].

The multidrug-resistance MerR-family TFs
The third category of MerR-family TFs is composed of multidrug-
resistance receptors that recognize a broad spectrum of exogenous
toxic compounds (Table 1). The representative proteins in this ca-
tegory include TipA [77,78], BmrR [84,85], BltR [85,108], Mta [86],
BrlR [90–93,109], and MrR [110]. TipA has two forms (TipAL and
TipAS), both of which can sense the self-encoded natural ribosomal
inhibitor, thiostrepton [77–79,111]. Upon forming a covalent bond
with thiostrepton, TipA activates the expressions of its own and

Table 1. The summary of representative MerR-family TFs

Regulator Ligand Organism Regulated gene Reference

Metal-responsive MerR-family TFs

MerR Hg+ Tn21/Tn501 Mercury-resistance operon
merTP (C/F)AD(E)

[52–58]

ZntR Zn2+, Cd2+, Pb2+ E. coli zntA, a metal ion efflux ATPase [59–62]

CueR Cu+, Ag+, Au+ E. coli Copper-tolerance genes copA and cueO [63–65]

PmtR Zn2+ P. mirabilis A zinc-binding protein [66]

PbrR Pb2+ R. metallidurans Pb2+-resistance operon pbrABCD [48,67]

ZccR Zn2+, Cd2+, Co2+ B. pertussis A metal ion efflux ATPase [68]

CadR Cd2+ P. putida cadA, a cadmium transporter [50,51]

CoaR Co2+ Synechocystis PCC 6803 coaT, a metal ion efflux ATPase [69]

NimR Ni2+ H. influenzae Ni2+ uptake transporter (NikKLMQO) [70]

Redox-responsive MerR-family TFs

SoxR Superoxide E. coli soxS, a transcription factor regulating antioxidant genes [71–74]

NmlR Formaldehyde H. influenzae adhC and estD, detoxification of formaldehyde [75,76]

Multidrug-resistance MerR-family TFs

TipA Cyclic thiopeptide Streptomyces Thiostrepton-resistant genes [77–80]

NolA Genistein B. japonicum nodD2, a transcription factor regulating nodulation genes [81–83]

BmrR Multidrug B. subtilis bmr, a multidrug-efflux pump [84–88]

BltR Multidrug B. subtilis blt, a multidrug-efflux pump [85]

Mta Multidrug B. subtilis bmr and blt, two multidrug-efflux pumps [86,89]

BrlR c-di-GMP P. aeruginosa mexAB-oprM and mexEF-oprN [90–94]

MerR-family TFs with other functions

Rv1828 Fatty acids M. tuberculosis Unknown [95]

Rv3334 Unknown M. tuberculosis kstR, a transcription factor regulating lipid catabolism [96]

27The mechanism of transcription regulation by MerR

Fang et al. Acta Biochim Biophys Sin 2022



other proteins necessary for thiostrepton resistance [79,112]. B.
subtilis encodes three members of the MerR subfamily, BltR, BmrR
and Mta [84–86]. Mta functions as a master TF that activates the
expressions of both multidrug efflux transporters Blt and Bmr;
while BltR and BmrR specifically regulate the expressions of the
multidrug transporters Blt and Bmr, respectively. BrlR is important
for antimicrobial tolerance of P. aeruginosa by regulating the ex-
pressions of the multidrug efflux pumps mexAB-oprM and mexEF-
oprN [90,92].

DNA Recognition of MerR-family TFs
The N-terminal winged helix-turn-helix (wHTH) domain of the
MerR-family TFs recognizes their cognate long palindromic cis
elements that are located at the spacer region between the –35
and –10 elements of their regulated promoters [51,64,73,76,87]
(Figure 3A). Both the central helix-turn-helix and two wings (a wing
loop and a wing HTH) make direct interactions with DNA. Residues
in the central helix and wing loop insert into the major and minor
grooves of dsDNA, respectively, and make sequence-specific H-
bond and Van der Waal interactions (Figure 3B). These residues are
conserved in homologs of a certain MerR-family TF that recognize
the same DNA sequence motifs (Figure 3C) but vary in MerR-family
members that recognize different DNA sequence motifs (Figure 3D),
suggesting that they are responsible for sequence-specific recogni-
tion. Meanwhile, several positively charged residues make ex-
tensive interactions with the phosphate backbones of DNA and
function as clamps to stabilize the protein-DNA interactions during
DNA conformational transition. These clamp residues are con-
served in the majority of MerR-family TFs, highlighting the im-
portance of these residues, and suggesting that most MerR-family
TFs employ the same set of residues to anchor and distort dsDNA
(Figure 3D).

Signal Reception of MerR-family TFs
In contrast to the conserved wHTH fold of the N-terminal DBD, the
C-terminal LBD of the MerR-family TFs varies radically in both
length and sequence, conferring the diversity of ligand recognition
to this family. In general, the C-terminal LBD of MerR-family TFs is
able to coordinate metal cations, sense cellular oxidative condition,
and recognizes a broad spectrum of exogenic toxic organic chemi-

cals (Table 1).
The metal- and redox-responsive MerR-family TFs contain a short C-

terminal metal binding loop for coordinating metal ions or metal
clusters. The metal-responsive MerR-family TFs exhibit ultra-sensi-
tivity towards their cognate metal ions with reported dissociation
constants from micromolar level to nanomolar levels [50,69,97,113].
O’Halloran′s group has reported zeptomolar (10–21 M) and femto-
molar (10–15 M) sensitivity for ZntR/Zn2+ and CueR/Cu+,
respectively, under the metal buffering experimental conditions
[114–116]. The metal sensors of the MerR family exhibit stringent
selectivity towards metal ions of different charge states but are
tolerant to ions with the same charge state and the same valence
shell configuration.

The C-terminal metal binding loop along with nearby residues
creates the metal coordination site that determinates the ion se-
lectivity. Almost all members of the MerR subfamily contain two
conserved cysteine residues at both ends of the metal binding loop
(Figure 4A) [114]. The two cysteine residues (Cys112 and Cys120)
of E. coli CueR make two coordinate covalent bonds to Cu+ with an
essentially linear S-Cu-S bond angel, while a serine (Ser77) residue
from the other protomer inserts into the ion pocket to stabilize
Cys112 conformation (Figure 4B) [114]. The two conserved cysteine
residues (Cys112 and Cys119) in P. putida CadR also participate into
the tetrahedral coordination network by making two coordinate
covalent bonds with Cd2+, while another cysteine (Cys77′) forms
the third tetrahedral coordinate covalent bond (Figure 4C) [51]. As
for MerR, the two conserved cysteines (Cys117 and Cys126 in
Tn501 MerR) and the cysteine from the other protomer (Cys82′ in
Tn501 MerR) form three coordinate covalent bonds with Hg2+ in a
planar trigonal coordination geometry (Figure 4D) [117,118].
Structural superimposition and sequence alignment suggest that
the +1/+2 ion selectivity of metal-responsive MerR-family TFs is
mainly determined by the identity of the residue extended from
the other protomer (Ser77′ in E. coli CueR, Cys77′ in P. putida CadR,
or Cys79′ in E. coli ZntR) that inserts into the ion coordination site
[51,114]. It is notable that certain MerR proteins harbor residues
that allow coordinating the second ion either at the same site (E. coli
ZntR) (Figure 4E) or at a new remote site (P. putida CadR) [51,114].
Besides the conserved cysteines residues (Cys119 and Cys130), the
C-terminal metal binding loop of E. coli SoxR contains two more

Figure 2. The MerR-family TFs (A) The schematic of three categories of MerR-family TFs. DBD, DNA-binding domain; DH, dimerization helix; LBD,
ligand-binding domain. (B) The structure of E. coli CueR dimer, a representative member of the metal-responsive MerR TFs, adapted from the
crystal structure of Ag+-bound E. coli CueR-DNA complex (PDB: 4WLW). One protomer is colored in gray, and the second protomer is colored in
orange (DBD), green (DH), and pink (LBD). The Ag+ is shows in gray sphere. (C) The structure of E. coli SoxR dimer, a representative member of the
redox-responsive MerR TFs, adapted from the crystal structure of oxidated SoxR-DNA complex (PDB: 2ZHG). The [2Fe-2S] cluster is shown as
sphere. (D) The structure of B. subtilis BmrR dimer, a representative member of the multidrug-resistance MerR TFs, adapted from the crystal
structure of puromycin-bound BmrR-DNA complex (PDB: 1EXI). The puromycin is shown as sphere.
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cysteines residues (Cys122 and Cys124) to accommodate a [2Fe-2S]
cluster, of which each of the Fe atoms is stabilized by two co-
ordinate valent bonds made by two cysteine residues (Figure 4F). In
summary, MerR proteins respond to metal or oxidative stresses by
either directly coordinating cognat metal ions or an oxygen-sensitive
metal cluster [2Fe-2S]. The specificity is encoded in the ligand-co-
ordination site, where the number and position of cysteine residues
pre-define coordination geometry of their corresponding ligands.

The multidrug-resistance MerR TFs have a Gyrl-like ligand-
binding domain (LBD) at their C-terminal domain that is much
larger than the metal-binding loop of the metal- and redox-re-
sponsive members of the family (Figure 4G) [119]. Structure su-
perimposition of high-resolution crystal structures of ligand-bound
multidrug-resistance MerR proteins reveals that ligands are re-
cognized by a small and rigid pocket of LBD nearby the DNA-
binding domain (Figure 4H–J) [87,93,110,120]. The pocket is sur-
rounded by two aliphatic residues functioning as a hydrophobic
pincer pair to anchor drugs, a set of aromatic residues allowing
docking of drugs with distinct chemical structures, and a trio of
acidic residues making auxiliary H-bonds with polar moiety of
drugs (Figure 4H–J) [120]. Besides the common drug-binding
pocket in all multidrug-resistance subfamily of MerR proteins, ad-
ditional pockets were identified in P. aeruginosa BlrR and E. coli
EcmrR [93,110].

The Signal-induced Conformational Change
Most MerR-family TFs interact with DNA both in the absence and
in the presence of ligands, while the state of ligand occupancy
defines the shape of dsDNA and determines the outcome of tran-
scription [60,72,121,122]. Recently reported crystal structures of
MerR-TF/DNA complex in the activated state all revealed a highly
distorted DNA, suggesting a unified mechanism of transcription
activation [51,64,73,76,87]. The crystal structures of apo-CueR/
DNA (repressive complex) and Ag+-CueR/DNA (activated com-
plex) determined by O’ Halloran’s lab provided excellent oppor-
tunity to understand the conformational change induced by ligand
binding [64].

The structures show that the C-terminal metal binding loop of apo
CueR is disordered but becomes folded upon Ag+ binding. The
folded metal binding loop establishes new interaction with nearby
structure units and transmits the ligand-biding signal to the distance
change of two DBDs. The refolded metal binding loop wedges into
the interface of the nearby dimerization helix and DBD. Such event
on one hand causes a slight inward rotation of the nearby DBD, and
on the other hand causes a small ‘scissors’ movement of dimer-
ization helix resulting in further inward rotation of DBD at the other
end. Because both the half palindromic repeats of DNA are tightly
anchored by DBD, the conformational change of DBD forces kinking
and under twisting of their associated DNA. Other metal-responsive

Figure 3. DNA recognition of MerR-family TFs (A) The consensus DNA sequence logo of E. coli CueR regulated promoters. The palindromic
repeats are highlighted by arrows. The positions are numbered respective to the transcription start site (+1). (B) The interaction between the CueR-
DBD and dsDNA. The sequence nonspecific interactions between backbone phosphates of DNA and residues of CueR-DBD are shown in the middle
panel. The base-specific interactions made by CueR-DBD are shown in the right panel. (C) The consensus protein sequence logo of CueR from
various bacterial species. (D) The multiple-sequence alignment of DBD from multiple MerR TFs. The residues contacting backbone phosphates are
labeled by diamonds and the residues making base-specific interactions are labeled by asterisks.
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MerR-family TFs likely use the same strategy to trigger the allosteric
movement upon metal binding. However, it is still to be determined
how the redox-responsive MerR-family TFs, such as SoxR that co-
ordinates the [2Fe-2S] metal cluster and adopts ordered conforma-
tion in both the oxidative and reduced conditions, interchanging
their conformations [73,101].

The signal-induced conformational change is less determined for
multidrug-resistance MerR TFs, as structural information for direct
comparison of TF/DNA complexes in the absence and presence of
ligand is unavailable. The crystal structures of drug-bound BmrR-
DNA complexes and cryo-EM structures of E. coli EcmrR-RPo re-
vealed direct interaction between DBD and LBD, suggesting that drug
binding might affect the LBD-DBD interaction leading to DNA dis-
tortion through an unknown signal transmission manner [87,110].

Transcription Repression by MerR-family TFs
The gene promoters regulated by MerR-family TFs typically possess
abnormally long spacers (19–20 bp) between the –35 and –10 ele-
ments compared with the optimal length (17±1 bp) (Figure 3A) [7].
The unique long spacer is essential for regulation, as shortening the
spacer renders promoters irresponsible to activation by their cog-
nate MerR TFs [123–125]. The strict requirement of the –35/–10
spacer length (17±1 bp) is defined by the distance of σ4 and σ2,
which are anchored near the RNA exit channel and the top of RNAP
main cleft, respectively [18,19]. The unique structure architecture
of RNAP-σ70 holoenzyme allows sequential recognition of the –35
and –10 elements of bacterial gene promoters containing optimal
spacer length [30]. Increase of spacer length in 2–3 bp results in
increase of the –35/–10 element distance in 6.8–10.2 Å and rotation

Figure 4. The signal reception of MerR-family TFs (A) The multiple sequence alignment and consensus protein sequence logo for the ligand-
binding domain of MerR-family TFs. The two mostly conserved cysteines are highlighted and labeled by asterisks. (B) E. coli CueR coordinates one
molecule of Ag+ through Cys112 and Cys120 of its metal-binding loop. The Ser77’ of the other protomer restrains the conformation of Cys112 (PDB:
4WLW). (C) P. putida CadR coordinates one molecule of Cd+ through Cys112 and Cys119 from one protomer and Cys77’ from the other protomer
(PDB: 6JGX). (D) B. megaterium MerR coordinates one molecule of Hg2+ through Cys117 and Cys126 from one protomer and Cys82’ from the other
protomer (PDB: 5CRL). (E) E. coli ZntR coordinates two molecules of Zn+ through Cys114, Cys115, H119, and Cys124 from one protomer, Cys79’
from the other protomer, and a phosphate group (PDB: 1Q08). (F) E. coli SoxR coordinates the [2Fe-2S] cluster through residues Cys119, Cys 122,
Cys 124, and Cys 130 of the same protomer. (G) Structure superimposition of the ligand-binding domains of four multidrug-resistance MerR TFs, B.
subtilis BmrR (cyan; PDB: 3IAO), E. coli EcmrR (green; PDB: 6XLA), P. aeruginosa BrlR (blue; PDB: 5XBT), and E. coli SbmC (light brown; PDB: 1JYH;
DNA Gyrase inhibitory protein, Gyrl). (H-J) Detailed presentation of the ligand-binding pocket of B. subtilis BmrR occupied by puromycin (PDB:
3Q3D), ethidium (PDB: 3Q2Y), and kanamycin (PDB: 3Q5R). Residues V147 and I255 server as a hydrophobic pincer. Residues Y152, Y170, Y187,
F224, Y229, and Y268 server as an aromatic ring to accommodate drugs with distinct chemical structures. Residue E253 makes auxiliary polar
interactions with the drugs.
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in 72°–108° around the helix axis [64]. Consequently, the –10 ele-
ment of promoter DNA, when its –35 element is bound by σ4, is
extended and rotated away from the σ2 domain, preventing further
DNA unwinding and resulting in a very low basal transcription
activity.

Binding of apo MerR-family TFs further inhibits the weak basal
transcription activity of their regulated promoter DNA [64,65]. The
crystal structure of apo CueR-DNA shows that the engagement of
apo CueR shifts the trajectory of promoter dsDNA further away from
the σ2 domain and restrains the dsDNA in the inactive shape [64].
Although the apo CueR-dsDNA is the only reported crystal structure
of apo MerR-TF/DNA, footprinting data support that other metal-
responsive MerR TFs probably also interact with a straight dsDNA
in the absence of ligand binding [121,126].

Transcription Activation by MerR-family TFs
The long-term debate regarding the transcription activation mechan-
ism of MerR-family TFs is whether and what extent the MerR TF-
RNAP interaction contributes to transcription activation [7,121,127].
The canonical Class I and Class II transcription activators bridge
RNAP and promoter DNA by making bipartite interaction; the in-
teraction with RNAP is necessary as mutating the activator-RNAP
interface substantially reduces transcription activation activity [37].
However, the concept of requirement of TF-RNAP interaction for
transcription activation is challenged by recent cryo-EM structures

of transcription activation complexes comprising MerR-family TFs,
E. coli CueR-TAC, B. subtilis BmrR-TAC, and E. coli MrR-TAC
(Figure 5A–C) [65,88,110,128].

In these structures, the MerR-family transcription factors reside
on one face of the upstream promoter DNA, while the RNAP-σ70 (or
RNAP-σ) holoenzyme recognizes the -35 and -10 elements from the
opposite face. The architecture explains the paradox that MerR-TFs
activate transcription while occupying the core promoter region, an
interaction typically represses transcription due to steric hinder-
ance between TFs and RNAP. Intriguingly, although RNAP and
MerR-TF occupy the same core promoter regions, BmrR makes
interaction with neither RNAP core enzyme nor σA factor in the
cryo-EM structure of B. subtilis BmrR-TAC [88], while E. coli CueR
and EcmrR only contact a small surface patch of the non-conserved
region of σ70 factor (σNCR) in the cryo-EM structures of E. coli CueR-
TAC and E. coli EcmrR-TAC (Figure 5A) [110]. The TF-σNCR inter-
action is not essential for their transcription activation activity,
because MerR TFs (CueR and ZntR) in E. coli are able to activate
transcription of their regulated promoters using evolutionarily
distant RNAPs (i.e. RNAPs from M. tuberculosis, T. thermophilus,
and S. coelicolor) that have completely different σNCR domains [65].
The TF-σNCR interactions observed in E. coli CueR-TAC and EcmrR-
TAC, however, contribute to the transcription activation by pro-
viding auxiliary bridge interaction between RNAP and DNA
[110,128].

Figure 5. The cryo-EM structures of transcription activation complexes comprising MerR-family TFs The cryo-EM structures of (A) E. coli CueR
transcription activation complex (PDB: 6XH7), (B) E. coli EcmrR transcription activation complex (PDB: 6XL5), and (C) B. subtilis BmrR transcription
activation complex (PDB: 7CKQ). The insertion box shows the small surface patch of CueR-DBD that interacts with the σNCR. (D) Structure
superimposition of the upstream dsDNAs of the above three transcription activation complexes and that of a bacterial RPo (PDB: 6OUL). (E) The
kinks of the upstream promoter DNA at positions −35 (1, 28°), −30 (2, 44°), −24 (3, 85°) and −18 (4, 40°) in the cryo-EM structure of E. coli CueR-TAC
(PDB: 6LDI). Kink 1 at −35 is induced by CueR and σ70

4, and kinks 2, 3 and 4 are induced by the CueR dimer.
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Several lines of evidence point to a ‘DNA distortion’ mechanism
of transcription activation by the MerR-family TFs. The DNA dis-
tortion induced by ligand-bound MerR was initially proposed based
on results of DNA mobility and footprinting assays [126], and
subsequently directly visualized in crystal structures of ligand-
bound MerR-family TFs complexed with DNA, including crystal
structures of CueR-Ag+/DNA, CadR-Cd2+/DNA, SoxR-[2Fe-2S]/
DNA, and NmlR-Ni2+/DNA [51,64,73,76,87]. The most striking
feature of the distorted DNA is the 90° kink at the center of the
palindromic dyad, where the two central base pair steps are often
broken and the minor groove becomes significantly wider even than
the canonical major groove, resulting in a A-DNA-like structure
(Figure 5D). The distal ends of their cognate dsDNA are still gripped
by the wHTH domains, resulting in a ‘Ω’-like shape of the dsDNA
(Figure 5D,E). Such conformational switch of dsDNA results in
pronounced changes both in the distance and in the phase angle
between the -35 and -10 elements. Detailed comparison between the
canonical B-formed dsDNA and activator-bound dsDNA revealed
that the DNA distortion shortens the –35/–10 distance by ~7Å and
reduces the phase angles of dsDNA by 72°, close to those of a 17-bp
spacer promoter (Figure 6) [64].

In summary, the structural and the biochemical evidence
provides strong support for the DNA distortion paradigm of al-
losteric transcriptional control by the MerR-family TFs. Such
mode of transcription activation doesn’t necessitate the RNAP-TF

interaction, and thus is distinct from the transcription activation
mechanism of canonical Class I and Class II transcription acti-
vation modes.

Conclusion
This review discussed the studies of the past years, regarding the
unique mechanism of transcription activation of the MerR-family
TFs with focus on the structural and biochemical data. Intriguingly,
a conceptional similar DNA-distortion mechanism has also been
employed by the eukaryotic TATA-box binding protein (TBP) dur-
ing eukaryotic polymerase II transcription initiation. A recent study
in Seok’s lab identified FruR, a GalR-LacI family transcription factor
in V. cholerae, which binds to its cis element located between
the -35 and -10 element with a 20-bp spacer and likely uses a similar
DNA-distortion mechanism to regulate the expressions of its target
genes [129]. These discoveries suggest that such DNA-distortion
mechanism might be more widely employed by eukaryotic and
prokaryotic transcription factors than we expected. The unique
RNAP-contact-independent action, the ultra-sensitivity and se-
lectivity towards cognate ligands, and the stringent transcription
regulation make the MerR-family TFs ideal transcription modules in
synthetic biology uses.
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