环 境 化 学

Vol. 22, No. 2 March 2003

ENVIRONMENTAL CHEMISTRY

微量元素在蔬菜栽培中的作用

采用盆栽试验、小区试验和无土栽培试验、选取白菜、生菜、大蒜、香菜、豌豆为实验对象、考 察土壤中添加锌、硒、钙等元素是否能有效地增加其在蔬菜中的含量,研究锌、硒、钙对蔬菜生长的 影响. 在土壤中添加一定量的铅、镉、研究铅、镉与锌、硒、钙元素之间的作用.

1 锌、硒、钙在盆栽蔬菜中的强化试验

塑料盆 12 只,两只为一组,每盆一棵白菜,其中 1 号为空白样,2、5、6 号盆土中各加入 500mg 锌盐, 4, 5, 6 号盆土中各加入 50mg 铅盐和 5mg 镉盐, 3, 6 号盆土中各添加 5mg 硒盐.

塑料盆 12 只,两只为一组,每盆一棵生菜,其中 1 号为空白样,2、5,6号盆土中各加入 500mg 锌盐, 4, 5, 6 号盆土中各添加 50mg 铅盐和 5mg 镉盐, 3, 6 号盆土中各加入 5mg 硒盐.

塑料盆 12 只,两只为一组,每盆一棵大蒜,其中 1 号为空白样,4、5、6 号盆土中各入加 5、10、 20g 钙盐、3、4、5、6号盆土中各加入50mg 锌盐和5mg 硒盐、2、3、4、5、6号盆中各加入50mg 铅盐 和 5mg 镉盐. Zn, Se, Pb, Cd 的添加方法同上.

2 锌、硒在小区蔬菜中的强化试验

选择常青农业示范园的二块菜地种白菜,其中一块施加一定量的元素 Zh^{2+} 和 B^{3+} (2号),生长期 结束后采样分析.

在合肥市七里塘种苗中心的大棚内选取6块均为 $20m^2$ 的菜地、1,2,3号为一组种生菜、4,5, 6号为一组种香菜,1.4号菜地每亩施加 10kg ZnSO4*7H5O,其中 80% 作基肥,20% 分作两次叶面喷 施. 2,5号每亩施加50g亚硒酸钠,其中80%基肥和20%叶面喷施,生长期结束后采样分析,

3 锌、硒在无土豌豆苗中的强化试验

用 Zn^{2+} 溶液和 Se^{2+} 溶液浸种、喷施豌豆苗. 其中 0 号为空白样, 1, 2 3 号分别加入 5 25125mg* l⁻¹的锌盐溶液和 50 250 1250μg* l⁻¹的硒盐溶液. 浸种是将 1, 2, 3, 4 号豌豆苗在 50, 100, 200, 400mg l⁻¹的锌盐溶液和 500, 1000, 2000, 4000μg• l⁻¹的硒盐溶液中浸种一定时间.

4 元素测定

将经过处理的蔬菜样送合肥市环境监测站微量元素检测中心检测,其中 Zn、Fe、Mn、Cu、Ca、 Mg 用火焰原子吸收法测定、Se、Pb、Cd 用无火焰原子吸收法测定,分析数据再由含水率换算成湿样 中元素含量. 表 1-表 4 是强化后元素相对于空白样中元素的百分含量.

						. ,		
蔬菜	序号	Zn	Se	Fe	Mn	Cu	Ca	Mg
	1	6 41	< 0. 02	32 3	1. 00	0 56	1355	194
	2	+ 73.6	_	- 62 2	+ 67. 0	- 33. 9	+ 23.4	- 3 0
白菜	3	- 45.7	1460	- 69 0	+ 19. 0	- 32. 1	+ 13.0	- 7. 2
	4	- 57.7	_	- 65 9	+ 22.0	- 51.8	+ 21.8	- 7. 7
	5	+ 83.3	_	- 51.0	+ 16.0	- 41.0	- 5.1	- 14 4
	6	- 30.0	_	- 99 1	- 76. 0	+ 4185 7	- 99. 9	- 99 8

表 1 盆栽蔬菜中元素的百分含量(%)

								续表 1
蔬菜	序号	Zn	Se	Fe	Mn	Cu	Ca	Mg
	1	5. 4	0 033	31.5	3. 47	2 57	1594	305
	2	+ 95.2	_	- 21.2	+ 4 3	- 11. 28	+ 3.0	+ 6 2
生菜	3	- 8. 3	+ 809	- 21.9	0	- 5. 4	+ 4.3	+ 3 0
土米	4	- 21. 1	_	- 40 0	- 92	- 17. 1	+ 9.2	- 10 2
	5	+ 198.1	_	- 26 0	- 58	- 17. 1	0	- 32
	6	- 12.0	+ 687. 8	- 19 6	+ 10. 6	- 7. 4	+ 9.2	+ 11.4
	1	5 56	0 047	9. 44	1.50	1. 99	500	315
青蒜	2	+ 18.1	+ 25.5	+ 83 8	- 12. 6	+ 6. 0	+ 7.0	- 5 0
自称	3	+ 42.0	- 34.0	+ 103. 0	- 34. 0	+ 33.6	+ 7.6	- 17. 4
	4	+ 20.5	- 6.4	+ 27. 4	- 27. 3	+ 12.0	+ 24.0	- 11.4

注: + 号表示吸收增加, - 号表示吸收减少; 序号1 (空白样) 浓度单位为 mg^*kg^{-1} , 表 2同.

					· /	
를	Zn	Se	Fe	Mn	Cu	

表 2 小区蔬菜中元素的百分含量 (%)

蔬菜	序号	Zn	Se	Fe	Mn	Cu	Ca	Mg
	1	2. 9	=	7. 01	11. 75	0 38	679	110
白菜	2	+ 153.8	_	+ 4.1	- 17. 6	- 13. 2	+ 91.8	+ 25 4
	1	10. 4	0. 01	7. 92	6. 24	1. 09	663	301
生菜	2	+ 71.1	0	0	+ 19.0	0	+ 17.9	+ 9.30
	3	- 2. 5	+ 340	+ 15 6	+ 10. 2	- 9. 2	+ 32.8	+ 12 2
	1	8 64	0 0072	12.42	4. 09	1. 40	13. 07	411
香菜	2	+ 96.8	+ 177. 8	- 26 0	- 20	+ 15.7	- 2.0	- 26
	3	+ 35.4	+ 275	- 15 2	- 02	+ 15.7	+ 11.9	+ 5 4

表 3	豌豆苗中元素的含量	(%)

序号-	浸 种										浸种和叶面喷洒相结合		
n' 5	Zn	Se	Pb	Cd	Fe	Mn	Cu	Ca	Mg	Se	Fe	Zn	
0	10 24	0. 0002	0. 1723	0 0193	13. 46	1. 978	1. 980	121	174	0 0050	15. 72	17. 08	
1	+ 19 4	+ 650	- 59.0	- 22.8	- 11.1	- 0.15	- 33. 8	- 2 48	+ 2 29	+ 158	+ 5.47	+ 9.42	
2	+ 36 1	+ 900	- 43. 1	- 20.7	+ 0.14	- 3.53	- 30. 8	- 16.5	+ 4 59	+ 830	+ 18 9	+ 15 2	
3	+ 56 3	+ 3100	- 51.7	- 29.5	- 10 9	- 0.50	- 27. 6	- 16.5	+ 5 17	+ 1362	+ 8.71	+ 59 6	
4	+ 79 3	+ 9450	- 54.3	- 29.5	- 16 6	- 24 8	- 45. 0	- 0 82	- 4 59				

表 4 强化 Zn, Se 对 Pb, Cd 吸收的影响 (%)

添加元素	盆栽	盆栽白菜		盆栽生菜		小区生菜		 香菜
冰加几条	Pb	Cd	Pb	Cd	Pb	Cd	Pb	Cd
Zn	+ 31.6	- 83. 1	- 23 3	- 9 4	- 54.5	- 4. 3	- 45.0	- 23 0
Se	- 0 52	- 25.0	- 20 4	- 43. 8	- 54.5	- 10.8	- 36.1	- 41.0

5 结论

(1) 强化能够提高蔬菜中锌、硒的含量. 不同蔬菜对锌、硒的吸收差别较大, 白菜一般可提高 70%以上,香菜可提高 95%以上,生菜可提高 70%以上,豌豆苗的无土栽培随着锌、硒的加入,豌豆 苗虫锌。硒的含量也有较大幅度提高,随着硒量的增加豌豆苗的长势也愈好,且未发现中毒现象。

- (2) 锌、硒的强化能够拮抗蔬菜对铅、镉的吸收. 从生菜来看,加锌可减少铅的吸收达 54.5%,减少镉的吸收 4.3%;加硒可减少铅的吸收 54.5%,减少镉的吸收 10.8%. 从香菜来看,加锌可减少铅的吸收 45.0%,减少镉的吸收 23.0%;加硒可减少铅的吸收 36.1%,减少镉的吸收 41%. 土壤中若铅、镉元素超标,那么蔬菜中的铅、镉含量也可能超标. 采用元素拮抗的方法,可以减少蔬菜对铅、镉的吸收.
- (3) 土壤中加钙来增加蒜苗中钙的含量是不可行的. 钙含量的增加抑制蒜苗的生长, 同时也影响蒜苗对其它元素的吸收. 其它蔬菜在强化钙方面的研究有待进一步试验.
- (4) 微量元素的加入量是土壤中元素本底值的十倍乃至数十倍.不同蔬菜对同种元素的吸收差别也较大,同种蔬菜对不同元素的吸收差别也较大.一般情况下蔬菜的吸收量是加入量的 0.5% 左右.强化过程中强化的量很重要,量的不当有可能影响蔬菜对某些有益元素的吸收.蔬菜在强化锌、硒的时候,应该在土壤中添加适量的铁或锰等元素.从实验可知:若通过土壤强化不能实现,可以通过液面喷洒的办法来实现.

吕选忠 王广仪 唐 勇 供稿 (中国科学技术大学化学系, 合肥, 230026)

环境化学

(HUANJING HUAXUE)

第 22 卷 第 2 期 2003 年 3 月 (双月刊 1982 年创刊)

主办单位:中国科学院生态环境研究中心协办单位:浙江大学环境污染控制技术研究所

山东大学环境科学与工程学院

编辑:《环境化学》编辑委员会

(北京 2871 信箱,邮政编码: 100085, 电话: 62923 569)

主 编: 江桂斌

出 版: 科学出版社

(北京市东黄城根北街 16号, 邮政编码: 100717)

印刷装订: 化学工业出版社印刷厂

总发行处: 北京报刊发行局

订购处:全国各地邮电局

国外发行: 中国国际图书贸易总公司(北京399信箱)

广告经营许可证: 京东工商广字 0034 号

国内外公开发行 中国标准刊号: ISSN 0254 6108 CN11 1844 X 国内邮发代号: 82 394 国外发行代号: BM601 定价: 18 00 元