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Abstract This paper focuses on the investigation of asymptotic multistability and on local S-asymptotic

ω-periodicity for nonautonomous fractional-order neural networks (FONNs) with impulses. Several criteria

on the existence, uniqueness, and invariant sets of nonautonomous FONNs with impulses are derived by

constructing convergent sequences and comparison principles, respectively. In addition, using the Lyapunov

direct method, some novel conditions of boundedness and local asymptotic stability of the FONNs discussed

are obtained. Also, the sufficient conditions for local S-asymptotic ω-periodicities of the system are pre-

sented. Finally, a discussion using two examples verifies the validity of our findings, which imply that global

asymptotic stability is a special case of asymptotic multistability.
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1 Introduction

Many researchers have focused on neural networks (NNs) owing to their extensive applications, such
as image processing, signal processing, pattern recognition, optimization control, argument estimation,
and artificial intelligence. Such applications not only rely on the existence of equilibrium points, unique
equilibrium point, and on the qualitative properties of stability, but also rely on dynamic behaviors, such
as periodic oscillatory behavior, nearly periodic oscillatory properties, chaos, and bifurcation. Recently,
on the basis of fractional-order calculus [1–3], a large variety of fractional-order neural networks (FONNs)
have been established and investigated [4–7]. The FONNs have better infinity memory and heredity
than integer-order neural networks. As is well known, the traditional concepts of integer-order periodic
solutions cannot be applied to fractional order (FO) differential equations because of the absence of
periodic solutions of FO differential equations [8]. In the existing literature, there are some results
on lasymptotic ω-periodicity, local S-asymptotic ω-periodicity (SAP) and near-periodicity (see [9–11]).
However, there are only a few reports on the SAP for FONNs. The global SAP was considered by Chen
for nonautonomous FONNs in [12] and for the nonautonomous FONNs with time-varying delays in [13].
Wan and Wu [14] discussed local SAP for the FONNs. However, they did not consider impulsive effects.

In fact, impulsive perturbations exist widely in various fields, such as economics, electromagnetic wave
radiation, electronics, and telecommunications (see [15–22]). Stamova and Henderson [23] studied the
practical stability of the FONNs with impulses. Yang et al. [24] proposed Mittag-Leffler stability for those
FONNs with delays and impulses. Wang et al. [25] explored global asymptotic stability for complex-valued
FONNs with delays and impulses.

Some reports on the multistability of NNs have emerged in [26–28]. This multistability is important
for a deeper understanding of NN dynamical systems. Wang and Chen [29] have proposed the µ-stability
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for NNs with unbounded time-varying delays. Cheng et al. [30] explored multistability for NNs with
delays via sequential contracting. Liu et al. presented multistability for nonmonotonic NNs with un-
bounded time-varying delays [31] and for nonmonotonic NNs with mixed time delays [32], respectively.
However, there are no reports on the asymptotic multistability and local SAP of FONNs with impulses
and nonautonomous parameters.

Motivated by the above discussion, we consider asymptotic multistability and local SAP for nonau-
tonomous FONNs with impulses. Section 2 presents the FONNs, some definitions and lemmas. Invariant
sets and boundness are explored in Section 3. Section 4 discusses asymptotic multistability and local
SAP. Two examples are presented in Section 5. Section 6 completes this paper.

Notations: In this paper, a given vector z = (z1, z2, . . . , zN)
T, in which the “T” represents the trans-

pose, and ‖z‖ =
∑N

i=1 |zi|. Cb([τ0,∞),Rn) represents the space consisting of continuous and bounded
functions [τ0,∞) → Rn with ‖ · ‖∞, which are uniformly convergent. Additionally, Cr([τ0,∞),Rn) rep-
resents the space which contains r-order continuous differentiable functions [τ0,∞) → Rn. Besides, N
denotes the natural number. Let F = {τk : τk ∈ [0,∞), τk < τk+1, k = 0, 1, 2, . . . , limk→∞ τk = ∞} denote
the set of all strictly monotonically increasing and unbounded sequences. PC = PC[R+,RN ] = {ϑ : R+ →
R
n, ϑ is continuous except for τk, τk ∈ F , ϑ(τ−k ) and ϑ(τ+k ) exist, ϑ(τ−k ) = ϑ(τk)}. PCb[R

+,RN ] denotes
the set of all continuous functions which are piecewise bounded, which is a subspace of PC[R+,RN ].

2 Preliminaries

We consider a nonautonomous FONN with impulses as follows:










CDβzi(τ) = −ai(τ)zi(τ) +
N
∑

j=1

cij(τ)hj(zj(τ)) + di(τ), τ 6= τk, τ > 0,

∆zi(τk) = zi(τ
+
k )− zi(τ

−
k ) = bik(zi(τ

−
k )), k ∈ Z+, i = 1, 2, . . . , N,

(1)

where N stands for the number of neurons. Z+ stands for the set of positive integer. zi(τ) represents the
state variable of the neuron. ai(τ) corresponds to the rate with which the ith unit resets its potential
to other states in isolation when disconnected from network and external inputs. cij(τ) presents the
strengths of the jth neuron in the ith neuron; hj(zj(τ)) stands for the neuron activation function. di(τ)
is the external input vector. The neuron states zi(τk) = zi(τ

−
k ) and zi(τ

+
k ) are the states of the ith

neuron before and after an impulsive perturbation at time τk, respectively. bik is the abrupt change
of the state zi(τ) of the ith neuron at the impulsive moment τk. The initial conditions satisfy that
zi(τ0) = zi0, i = 1, 2, . . . , N . Eq. (1) can be rewritten as the following matrix expression:

{

CDβz(τ) = −A(τ)z(τ) + C(τ)H(z(τ)) +D(τ) = G(τ, z(τ)), τ 6= τk,

∆z(τk) = z(τ+k )− z(τ−k ) = Bk(z(τ
−
k )), k ∈ Z+,

(2)

where z(τ) = [z1(τ), . . . , zN (τ)]
T

∈ RN , H(z(τ)) = [h1(z1(τ)), . . . , hN (zN (τ))]
T
, C(τ) = (cij(τ))N×N

,

A(τ) = diag [a1(τ), . . . , aN (τ)] , D(τ) = [d1(τ), . . . , dN (τ)]
T
, z0 = [z10, z20, . . . , zN0]

T
, Bk = [b1k, b2k, . . . ,

bNk]
T.

Definition 1 ([1]). For the function f ∈ ACn([τ0,+∞),RN )(n − 1 < β < n), the β order Caputo
derivative is defined as follows:

C
τ0
Dβ
τ f(τ) =

1

Γ(n− β)

∫ τ

τ0

f (n)(s)

(τ − s)β−n+1
ds, τ > τ0,

where AC([τ0,+∞),RN ) denotes the absolutely continuous functions on ([τ0,+∞),RN) and ACn([τ0,
+∞),RN ) is the function space of f , where f ∈ Cn−1([τ0,+∞),RN ) and f (n−1) ∈ AC([τ0, +∞),RN ).

Lemma 1 ([2]). For the function f(τ) ∈ ACn([τ0,∞),RN ), we have

C
τ0
Dβ
τ

(

C
τ0
D−β
τ

)

f(τ) = f(τ) and C
τ0
D−β
τ

(

C
τ0
Dβ
τ

)

f(τ) = f(τ)−

n−1
∑

i=0

(τ − τ0)
i

i!
f (i)(τ0),

where n− 1 < β < n and τ > τ0.
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Definition 2. The function z(τ) ∈ PCb([τ0,∞),RN )
⋂⋃∞

k=0 AC
1((τk, τk+1],R

N ) is a solution of (1), if
z(τ) satisfies CDβz(τ) = G(τ, z(τ)) for τ ∈ [τ0,∞), τ 6= τk, k ∈ Z+ and impulsive conditions z(τ+k ) =
z(τ−k ) +Bk(z(τ

−
k )), k ∈ Z+.

Lemma 2 ([3]). For β ∈ (0, 1) and a continuous mapping g : [τ0,∞) → R, the function z(τ) is the
solution for the following equation:

z(τ) =











z0 +
1

Γ(β)

∫ τ

τ0
(τ − s)β−1g(s)ds, τ ∈ [τ0, τ1],

z0 +
∑k

i=1 Bi(z(τ
−
i )) + 1

Γ(β)

∑k

i=1

∫ τi

τi−1
(τi − s)β−1g(s)ds

+ 1
Γ(β)

∫ τ

τk
(τ − s)β−1g(s)ds, τ ∈ (τk, τk+1], k ∈ Z+,

if and only if z(τ) is the solution of

{

CDβz(τ) = g(τ), τ 6= τk, k ∈ Z+,

∆z(τk) = z(τ+k )− z(τ−k ) = Bi(z(τ
−
k )), k ∈ Z+.

(3)

Definition 3 ([10]). Function h(τ) ∈ PCb([τ0,∞),RN )
⋂⋃∞

k=0 AC
1((τk, τk+1],R

N ) is S-asymptotically
ω-periodically piecewise continuous in [τ0,∞), if it satisfies limτ→∞ |h(τ + ω) − h(τ)| = 0, where ω > 0
is the asymptotical period of h(τ).

Definition 4 ([14]). Suppose D ⊂ RN is a positive invariant set. If the solution of system (1) with
z(τ0) = z0 ∈ D converges to zω(τ) ∈ D, system (1) is locally asymptotically ω-periodic, and zω(τ) is a
ω-periodic function.

Definition 5 ([26]). If the solution z(τ) for (1) with z(τ0) = z0 ∈ D satisfies z(τ) ∈ D for τ > τ0, then
the set D is called an invariant set of (1).

Definition 6 ( [33]). Let D ⊂ RN denote a positive invariant set and let z∗(τ) ∈ D stand for the
equilibrium solution of (1). System (1) is

(a) locally stable, if (∀τ0 ∈ R+)(∀ǫ > 0)(∃δ = δ(τ0, ǫ) > 0), (∀τ > τ0) : ‖z(τ ; τ0, z0)− z∗‖ < ǫ;
(b) locally attractive, if limτ→∞ z(τ ; τ0, z0) = z∗;
(c) locally asymptotically stable, if and only if it is locally stable and locally attractive.
When D = RN , system (1) is globally stable, globally attractive and globally asymptotically stable,

respectively.

In this paper, the following assumptions are true.
(H1) Let hi(z) be continuous function and there exist two constants pi, qi satisfying pi 6 hi(z) 6 qi.

(H2) cij(τ), ai(τ) and di(τ) are all continuous and bounded on R+ and supm→∞

∑m
j=1

∫ τj

τj−1
(τj −

1)β−1‖A(s)‖ds 6 σ < ∞, supm→∞

∑m

j=1

∫ τj

τj−1
(τj − 1)β−1‖C(s)‖ds 6 σ < ∞, supm→∞

∑m

j=1

∫ τj

τj−1
(τj −

1)β−1‖D(s)‖ds 6 σ < ∞, čij = minτ06τ<∞ cij(τ), ĉij = maxτ06τ<∞ cij(τ), ďi = minτ06τ<∞ di(τ), d̂i =
maxτ06τ<∞ di(τ).

(H3) There exist constants −∞ 6 s
(0)
i < r

(0)
i < s

(1)
i < r

(1)
i < · · · < s

(Di−1)
i < r

(Di−1)
i < s

(Di)
i <

r
(Di)
i 6 ∞, and λ̌ji , λ̂

j
i , ν̌

k
i , ν̂

k
i which satisfy λ̌ji 6

hi(x)−hi(y)
x−y

6 λ̂
j
i , for x, y ∈ (sji , r

j
i ), j = 0, 1, . . . , Diν̌

k
i 6

hi(x)−hi(y)
x−y

6 ν̂ki , for x, y ∈ [rk−1
i , ski ], k = 1, . . . , Di.

(H4) There exist constants γik such that bik(zi(τk)) = γikzi(τk).

Lemma 3 ([34]). Function g(τ) is differential on [τ0,+∞) with β ∈ (0, 1). For τ0 6 τ < τ̄ , g(τ) < 0
and g(τ̄ ) = 0, we have Cτ0D

β
τ g(τ) > 0, for τ = τ̄ .

Lemma 4 ([35]). f(τ) stands for a successive function on [τ0,∞). If there is a constant β > 0 satisfying

{

C
τ0
Dα
τ f(τ) 6 −βf(τ), α ∈ (0, 1),

f(τ0) = f0,

then f(τ) 6 f0Eα(−β(τ − τ0)
α), τ > τ0.

Lemma 5. If the following conditions are true, then the solution of (1) with z(τ0) = z0 is unique.

(B1) A positive constantM satisfies limk→∞ ‖
∑k

j=0 Bj(z(τj))‖ = limk→∞ ‖
∑k

j=0 γ̂jz(τj)‖ 6M <∞,

where z(·) is continuous functions of bounded piecewise.

(B2) limk→∞

∑k
j=1 γ̂j+

σ+σL
Γ(β) < 1, where L = maxi=1,2,...,N,j=0,1,...,Di

{|λ̌ji |, |λ̂
j
i |}, γ̂j = max16i6N{γij}.
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Proof. The proof is given by two steps.
Step 1. To verify the existence of the solution of (1). From Lemma 2, we have

z(τ) =











z0 +
1

Γ(β)

∫ τ

τ0
(τ − s)β−1G(s, z(s))ds, τ ∈ [τ0, τ1],

z0 +
∑k

j=1 Bj(z(τ
−
j )) + 1

Γ(β)

∑k

j=1

∫ τj

τj−1
(τj − s)β−1G(s, z(s))ds

+ 1
Γ(β)

∫ τ

τk
(τ − s)β−1G(s, z(s))ds, τ ∈ (τk, τk+1], k ∈ Z+.

In the following, we assume that τ > τ1. We construct a sequence {zmi (τ, τ0, z0)}, z
0
i (τ, τ0, z0) = z0i , for

τ ∈ (τk, τk+1], k ∈ Z+, satisfying

zm+1
i (τ) = z0i +

k
∑

j=1

bij(z
m
i (τ−j )) +

1

Γ(β)

k
∑

j=1

∫ τj

τj−1

(τj − s)β−1hi(s, z
m(s))ds

+
1

Γ(β)

∫ τ

τk

(τ − s)β−1hi(s, z
m(s))ds, i = 1, 2, . . . , n,

where hi(s, z
m(s)) = −ai(s)z

m
i (s) +

∑N

j=1 cij(s)hj(z
m
j (s)) + di(s). Therefore, ‖zm+1(τ) − zm(τ)‖ 6

d̄1 + 1
Γ(β)

(

d̄2 + d̄3
)

, where d̄2 =
∑N

i=1

∑k

j=1

∫ τj

τj−1
(τj − s)β−1

∣

∣hi(s, z
m(s))− hi(s, z

m−1(s))
∣

∣ ds, d̄1 =
∑N

i=1

∑k

j=1

∣

∣bij(z
m
i (τ−j ))− bij(z

m−1
i (τ−j ))

∣

∣ , d̄3 =
∑N

i=1

∫ τ

τk
(τ − s)β−1

∣

∣hi(s, z
m(s))− hi(s, z

m−1(s))
∣

∣ ds.

In view of assumption (H4) and condition (B1), we get

d̄1 6

N
∑

i=1

k
∑

j=1

γ̂j
∣

∣zmi (τ−j )− zm−1
i (τ−j )

∣

∣ 6

k
∑

j=1

γ̂j‖z
m(τ) − zm−1(τ)‖∞, (4)

where γ̂j = max16i6n{|γij |}. Considering assumptions (H1)–(H3), one obtains

d̄2 6

k
∑

j=1

∫ τj

τj−1

(τj − s)β−1
N
∑

i=1

∣

∣hi(s, z
m(s)) − hi(s, z

m−1(s))
∣

∣ ds

6

k
∑

j=1

∫ τj

τj−1

(τj − s)β−1
N
∑

i=1

∣

∣

∣

∣

∣

∣

−ai(s)
(

zmi (s)− zm−1
i (s)

)

+
N
∑

j=1

cij(s)
(

hj(z
m
j (s))− hj(z

m−1
j (s))

)

∣

∣

∣

∣

∣

∣

ds

6

k
∑

j=1

∫ τj

τj−1

(τj − s)β−1‖a(s)‖‖zm(s)− zm−1(s)‖+ ‖C(s)‖L‖zm(s)− zm−1(s)‖ds

6 (σ + σL)‖zm(s)− zm−1(s)‖∞.

From condition (H1), it follows that

d̄3 =

N
∑

i=1

∫ τ

τk

(τ − s)β−1
∣

∣hi(s, z
m(s)) − hi(s, z

m−1(s))
∣

∣ ds

6

∫ τ

τk

(τ − s)β−1
N
∑

i=1

∣

∣

∣

∣

∣

∣

−ai(s)
(

zmi (s)− zm−1
i (s)

)

+
N
∑

j=1

cij(s)
(

hj(z
m
j (s))− hj(z

m−1
j (s))

)

∣

∣

∣

∣

∣

∣

ds

6

∫ τ

τk

(τ − s)β−1
(

‖A(s)‖‖zm(s)− zm−1(s)‖+ ‖C(s)‖L‖zm(s)− zm−1(s)‖
)

ds

6

∫ τ

τk

(τ − s)β−1 (‖A(s)‖ + ‖C(s)‖L) ds‖zm(s)− zm−1(s)‖∞

6 (ǫ + ǫL)‖zm(s)− zm−1(s)‖∞.

Considering ‖z1(τ) − z0(τ)‖ 6M + σ
Γ(β)

(

‖z0‖∞ + L‖z0‖∞ + ‖G(0)‖
)

, τ ∈ (τk, τk+1], k ∈ Z+, we get

‖zm+1(τ) − zm(τ)‖ 6





k
∑

j=1

γ̂j +
σ + σL + ǫ+ ǫL

Γ(β)



 ‖zm(τ) − zm−1(τ)‖∞, τ ∈ (τk, τk+1], k ∈ Z+,
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which means that

‖zm+1(τ) − zm(τ)‖ 6





k
∑

j=1

γ̂j +
σ + σL

Γ(β)



 ‖zm+1(τ) − zm(τ)‖∞

6





k
∑

j=1

γ̂j +
σ + σL

Γ(β)





m
(

M +
σ

Γ(β)

(

‖z0‖∞ + L‖z0‖∞ + ‖G(0)‖
)

)

.

As (
∑k

j=1 γ̂j +
σ+σL
Γ(β) ) < 1, then z(τ, τ0, z0) is a solution of (1).

Step 2. Now we shall testify the uniqueness of the solution of (1). Suppose z(τ) = [z1(τ), . . . , zN (τ)]T

and y(τ) = [y1(τ), . . . , yN (τ)]T are two solutions for the same initial conditions, such that

zi(τ) =











zi0 +
1

Γ(β)

∫ τ1

t0
(τ − s)β−1hi(s, z(s))ds, τ ∈ [τ0, τ1],

zi0 +
∑k

j=1 bij(zi(τ
−
j )) + 1

Γ(β)

∑k

j=1

∫ τj

τj−1
(τj − s)β−1hi(s, z(s))ds

+ 1
Γ(β)

∫ τ

τk
(τ − s)β−1hi(s, z(s))ds, τ ∈ (τk, τk+1], k ∈ Z+,

and

yi(τ) =











zi0 +
1

Γ(β)

∫ τ1

τ0
(τ − s)β−1hi(s, y(s))ds, τ ∈ [τ0, τ1],

zi0 +
∑k

j=1 bij(yi(t
−
j )) +

1
Γ(β)

∑k

j=1

∫ τj

τj−1
(τj − s)β−1hi(s, y(s))ds

+ 1
Γ(β)

∫ τ

τk
(τ − s)β−1hi(s, y(s))ds, τ ∈ (τk, τk+1], k ∈ Z+,

where hi(s, x(s)) = −ai(s)xi(s) +
∑N

j=1 cij(s)hj(xj(s)) + di(s). Then, when τ ∈ (τk, τk+1], k ∈ Z+, one
has

‖z(τ)− y(τ)‖ 6

N
∑

i=1

k
∑

j=1

|γij ||zi(τ
−
j )− yi(τ

−
j )|+

1

Γ(β)

N
∑

i=1

k
∑

j=1

∫ τj

τj−1

(τj − s)β−1(hi(s, x(s))

−hi(s, y(s)))ds +
1

Γ(β)

N
∑

i=1

∫ τ

τk

(τ − s)β−1(hi(s, z(s))− hi(s, y(s)))ds

6





k
∑

j=1

|γij |+
1

Γ(β)
(σ + σL)



 ‖z − y‖∞ +
ǫ+ ǫL

Γ(β)
‖z − y‖∞.

Therefore, ‖z − y‖∞ 6 ‖z(τ) − y(τ)‖ 6

(

∑k

j=1 |γij |+
1

Γ(β)(σ + σL)
)

‖z − y‖∞, which is because that ǫ

is small enough. From
∑k

j=1 |γij |+
1

Γ(β) (σ + σL) < 1, it results in the contraction. Hence, solution z(τ)

of (1) is unique.

3 The invariant sets and boundedness

The invariant sets and boundedness for system (1) are discussed in this section. To facilitate the below
discussion, several mathematical notations are introduced. Let

ℜ̄j =
{

[r
(0)
j , s

(1)
j ], [r

(1)
j , s

(2)
j ], . . . , [r

(Dj−1)
j , s

(Dj)
j ]

}

, ℜ̃j =
{

(s
(0)
j , r

(0)
j ), (s

(1)
j , r

(1)
j ), . . . , (s

(Dj)
j , r

(Dj)
j )

}

;

Θ =







N
∏

j=1

Uj, Uj ∈ ℜ̄j
⋃

ℜ̃j







, Θ̃ =







N
∏

j=1

Uj, Uj ∈ ℜ̃j







.

There are
∏N
i=1(2Di+1) elements and

∏N
i=1(Di+1) elements in Θ and Θ̃, respectively. Let ši =

∑N
j=1,j 6=i

min(čijpj , ĉijpj , čijqj , ĉijqj)+ďi, ŝi =
∑N
j=1,j 6=imax(čijpj , ĉijpj , čijqj , ĉijqj)+d̂i. Set ℵ̌i(τ, zi(τ)) = −ai(τ)

zi(τ) + cii(τ)hi(zi(τ)) + ši, ℵ̂i(τ, zi(τ)) = −ai(τ)zi(τ) + cii(τ)hi(zi(τ)) + ŝi,ℵi(τ, zi(τ)) = −ai(τ)zi(τ) +
∑N

j=1 cij(τ)hj(zj(τ)) + di(τ). From these above definitions, ℵ̌i(τ, zi(τ)) 6 CDβzi(τ) = ℵi(τ, zi(τ)) 6

ℵ̂i(τ, zi(τ)), τ 6= τk, k ∈ Z+.
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Lemma 6. Suppose (B1) and (B2) are true. Furthermore, if the the following condition holds:

ℵ̌i(τ, s
j
i ) > 0, ℵ̂i(τ, r

j
i ) < 0, τ > τ0, τ 6= τk,

then we can find the positive invariant set
∏N
j=1(Dj + 1) for system (1) in Θ̃.

Proof. ž(τ), z̄(τ) and ẑ(τ) show solutions for the following equantions, respectively:

CDβzi(τ) = ℵ̌i(τ, zi(τ)),
CDβzi(τ) = ℵi(τ, zi(τ)),

CDβzi(τ) = ℵ̂i(τ, zi(τ)),

with the same initial value (τ0, z0), τ0 ∈ Θ̃, respectively. From Lemma 2, when τ ∈ (τk, τk+1], we obtain

ži(τ) =zi0 +

k
∑

j=1

(

bij(ži(τ
−
j )) +

1

Γ(β)

∫ τj

τj−1

(τj − 1)β−1ℵ̌i(s, ži(s))ds

)

+
1

Γ(β)

∫ τ

τk

(τ − 1)β−1ℵ̌i(s, ži(s))ds,

ẑi(τ) =zi0 +

k
∑

j=1

(

bij(ẑi(τ
−
j )) +

1

Γ(β)

∫ τj

τj−1

(τj − 1)β−1ℵ̂i(s, ẑi(s))ds

)

+
1

Γ(β)

∫ τ

τk

(τ − 1)β−1ℵ̂i(s, ẑi(s))ds,

z̄i(τ) =zi0 +

k
∑

j=1

(

bij(z̄i(τ
−
j )) +

1

Γ(β)

∫ τj

τj−1

(τj − 1)β−1ℵ̄i(s, z̄i(s))ds

)

+
1

Γ(β)

∫ τ

τk

(τ − 1)β−1ℵ̄i(s, z̄i(s))ds.

Hence,

ži(τ) 6 z̄i(τ) 6 ẑi(τ). (5)

Next, we will prove ẑi(τ) < r
(j)
i , τ 6= τk, τ > τ0. Otherwise, we can find τ̂ > τ0, τ̂ 6= τk which satisfies

ẑi(τ̂ ) = r
(j)
i . Set ω̂i(τ) = ẑi(τ) − r

(j)
i , and then

{

ω̂i(τ) = 0, τ = τ̂ ,

ω̂i(τ) < 0, τ0 6 τ < τ̂ , τ̂ 6= τk.

Considering Lemma 3, it follows CDβω̂i(τ̂ ) = CDβ ẑi(τ̂ ) = ℵ̂i(τ̂ , r
(j)
i ) > 0, τ̂ ∈ (τ0, τ1)

⋃

k∈Z+
(τk, τk+1).

This is inconsistent with ℵ̂i(τ, r
j
i ) < 0, τ > τ0. Therefore

ẑi(τ) < r
j
i , τ > τ0. (6)

Suppose τ̌ > τ0, τ̌ 6= τk and ži(τ̌ ) = s
j
i . Letting ω̌i(τ) = s

(j)
i − ži(τ), hence

{

ω̌i(τ) = 0, τ = τ̌ ,

ω̌i(τ) < 0, τ0 6 τ < τ̌ , τ̌ 6= τk.

Considering Lemma 3, then CDβω̌i(τ̌ ) = −CDβ ži(τ̌ ) = −ℵ̌i(τ̌ , s
(j)
i ) > 0, τ̌ ∈ (τ0, τ1)

⋃

k∈Z+
(τk, τk+1).

This contradicts with ℵ̌i(s
j
i ) > 0, τ > τ0. Hence

ži(τ) > s
(j)
i , τ > τ0. (7)

From (5)–(7), we have sji 6 z̄i(τ) 6 r
j
i , τ > τ0. Because the number of elements in Θ̃ is

∏N

j=1(Dj + 1),

there are
∏N

j=1(Dj + 1) positive invariants sets for (1).
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Remark 1. Different from systems in [14, 34], the system discussed in this paper involves impulses,
in which the state functions zi(τ) are discontinuous in [τ0,∞). Therefore, the method used for the

positive invariant sets in [14] cannot be used up directly to this paper. The conditions ℵ̌i(τ, s
(j)
i ) >

0, ℵ̂i(τ, r
(j)
i ) < 0, τ > τ0 of invariant sets for the FONNs with impulses and nonautonomous parameters

are dual functions, which are more complicated than those with autonomous parameters, such as in [14].

Lemma 7 ([12]). If f(τ) ∈ C1([τ0,∞),RN ), for β ∈ (0, 1), then

C
τ0
Dβ
τ |f(τ)| 6 sgn(f(τ))Cτ0D

β
τ f(τ), t ∈ [τ0,∞),

where sgn(·) denotes sign(·).

Theorem 1. Suppose (B1) and (B2) are true. If the following conditions are also true, then the solution
of (1) is bounded.

(B3) There is some constant ̟ > 1 such that ̟γ̂Eβ(−c̄T
β) < 1, where γ̂ = max16i6N,k∈Z+(|1+ γik|).

(B4) The inequality
∑N

i=1 |zi0| −
Nψ̄
ā

> 0 is fulfilled, where ǎi = minτ06τ6∞ (|ai(τ)|) , ψi =
∑N

j=1 max(|čij |, |ĉij |)max (|pi|, |qi|) + max(|ďi|, |d̂i|), ā = min16i6N (ǎi) and ψ̄ = max16i6N (ψi).
Proof. z(τ) denotes the solution of (1). Considering Lemma 7, when τ 6= τk, one has

CDβ |zi(τ)| 6 sgn(zi(τ))
CDβzi(τ) 6 sgn(zi(τ))ℵi(τ) 6 −ǎi|zi(τ)| + ψi,

where ǎi = minτ06τ6∞ (|ai(τ)|) , ψi =
∑N
j=1 max (|čij |, |ĉij |)max (|pi|, |qi|) + max(|ďi|, |d̂i|). Then

CDβ

(

N
∑

i=1

|zi(τ)|

)

6

N
∑

i=1

sgn(zi(τ))
CDβzi(τ) 6

N
∑

i=1

sgn(zi(τ))ℵi(τ) 6 −ā
N
∑

i=1

|zi(τ)|+Nψ̄,

where ā = min16i6N (ǎi) and ψ̄ = max16i6N (ψi). Set V (τ) =
∑N

i=1 |zi(τ)| −
Nψ̄
ā
. Hence

CDβV (τ) 6 −āV (τ), τ 6= τk.

From Lemma 4, we get

V (τ) 6 V (τk)Eα(−ā(τ − τk)
α), τ ∈ (τk, τk+1].

While τ = τk, then

N
∑

i=1

|zi(τ
+
k )| −

Nψ̄

ā
=

N
∑

i=1

|1 + γik||zi(τ
−
k )| −

Nψ̄

ā
6 γ̂

(

N
∑

i=1

|zi(τ
−
k )| −

Nψ̄

ā

)

6 γ̂V (τk), (8)

where γ̂ < 1. Considering assumption (H4), condition (B3), and (8), we have

V (τ) 6 V (τ0)Eβ(−āT
β)γ̂Eβ(−āT

β) · · · γ̂Eβ(−ā(τ − τk)
β)

6 V (τ0)Eβ(−āT
β)γ̂Eβ(−āT

β) · · · γ̂Eβ(−ā(T )
β)

6 V (τ0)Eβ(−āT
β)

1

̟k
, τ ∈ (τk, τk+1],

and therefore

N
∑

i=1

|zi(τ)| 6

(

N
∑

i=1

|zi0| −
Nψ̄

ā

)

Eβ(−āT
β)

1

̟k
+
Nψ̄

ā
, τ ∈ (τk, τk+1].

Therefore, all solutions with the initial value (τ0, z0) of (1) are bounded on [τ0,∞).

4 Asymptotic multistability and local S-asymptotic ω-periodicity

In this section, asymptotic multistability and local SAP of (1) are discussed.
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Theorem 2. Suppose assumptions (B1)–(B4) are true. Besides, if the following condition is fulfilled,
and let z∗(τ) be the solution of system (1), then system (1) is of asymptotic multistability in Θ̃.

(B5) ǎi −
∑N

j=1 |cji(τ)|Li > 0, in which Cii = max06j6Di
(ĉiiλ̌

j
i , ĉiiλ̂

j
i ), Li = max06j6Di

(|λ̌ji |, |λ̂
j
i |).

Proof. z(τ) = [z1(τ), . . . , zN (τ)]T denotes the solution of (1) with z(τ0) = z0 ∈ Θ̃, which is different

from z∗(τ). Set V̄ (τ) =
∑N
i=1 |zi(τ) − z∗i (τ)|. From Lemma 6, when τ 6= τk, we have

CDβ V̄ (τ) 6

N
∑

i=1

CDβ |zi(τ) − z∗i (τ)|

6

N
∑

i=1

sgn(zi(τ) − z∗i (τ))



−ai(τ) (zi(τ) − z∗i (τ)) +

N
∑

j=1

cij(τ)
(

hj(zj(τ)) − hj(z
∗
j (τ))

)





6

N
∑

i=1



−ǎi|zi(τ) − z∗i (τ)| +
N
∑

j=1

|cij(τ)|Lj |(zj(τ)) − z∗j (τ)|





6

N
∑

i=1

(−λi|zi(τ) − z∗i (τ)|) 6 −λV̄ (τ),

where ǎi = minτ06τ<∞(ai(τ)), λi = ǎi −
∑N

j=1 |cji(τ)|Li, λ = maxi=1,2,...,N (λi). From Lemma 4, we get

V̄ (τ) 6 V̄ (τk)Eβ(−λ(τ − τk)
β), τ ∈ (τk, τk+1]. Then

V̄ (τ) 6 γ̂V̄ (τ−k )Eβ(−λ(τ − τk)
β)

6 V̄ (τ0)Eβ(−λT
β)γ̂Eβ(−λT

β) · · · γ̂Eβ(−λ(τ − τk)
β)

6 V̄ (τ0)Eβ(−λT
β)

1

̟k−1
γ̂Eβ(−λ(τ − τk)

β), τ ∈ (τk, τk+1],

where γ̂ = max16i6N,k∈Z+(|1 + γik|). When τ = τk, one has V̄ (τ−k ) 6 V̄ (τ0)Eβ(−λT
β) 1
̟k−1 . Then we

obtain V̄ (τ+k ) = |zi(τ
+
k )− z∗i (τ

+
k )| 6 γ̂|zi(τ

−
k )− z∗i (τ

−
k )| 6 γ̂V̄ (τ0)Eβ(−λT

β) 1
̟k−1 , and

V̄ (τ) 6 V̄ (τ0)Eβ(−λT
β)

1

̟k
, τ ∈ [τk, τk+1].

Therefore, we have |z(τ)− z∗(τ)| 6 1
̟k−1 |z0 − z∗0 |Eβ(−λT

β), τ ∈ [τk, τk+1], which shows solution for (1)

is asymptotically stable. From Lemma 6, there are
∏N
j=1(Dj +1) positive invariant sets in Θ̃. Therefore,

system (1) is asymptotically multistable.

Remark 2. Compared with the results on Mittag-Leffler multistability of autonomous FONNs [14], our
asymptotic stability for the nonautonomous FONNs with impulses is more realistic. Besides, because of
the discontinuity of zi(τ), the method used in [14] cannot be directly utilized in this model. Therefore,
our results are new.

Theorem 3. Let (B1)–(B5) hold. Furthermore, suppose that the following condition is fulfilled, then
the solutions of piecewise succession for system (1) are locally S-asymptotically ω-periodic in Θ̃. And all
solutions of (1) in Θ̃ tend asymptotically to the ω-periodic nonconstant solution.

(B6)
∑N

i=1 |zi0 − zi(τ0 +ω)| − υ̂
λ
> 0, where λ =

∑N

i=1 ǎi−maxτ06τ<∞(
∑N

i=1

∑N

j=1,j 6=i |cij(τ)|Lj), υ̂ =

maxτ06τ<∞

∑N
i=1 (di(τ) − di(τ + ω)) +

∑N
i=1 ℵ̄i

Γ(1+β) θ.

Proof. The proof process is given by two steps.
Step 1. We prove the solutions in Θ̃ are all locally S-asymptotically ω-periodic. z(τ)=[z1(τ), . . . , zN (τ)]T

stands for a solution of (1) in Θ̃ with z(τ0) = z0 = [z01 , . . . , z
0
N ] ∈ Θ̃. From Lemma 2, when τ ∈ (τk, τk+1],

we have

zi(τ) = zi0 +

k
∑

j=1

(

bij(zi(τ
−
j )) +

∫ τj

τj−1

(tj − s)β−1ℵi(s, zi(s))ds

)

+
1

Γ(β)

∫ τ+ω

τk

(τ + ω − s)β−1ℵi(s, zi(s))ds,
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zi(τ + ω) = zi0 +

[ τ+ω
T

]
∑

j=1

(

bij(zi(τ
−
j )) +

1

Γ(β)

∫ τj

τj−1

(τj − s)β−1ℵi(s, zi(s))ds

)

+
1

Γ(β)

∫ τ+ω

τ
[ τ+ω

T
]

(τ + ω − s)β−1ℵi(s, zi(s))ds

= zi0 +

[ τ+ω
T

]
∑

j=1

(

bij(zi(τ
−
j )) +

1

Γ(β)

∫ τj

τj−1

(τj − s)β−1ℵi(s, zi(s))ds

)

+
1

Γ(β)

∫ τ

τ
[ τ+ω

T
]−ω

(τ − s)β−1ℵi(s+ ω, zi(s+ ω))ds.

Hence,

CDβ(zi(τ) − zi(τ + ω)) = −ai(τ) (zi(τ) − zi(τ + ω)) +

N
∑

j=1

cij(τ) (hj(zi(τ)) − hj(zj(τ + ω))) +CDβ d̄i(τ),

where

d̄i(τ) =

[ τ+ω
T

]
∑

j=k+1

(

bij(zi(τ
−
j )) +

∫ τj

τj−1

(τj − s)β−1ℵi(s)ds

)

+

∫ τk

τ
[ τ+ω

T
]−ω

(τ − s)β−1ℵi(s+ ω, zi(s+ ω))ds.

From Lemma 7, it follows

CDβ |zi(τ) − zi(τ + ω)| 6 φi(τ) +
CDβ |d̄i(τ)|, (9)

where φi(τ) = −ǎi|zi(τ) − zi(τ + ω)| +
∑N

j=1 |cij(τ)|Lj |zi(τ) − zi(τ + ω)| + |di(τ) − di(τ + ω)|. By
computation, we have

∣

∣

∣

∣

d

dτ
d̄i(τ)

∣

∣

∣

∣

6
1− β

Γ(β)

∫ τk

τ
[ τ+ω

T
]−ω

(τ − s)β−2|ℵi(s+ ω, zi(s+ ω))|ds.

Based on Lemma 6, we can find a constant ℵ̄i > 0 which satisfies supτ06τ<∞ |ℵi(τ, zi(τ))| 6 ℵ̄i. From the
above inequality, for τ ∈ (τk, τk+1], one can obtain

CDβ|d̄i(τ)| 6
1

Γ(1 − β)

∫ τ

τk

(τ − v)−β
∣

∣

∣

∣

d

dv
di(v)

∣

∣

∣

∣

dv

6
1

Γ(1 − β)

∫ τ

τk

(τ − v)−β
1− β

Γ(β)

∫ τk

τ
[
τ+ω
T

]−ω

(v − s)β−2|ℵi(s+ ω, zi(s+ ω))|dsdv

6
ℵ̄i

Γ(1 − β)Γ(β)

∫ τ

τk

(τ − v)−β
(

(v − tk)
β−1 − (v + ω − τ[ t+ω

T
])
β−1
)

dv

6
ℵ̄i

Γ(1 + β)
CDβ

(

(τ − τk)
β − (τ + ω − τ[ τ+ω

T
])
β
)

.

(10)

From (9) and (10), we get

CDβ |zi(τ)− zi(τ + ω)| 6 φi(τ) +
ℵ̄i

Γ(1 + β)
CDβ

(

(τ − τk)
β − (τ + ω − τ[ τ+ω

T
])
β
)

.

Setting ν = τ − τk, τ ∈ (τk, τk+1], one can get

C
τk
Dβ
τ

(

(τ − τk)
β − (τ + ω − τ[ τ+ω

T
])
β
)

= C
0 D

β
ν

(

νβ − (ν + ω − τ[ ν+ω
T

])
β
)

, ν ∈ (0, T ],
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which implies that there is a positive constant θ satisfying C
τk
Dβ
τ ((τ − τk)

β − (τ + ω − τ[ τ+ω
T

])
β) 6 θ. Let

Ṽ (τ) =
∑N

i=1 |zi(τ) − zi(τ + ω)|. Hence,

CDβ Ṽ (τ) =

N
∑

i=1

CDβ |zi(τ)− zi(τ + ω)|

6

N
∑

i=1

(

φi(τ) +
ℵ̄i

Γ(1 + β)
CDβ

(

(τ − τk)
β − (τ + ω − τ[ τ+ω

T
])
β
)

)

6 −
N
∑

i=1



ǎi −
N
∑

j=1,j 6=i

|cij(τ)|Lj



 V̄ (τ) +
N
∑

i=1

(

(di(τ)− di(τ + ω)) +
ℵ̄i

Γ(1 + β)
θ

)

6 −λṼ (τ) + υ̂,

where λ =
∑N

i=1 ǎi−maxτ06τ<∞(
∑N

i=1

∑N

j=1,j 6=i |cij(τ)|Lj), υ̂ = maxτ06τ<∞

∑N

i=1 (di(τ)− di(τ + ω))+
∑

N
i=1 ℵ̄i

Γ(1+β) θ. Let W (τ) = Ṽ (τ) − υ̂
λ
, and then

CDβW (τ) 6 −λW (τ). (11)

When τ = τk,

W (τ+k ) = Ṽ (τ+k )−
υ̂

λ
6 γ̂Ṽ (τ−k )−

υ̂

λ
6 γ̂W (τ−k ), (12)

where γ̂ = max16i6N,k∈Z+(γik) < 1. By Lemma 4 and (11), we get W (τ) 6W (τk)Eβ(−λ(τ − τk)
β), τ ∈

(τk, τk+1], which means that

W (τ) 6W (τ0)Eβ(−λT
β)γ̂Eβ(−λT

β) · · · γ̂Eβ(−λ(τ − τk)
β)

6W (τ0)Eβ(−λT
β)

1

̟k−1
γ̂Eβ(−λ(τ − τk)

β).
(13)

Therefore, from (12) and (13), we obtain W (τ) 6 W (τ0)Eβ(−λT
β) 1
̟k , τ ∈ [τk, τk+1]. Therefore, all the

solutions of piecewise succession for (1) are locally S-asymptotically ω-periodic in Θ̃.

Step 2. Now we will explore the asymptotical periodicity of (1). Let z(τ) denote the solution of (1) in
Θ̃. Then {z(τ+kω)}k∈N is uniformly bounded and equi-continuous. From the diagonal selection principle
and Arzela-Ascoli theorem, there is a sub-sequence {k1ω}k1∈N of {kω}k∈N, which is uniformly convergent
and the limit z∗(τ) is ω-periodically non-constant. Hence, the solution y(τ) for (1) with the same initial
conditions in Θ̃ satisfies

‖y(τ)− z∗(τ)‖ 6 ‖y(τ)− z(τ)‖+ ‖z(τ)− z(τ + k1ω)‖+ ‖z(τ + k1ω)− z∗(τ)‖.

From the asymptotic stability, SAP of piecewise succession and the definition of z∗(τ), we can get that
‖y(τ)−z(τ)‖, ‖z(τ)−z(τ+k1ω)‖, and ‖z(τ+k1ω)−z

∗(τ)‖ all tend to zero, that is limτ→∞ ‖y(τ)−z∗(τ)‖ =
0. Namely, −κ < z∗i (τ) − yi(τ) < κ, then si − κ < yi(τ) − κ < z∗i (τ) < yi(τ) + κ < ri + κ, where κ is a
sufficiently small positive constant with limτ→∞ κ = 0. Thus si 6 z∗i (τ) 6 ri, which implies z∗i (τ) ∈ Θ̃.
Considering the periodicity of z∗i (τ), we have that z∗i (τ) is locally asymptotically ω-periodic. Therefore,
system (1) is locally asymptotical ω-periodic.

Remark 3. We can easily find some functions that satisfy the condition (B6), for instance, Ii(τ) =
sin(2πτ), limτ→∞ |sin(2πτ)− sin(2π(τ + 1))| = 0.

Remark 4. We investigate local SAP for (1), by blocking the state space, determining the positive
invariant sets and adopting the Lyapunov direct method. Our methods are standard with some novelty.
Especially, when Di = 0, we can only find a positively invariant set in Θ̃ and the global asymptotic
stability is a special case of our results.
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(a) (b)

(c)

Figure 1 (Color online) The transient of the states zi(τ) (i = 1, 2) of Example 1 for β = 0.5.

5 Simulations

Example 1. A two-neuron FONN with impulses and nonautonomous arguments is presented as

{

CDβzi(τ) = −ai(τ)zi(τ) +
∑2

j=1 cij(τ)hj(zj(τ)) + di(τ), i = 1, 2, β ∈ (0, 1),

∆zi(τ
+
k ) = zi(τ

+
k )− zi(τ

−
k ) = bik(zi(τ

−
k )), k ∈ Z+,

(14)

where d1(τ) = 0.5 sin(τ), d2(τ) = −0.48 sin(τ), ai(τ) = 0.95 + 0.01 sin(τ), hi(zi(τ)) = tanh(zi(τ)), i =
1, 2, bik(zi(τ

−
k )) = − 1

(k+1)2 zi(τ
−
k ), i = 1, 2, k ∈ Z+, and c11 = 2.5 + 0.01 sin(τ), c12 = 0.08 sin(τ), c21 =

0.06 sin(τ), c22 = 2.8 + 0.01 sin(τ). It is obvious that pi = −1, qi = 1, Di = 1, ǎi = 0.0.94, âi = 0.96, i =

1, 2, ď1 = −0.5, d̂1 = 0.5, ď2 = −0.48, d̂2 = 0.48 and ĉ11 = 2.51, č11 = 2.49, ĉ12 = 0.08, č12 = −0.08, ĉ21 =
0.06, č21 = −0.06, ĉ22 = 2.81, č22 = 2.79. By computation, for i = 1, 2, we derive ℜ̄i = {[−1, 1]}, ℜ̃i =

{(−∞,−1), (1,∞)}. From Lemma 6, there exist
∑2

i=1(1 +D1) = 4 elements in Θ̃, which are invariant

sets of the solution of system (14). Besides, λ̌ji = 0, λ̂ji = max
τ∈(sj

i
,r

j

i
)
d(tanh(τ))

dτ = 0.42, where (s0i , r
0
i ) =

(−∞,−1), (s1i , r
1
i ) = (1,∞), i = 1, 2, j = 0, 1, which means that the conditions of (B5) and (B6) are

satisfied. According to Theorems 2 and 3, system (14) is of asymptotic multistability and local SAP.
Figure 1 shows that our results are effective.

In the following, we present a globally asymptotically stable example.

Example 2. Consider a two-neuron FONN with impulses and nonautonomous parameters:

{

CDβzi(τ) = −ai(τ)zi(τ) +
∑2

j=1 cij(τ)hj(zj(τ)) + di(τ), i = 1, 2, τ 6= τk, k ∈ Z+,

∆zi(τ
+
k ) = zi(τ

+
k )− zi(τ

−
k ) = bik(zi(τ

−
k )), k ∈ Z+,

(15)

where d1 = 0.52 sin(τ), d2 = 0.5 sin(τ), ai(τ) = 1.1 + 0.01 sin(τ), hi(zi(τ)) = tanh(zi(τ)), bik(zi(τ
−
k )) =

− 1
k2
zi(τ

−
k ), i = 1, 2, k ∈ Z+, and c11 = −2.4 + 0.01 sin(τ), c12 = 0.1 sin(τ), c21 = 0.09 sin(τ), c22 = −2.5 +

0.01 sin(τ). By Theorems 2 and 3, Eq. (15) is globally asymptotically stable and globally asymptotically
periodic. Figure 2 with 40 random initial values shows the transient of the states zi, i = 1, 2 of system (15).
The result shows that global asymptotic stability is a special case of asymptotic multistability.

Remark 5. Comparing with [14], our model with nonautonomous arguments and impulses is more
complicated, and the previous results do not work in this case. Therefore, our results are new.
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Figure 2 (Color online) The transient of the states zi(τ) (i = 1, 2) of Example 2 for β = 0.5.

6 Conclusion

In this paper, asymptotic multistability and SAP of the nonautonomous FONNs with impulses are dis-
cussed. By constructing convergent series, the existence and uniqueness of the nonautonomous FONNs
with impulses are obtained. In addition, the boundness and asymptotic multistability of this kind of
systems are investigated by Lyapunov direct method. Some new sufficient conditions on the local SAP
are derived. We will extend our results to fractional-order coupled system on a network with/without
strong connectedness [36] in future.
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