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1 Introduction

In the celebrated paper [6], Chern presented a simple and intrinsic proof of the following famous Gauss-
Bonnet-Chern formula (also GBC-formula in short) for a closed and oriented Riemannian manifold

(M, gT™) of dimension 2n:
—1\"
on=(52) [ i, (1)

where the Pfaffian Pf(RT™M) is a well-defined 2n-form on M constructed from the curvature R7™ of the
Levi-Civita connection V9 associated with the Riemannian metric g™ . With respect to any oriented
orthonormal (local) frame {ey, ..., e, } for TM,

2n

> Caranan QA AQE (1.2)

ai,...,azp=1

Pf(R™™) = —
( ) 2nnp)

where €4,4,..-a,, 15 the usual Kronecker symbol and

n

Qb = g™ (RTM e, c4). (13)
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Chern’s formula (1.1) expresses the Euler characteristic x(M) by the integration of the purely geometric
differential form Pf(RTM) on M and initiates the geometric theory of characteristic classes, i.e., the
Chern-Weil theory, which plays a very important role in the study of modern geometry and topology.
The key point in Chern’s proof is his significant transgression formula

—1\"
- “Pf TMy _ _dSMH
(3) =prem)
on the unit sphere bundle 7 : SM — M, where the transgression form II lives on SM. For any vector
field X on M with the isolated zero set Z(X), let [X] denote the normalizing of X on M\ Z(X). Also for
any € > 0, let Z.(X) denote the e-neighbourhood of the zero set Z(X) in M, and set M, = M \ Z.(X).
By using the above transgression formula, Chern got the following equality over M,:

—1\" —1\"
— ) PE(R™™) = [ — ) [X]*n*Pf(RTM) = —[X]*d°MII = —dM [X]*IL.
2 27

With the help of the Poincaré-Hopf theorem and noticing that the tangent unit spheres of M have the
constant volume, Chern obtained his formula (1.1) by computing the following integral:

—1\"
() / Pf(R™) = lim (X1
27 M =0 Joz.(x)

After Chern’s work, many people tried to generalize Chern’s formula (1.1) to the Finsler setting (see,
e.g., [1,12,13,17,18,22]). Inspired by Chern’s work, Lichnerowicz [13] first established a GBC-formula
for some special Finsler manifolds by using the Cartan connection V" on 7*T'M. Realizing that almost
all Finsler geometric quantities live actually on the unit sphere bundle SM, Lichnerowicz constructed an
analogous differential 2n-form Pf(R*) on SM and proved the following transgression formula:

;]' " Cary __ _ 3SMyyCar
<27T> Pf(RC™) = —dSM11

for some (2n — 1)-form 1% on SM, where R“* denotes the curvature of the Cartan connection on
7T M. Following Chern’s strategy, Lichnerowicz also proceeded with the computations

(—1)n/M[X}*Pf(RCar) _ (—1>nhm /ME[X]*Pf(Rcar) . S—

2 2 e—0 e—0 9Z.(X)

To get the desired Euler number x (M) from the above computations, Lichnerowicz assumed that the space
(M, F) should be a Cartan-Berwald space and all the Finsler unit spheres S, M ={Y ¢ T,M | F(Y) =1}
should have the same volume as a Euclidean unit sphere, and under these assumptions, he got the following
formula:

n=(55) [ prreie, (1.4
Note that the above volume assumption holds automatically for all the Cartan-Berwald spaces of
dimension greater than 2. Moreover, as mentioned by Bao and Shen [3] (see also [17]), when the Finsler
metric is reversible, then by a theorem of Brickell, any Cartan-Berwald space of dimension greater than
2 must be Riemannian.

Around fifty years later, Bao and Chern [1] dropped the assumption of the Cartan-Berwald condition
of Lichnerowicz by using the Chern connection V" proposed in [8] and established the following GBC-
formula for all the 2n-dimensional oriented and closed Finsler manifolds with the constant volume of
Finsler unit spheres:

Vol(FinslerS?n—1)

(37) [ VIR + 71 = xn X TR (15)
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by proving the following transgression formula

(;1) [PE(RC™) + F] = —d“MTI",
™

where R is the skew-symmetrization of the curvature R°? of the Chern connection VO with respect
to the fundamental tensor gr of I/, Pf(R") is the Pfaffian of RCP, II®" is the associated transgression
form and

F= (—1)"”2_31 CUT g (1.6)
- £ (2n = 2k — 1)lIK12F 7™ '

in which Fy = 0 and

Fr = keayan, 19202 N (wa! —wa?) + Q02 A (wa? +wal) + (K= 1)Q02 A (ws? +wil)
+(2n = 2k — Q2 A (w2 +wgal, ) + 1/kQe2 Awg2ett]}
AQEEN - AQE2E A w2”+a2k’+1 Ao AwPntaen—t,
To avoid the constant volume assumption in Bao-Chern’s formula (1.5), following Bao-Chern’s approach,
Lackey [12] and Shen [18] modified the GBC-integrand terms independently by using the unit sphere
volume function V(z) = Vol(S, M) and obtained some new types of GBC-formulae via the Chern and
Cartan connections, respectively, for all the oriented and closed Finsler manifolds.

However, a notable difference from Chern’s formula (1.1) for Riemannian manifolds, the above-
mentioned generalizations in the Finsler setting had to make use of an extra vector field X on M in
their GBC-integrands. As a result, all these GBC-formulae look not so intrinsic in the spirit of Chern’s
original formula (1.1). In [16], Shen asked explicitly whether there is a Gauss-Bonnet-Chern formula for
general Finsler manifolds without using any vector fields.

In this paper, by using Mathai-Quillen’s superconnection formalism, we obtain the following Gauss-
Bonnet-Chern formula for Finsler manifolds.

Theorem 1.1.  Let (M, F) be a closed and oriented Finsler manifold of dimension 2n. Let R°" = R+P
be the curvature of the Chern connection VP on the pull-back bundle 7 TM over SM. Then in the
induced homogeneous coordinate charts (z*,y*) on SM, one has

X(M) = /Me<TM, von),

where
n
TM, VCh § : kck 1 611 i2n R]1 . R]kP]k+1 . szn k
( ) 27T (921 (91 2n —~ 2k—2 SM/M J1Jon Tkt1 Ton—k
Jan—k41 | ypdan—1=in i1vdon pJ1 | plan—1__J2n
Ti2n—k+l T12n 1 20 +/ 6]1 jznpll Pi2n71 Wion }’ (17)
SM/M

and wf, Rg, Pij, Tf and EZ defined by (3.3), (3.9) and (3.30), respectively, are purely geometric data
derived from the Finsler metric F' on M.

On the other hand, combining a slight generalization of a lemma of Feng and Zhang [11] and a geometric
localization procedure, we obtain a precise form of Lichnerowicz’s orginal GBC-formula (1.4) associated
with a vector field with the isolated zero set.

Theorem 1.2.  Let (M, F) be a closed and oriented Finsler manifold of dimension 2n with the constant
volume of Finsler unit spheres. One has

-1\" ol(FinslerS2"—1
(271) /M[X}*[Pf(RC”HdH]x(M)Vl(VFol(;gni) )7 (1.8)
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where X is a vector field on M with the isolated zero set, and

n—1
(_1)n+k . 2n 2
"= Z (2n — 2k — 1)N12FE! Z 6“1""12"*1623? ARRENA Qg;ﬁ—l ANWagpepy N A wa;ln—l (1.9)
k=1

with @ = —2O N0 and © = g.' (V"gr) being the Bismut-Zhang form (see [5]) in the Finsler setting or
the Cartan endomorphism (see [10]).

The rest of this paper is organized as follows. In Section 2, we first briefly introduce the Mathai-
Quillen’s superconnection formalism (see [14, 15]) for the reader’s convenience, and then recall the
Mathai-Quillen type formula of Feng and Zhang on the Euler characteristic (see [11]) and give it a
slight generalization for our purpose. In Section 3, we work out the main result Theorem 1.1 in this
paper. In Section 4, we investigate some special Finsler manifolds, such as Finsler surfaces and Berwald
spaces. By the special curvature property of Berwald spaces, our Finslerian GBC-formula reduces to a
simple and elegant form, from which Chern’s GBC-formula is deduced easily. In Section 5, we prove
Theorem 1.2 by proceeding with a geometric localization procedure. In Appendix A, we give a proof of
the claim (5.40).

2 Superconnections and the Euler characteristic

We first review some basic definitions and notations on superspaces and superconnections [14,15] (see
also [4,20,21] for more details). Then we recall the Mathai-Quillen type formula of Feng and Zhang on
the Euler characteristic in [11] and prove a slight generalization of it.

2.1 Superspaces and superconnections

A super vector space E is a vector space with a Zs-grading F = E, ® E_. Let 75 € End(F) such that
Tg |g. = £1. Then for any B € End(E), the supertrace trs[B] is defined by

try[B] = tr[rpB]. (2.1)

An element B in End(E) is even (resp. odd) if B(E+) C E4 (resp. B(E+) C E) and the degree |B|
of B is defined to be 0/1 if B is even/odd. The bracket operation in End(FE) for a superspace F always
refers to the superbracket

[By, By] = By By — (—1)/B111B21 B, B,
for any Bl7 B2 S End(E) One has
trs[B1, Ba] = 0. (2.2)

As an example, for any vector space V' of dimension m, the exterior algebra A*(V*) generated by V is
a superspace with the natural even/odd Z,-grading, i.e.,

A*(V*) _ ACVCH(V*) o AOdd(V*). (23)

For any B € End(V), the lifting B% of B is a derivative acting on A*(V*), i.e., BY is linear, and for any
kand v, .. 0%k e V)

Bi(w* "t A AvtF) = ZU*’l Ao AN (B A AR (2.4)
1

where (B*v*)(v) := —v*(Bwv) for any v € V and v* € V*. '
Let {v1,...,v,,} be any basis of V and {v*!,...,v*™} be its dual basis for V*. Set Bv; = B}v;. Then

Bt = - Blv"" Ay, (2.5)
i,
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where i, is the interior multiplication on A*(V*) induced by v € V. One easily verifies that

tr[(v"! Ad,) - (00 Ady, )] = (<1),

. ) ) _ (2.6)
trs[v*,il A AUSR A Gy, Z'Ujl] =0
for any 1 < i1 < - <ik<mand1 n<--<jig<mwith0<k+1<2m.
Given a Euclidean metric g¥ on V, for any v € V, let v* be the metric dual of v, and set
c(v) = 0" A =iy, V) = V" A +iy. (2.7)

Then for any u,v € V, one has

(w)el) = ~26¥ (u,0),
v)é(u) = 29" (u,v), (2.8)

Also from (2.6) and (2.7), one gets that for any orthonormal basis {vy,..., vy} of V,
trg[é(vr)e(ve) - - - é(vm)e(vm)] = 2™,
trs[é(vi,) - - &(vi )e(vsy) - e(v5,)] = 0

forany 1< <<z <mand 1< j1 <---<ji<mwith0<k+1<2m.
A super vector bundle E = E @& E_ over a smooth manifold M is a vector bundle with fibres of

(2.9)

super vector spaces. Let Q*(M, E) = I'(A*(T*M)®E), which is, in general, an infinite-dimensional super
vector space with the natural total Zs-grading. A superconnection A on E is an odd-parity first-order
differential operator, i.e.,

A:QF(M,E) - QF (M, E),

which satisfies the following Leibniz rule: for any w € Q¥(M) and s € Q*(M, E),
AwAs)=dwAs+(—1)kwA As. (2.10)

The following two simple identities are crucial in the Chern-Weil theory related to the Mathai-Quillen’s
superconnection formalism:

[A,A%] =0, tr,A,B]=dtr,[B] (2.11)
for any superconnection A on E and any B € Q*(M,End(FE)).
2.2 A Mathai-Quillen type formula on the Euler characteristic

Recall that in Chern’s GBC-formula (1.1), Chern [6] actually obtained a Chern-Weil geometric expression
Pfaffian Pf(RT™) of the Euler class e(M) of an oriented and closed manifold M of dimension 2n by using
a metric-preserving connection on the tangent bundle 7 : TM — M. For any connection V* on T'M, by
applying the Mathai-Quillen’s geometric construction of the Thom class (see [14]) to the exterior algebra
bundle 7*A*(T* M), Feng and Zhang [11] constructed an integrable top-form on T'M from the connection
V2 and proved the integral of this form over TM to be the Euler number x(M) of M.

Let V2 be any connection on 7M. Then it induces a connection VA (T"M) on the exterior algebra
bundle A*(T*M), which preserves the even/odd Zy-grading in A*(T*M). Let Y denote the tautological
section of the pull-back bundle 7*T'M:

YV(2,Y):=Y € (7"TM) |zy), (2.12)

where (z,Y) € TM with # € M and Y € T, M. For any given Euclidean metric g7 on TM, let Y
denote the dual of Y with respect to the pull-back metric 7*g7™ on 7*T'M. Then the Clifford action
c(Y) =Y"* A —iy acts on 7*A*(T*M) and exchanges the even/odd grading in 7*A*(T*M). Moreover,

c(Y)? =

g = —|Y % (2.13)
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For any T > 0, Feng and Zhang [11] used the superconnection
Ap = VA TM) oY) (2.14)

on the bundle 7*A*(T*M) and proved the following Mathai-Quillen type formula on the Euler number
X(M):

A(M) = (;ﬁ) [ wlexpa (2.15)

A key point in the formula (2.15) is that the connection V#® on T'M need not preserve the metric g7
used to define the Clifford action ¢(Y").

For the purpose of this paper, we need to generalize the formula (2.15) slightly. Actually, one can choose
any connection V and any Euclidean metric g on the pull-back bundle 7*T'M to define a superconnection
on TA*(T*M) = A (m*T*M): let VA ("' T"M) denote the lifting of the connection V on A*(7*T*M);

let Yg* denote the dual of Y with respect to the metric g and set cg(Y) = Yg* A —ig-; then for any T' > 0,

Ap = VA TM) e () (2.16)

is also a superconnection on A*(7*T*M). Moreover, by using (2.15) and a transgression argument, one
can prove the following slight generalization of (2.15) easily.

Lemma 2.1. Let M be a closed and oriented manifold of dimension 2n. Then for any connection V
and any Buclidean metric g on 7T M, if the curvature R = V? and the metric g have polynomial growth
along fibres of TM, then the following formula holds for any T > 0:

0= ()" [ et (2.17)

Proof.  Here, we give a direct proof of (2.17).

We first check the formula (2.17) for g = 7*¢™™ and V = V9" where V9" is the Levi-Civita
connection on TM associated with the Riemannian metric ¢”™ on M. Let VA (T"M) denote the lifting
of V4" on the exterior algebra bundle A*(7*M) and R (T"M) be its curvature. So the superconnection
defined by (2.16) becomes

Ap = VA TM) | Te(Y) (2.18)

and
A2 = (VA TM) L 7oV ))2 = o R TM) 4o pe(rrvd YY) — T2V PR (2.19)
Let {e1,...,e2,} be a local oriented orthonormal frame for TM and let {e*!,... e*2"} denote the dual

frame for T*M. Then by (1.3) and (2.7), one has

W*RA*(T*M) _ Z(w*ﬂg)e*’b A iea — _i Z(W*Qg)(é<eb) + C(eb))(é(ea) — c(ea)). (2.20)
a,b a,b

We now compute trg [exp(A%)] fiberwisely. For the simplicity of computations, we choose a local oriented
orthonormal frame field {ej,...,es,} around each € M such that (VgTMea)(a?) =0,a=1,...,2n.
Moreover, we write Y = > y“e, around . Then from (2.19), (2.20), (2.8), (2.9), (1.2) and the degree
counting of differential forms, we have

/ tr, [exp(A2)
T. M

= / e T Pir, [exp(m* RA(T7M) 4 Tc(ﬁ*VgTMY))]
TeM
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= [ e e (- G+ cle)(eten) o) + Tayteler) )]
- [ e, (o (= {rag@etenten ) ep(Tayeeten)]

[ e [ (5 e >)"ﬁ<1+wyac<ea>>}

.M a,b a=1
_ = )nT " Ty * TM
—/TZM o © P g, PR ™) (x)é(e ¢(ean de cleq)

= (_1>n / 726~ T W E o PE(RTM) (2) A dy' A -+ A dy? tr,[¢(er)cler) - - - é(ean)c(ean)]
Te M

= (=2)"Pf(R™™)(z) / T2e T ZaW ) gyl Ao Ady?™ = (—27)"PF(RTM)(z).
R2n

Therefore, by Chern’s formula (1.1), the formula (2.17) holds in the current case.
Now we prove the formula (2.17) for any metric g and any connection V on the pull-back bundle 7*T M
under the assumption in Lemma 2.1. For any 7' > 0 and ¢ € [0, 1], set

wr = AT —Ap = VA*(TF*T*M) _ W*VA*(T*M) + T()A/g* _ Y/*)/\) (221)
Apy = tAr + (1= t)Ap = VA T™M) 4t 4+ Te(Y), (2.22)

where the superconnections A7 and A are defined by (2.16) and (2.18), respectively. Moreover,
A2 =RV TM) 4 ([N M) o+ Te(Y)] + T [wr, oY)] + t2wh) — TY 2. (2.23)

By (2.11), we have

d d d
Grtnlesp ()] = | (48 ) expd)| = m | [ Are G dn| expla)
= trs[[Ar, wr eXp(A?p)t)H = dTMtrS[wT eXp(A?p’t)].

Therefore,
72 2 td 2
trslexp(A7)] — trslexp(Az)] = | = trs[exp(A7,)]dt
0

1 1
= / d™tr [wr exp(A7,)]dt = d™ / tr[wr exp(A7 ,)]dt.
0 0

From (2.21) and (2.22) and the assumption that the metric g and the curvature R = V? have polynomial
growth along fibres of TM, one verifies easily from (2.23) that trg[wr exp(A7,)] decays exponentially

along fibres of 7 : TM — M, 50 [1, fol trs[wr exp(A7,)]dt is a well-defined differential form on M.
Therefore, we have

trylexp(A%)] — trg[exp(A7)]
/TM /TM
= /TM dTM/ trs[wr eXp(ATt)]d

/ / dTM/ trg[wr exp ATt)]
TM/M

:/ dM/ /trs[wTexp(A%t)]dtzo,
M T™M/M Jo

from which the lemma follows. O
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Set

2n
~ 1 ~
o(TM, Ap) = (- / try[oxp AZ] € Q27 (M),
27 TM/M

From Lemma 2.1, e(T'M, AT) gives rise to a geometric representation of the Euler class e(T'M) associated
with the superconnection Ar.

3 An intrinsic Gauss-Bonnet-Chern formula on Finsler manifolds

In this section, we first give a brief review of some basic definitions and notations in Finsler geometry
used in this paper (see [2,10] for more details). Then starting from Lemma 2.1, we work out a Finslerian
Gauss-Bonnet-Chern formula in which no extra vector field is involved.

3.1 A brief review of Finsler geometry

Let M be a smooth manifold of dimension m. For any local coordinate chart (U;(z,...,2™)) on M,
(7= U); (2, ..., 2™, y', ..., y™)) is an induced local coordinate chart on the total space TM of the
tangent bundle 7 : TM — M. Let O denote the zero section of TM and set TM, =TM \ O.

To distinguish elements in 7*A*(T*M) and 7*TM from A*(T*M) and TM, we decorate the elements
in m*A*(T*M) and 7*T'M with a * notation for clarity. We also use the summation convention of Einstein
in computations to simplify the notations.

A Finsler metric F on M is a positive smooth function on T'M, satisfying the positive homogeneity
F(z,\Y) = AF(z,Y) for any A > 0 and that the induced fundamental tensor

1 i v
gr = §[F2]yzygdf£ ® dz?

defines a Euclidean structure on the pull-back bundle 7*T'M — T'M,. Set

7 1 il k 7 8Gl
G' = zg {[Fz]mkyly - [FQ]ml}’ Nj = 8yj’

and define
o _ 0 w9
Szt Oxt v oyd’
Let VC" denote the Chern connection on the pull-back bundle 7*TM — TM,. With respect to the
pull-back frame { agi} for 7T M, set

Syt =dy' + N;dxj.

0 ; 0
Ch )
- = Q0 —. 3.1
01~ 7% g (8:1)
It is well known that w := (w;) is determined uniquely by the following structure equations:
0=dz? A wj—,
5yk: (3.2)

dgij = girw}; + gjrw} + 2Az‘jk7,
where Ay, = £[F?],i,i,¢ is the Cartan tensor. The first and the second equations of (3.2) are often
referred to as the torsion-free and the almost metric-preserving conditions of the Chern connection,
respectively. A direct consequence of the torsion-free condition is that w}’s are horizontal one-forms on
T M,, which can be written as

@) =Tida® and I =T%;, (3.3)
where

. . . NS NS N3
F;’k = ’Y;k - 9” (AIjsFI,C + Alks?J - AjksFl> (3.4)
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and
= 59" (gijkl + ol > 3
Furthermore, one has
N =y*Th = yiy® — F g Ay ly™y®, (3.6)
and then
Syt = dy' + yF . (3.7)

One the other hand, the almost metric-preserving condition implies that

vCh,*(Y/g*F) _ (vChY)* (38)

gr’

where VOP* is the dual connection of the Chern connection on 7*T* M.

Let R°" = (VM2 be the curvature of the Chern connection VO!| which is an End(7*7T M )-valued
two-form on T'M,. By the torsion-freeness of the Chern connection, the Chern curvature R°" is divided
into two parts

R" =R+ P,

where R is called the (h-h)-Chern curvature of V!, which is an End(7*T M )-valued horizontal two-form
on TM,, and P is called the (h-v)-Chern curvature of V!, which is an End(7*7T M)-valued horizontal-
vertical two-form on T'M,. Set

0 ; 0 0 . 0
R—=R:'® —, P—=PF; - 3.9
o %0 Tow Y i (3.9)
By (3.3), a direct computation shows that (see [2, (3.2.2), (3.3.2) and (3.3.3)])
i 1., 1 5Fi'l 5Fi‘k i i
R] = 5 G kldﬂjk A dl‘l = 5 <(5;[;]k - 6{;l + FhkF;'Ll — Fth?k) dﬂjk AN dl‘l,
sl o (3.10)
i_ pi k Yy _ k ik ¢ 1
Sometimes, it is more convenient to use the special gp-orthonormal local frame {eq, ..., e, } of 7*TM,
which is orthonormal with respect to gr and satisfies es,, = Y /F.
Set
VCle, =wl @ey, RMe, =0 @6y = (R + PP @ep. (3.11)
Let RC! be the skew-symmetrization of R®? with respect to gr. Then
~ 1 . N
R%e, =" 5(Qg — ) @e = QL @ey, (3.12)

b

and the Pfaffian Pf(R°") of RO" satisfies

PER™) = —— Y cayoan, Q22 A A QG2

a2n—1

1
az PP azn
anl Z 6a1...a2”Qa1 A A Qazn,l .

at,...,azp=1

The Cartan connection V2 is proved to be the symmetrization of the Chern connection VC with
respect to the Euclidean structure gp on 7*TM. By (3.2), the difference between the Cartan connection
and the Chern connection is given by

1@ _ @Ch o vch
9 ’
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where © = g;l(VCth), ie., 6{ = (Vgp)agh = 2Aiklgkj5—l§il, is symmetric and called the Bismut-

Zhang form or the Cartan endomorphism (see [10]). Set ©e, = ©%¢,. By the Euler lemma for
homogeneous functions, one has ©2" =0 for a = 1,...,2n.
Similar to [5, Proposition 4.5], we have the following lemma.

Lemma 3.1.  The curvatures of the Cartan connection and the Chern connection satisfy
RCar — RCh +Q, (313)
where Q) := —%@ A ©O.
Set Qe, := Q¥ ® ep. By (3.12) and (3.13), the Pfaffian Pf(RC) is given by

2n
> Caran, Q2 HQE) A A(QL Q2 )

al,...,a2n=1

Cary __
Pf(RY™) = Sl

—1 2n
1 K n! a a a a
=2nm;k!(n7k)la D Caran, QA AQEZE AQEZE A AQE L (3.14)

15e00@2n =1

Notice that the Finsler metric F' on T'M, is homogeneous of degree one, and all the geometric data,
such as VC!, RC" R and P, can be reduced naturally onto SM. In this paper, we use the same notations
to denote their reductions on SM.

3.2 A Finslerian Gauss-Bonnet-Chern formula
For any r > 0, set
DM(r)y:={Y e TM | F(Y) <r}.

Let p be a non-negative smooth function on TM with 0 < p < 1 and p(Y) = 1 for F(Y) < 1/4 and
p(Y)=0tfor F(Y) > 1/2.
For any connection V® on 7w : TM — M, we get an extension of the Chern connection, i.e.,

V, =(1—p)Ve + pr*ve (3.15)
P

on mT'M over the total space TM. Clearly, the curvature (Vp)2 is bounded along the fibres of TM. Let
%,/,\*(W*T*M) denote the induced connection on A*(7*T*M) of ﬁp.

Let gr be any Euclidean metric on 7*TM — TM with §r = gr over TM \ DM (1/2). We first prove
the following lemma by Lemma 2.1 for the metric g and the connection 69 over T'M.

Lemma 3.2. Let (M, F) be a closed and oriented Finsler manifold of dimension 2n. Then for any
connection V& on m: TM — M, one has

(M) = /Me<TM, v,

where

n

1 2k r.le c Ch _\2k—1 Ik f\2n—2k
(2w>2“(2n>!{gc2"/SM/M“[ (©)elVe) ™ DT

. b h\2n—1 )
-l-/SM/Mt s[0°(PY) ]}, (3.16)

e(TM, V) =

e=Y |sar and R, P9 and 0% are the natural liftings of R, P and 0 respectively on N*(7*T*M), and 0
is defined by 0 := VP — 1*V2,
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Proof.  For any T > 0, similar to (2.16), we define the following superconnection:

Ay = VA TM) 4 eg (V). (3.17)

Noticing that the curvature (ﬁp)2 is bounded along the fibres of T M, we obtain that by (2.17),

X(M) = (;ﬂ) | leso(d L (3.18)

Since exp A2 decays exponentially along fibres of 7'M and x (M) does not depend on T > 0, we get
p, T

) 1 2n - ) 1 2n -
x(M) = T1—1>r£oo (271-) /TM trslexp(A3 7)] = T1—1>I£m (271-) /DM(I) trslexp(A3 )] (3.19)

Noting that for any connection V* on TM, the curvature (7*V* (T"M))2 of the connection 7* VA (T"M)

involves no vertical differential forms on 7'M, where VA (T"M) ig the lifting of V* on A*(T*M ), we have

/ trfexp((x* VA M) 0.
DM(1)
Therefore, we obtain

/ trsfexp(A7 7)) = / (trlexp (A2 7)] — trylexp((V) 77 40)2))
DM(1) DM(1)
[ fnfexpl(F5 TR~ fexp((r VA TR, (320
DM(1)
For the first term on the right-hand side of (3.20), we have

[ tnalexp( ) - o exp((977 70
DM(1)

1
_ / / D i fexp(F 6 TM) 4 ey (V))2))dt
DM(1) ot

1
/ / d"™Mtr[Teg (V) exp((Vy 7T 4 tTeg,. (V)% dt
DM(1

1
/ o / trs[Teg, (V) exp((Vy T 41Tz, (V)))]dt
DM(1)

/ / trs[Teg, (V) exp((Vy 7140 44T, (V)?)]dt
SM
:/ /trS [Te(e) exp((VEME + tTe(e))?))dt
SM
- / / =T tr[Te(e) exp(ROM + (T [VEM, c(e)])dt
S

1
_ / / =T 1. [Te(e) exp(RM + 1Te(V<he))]dt, (3.21)
SM

where i : SM < TM denotes the natural embedding of the unit sphere bundle SM into TM, and VM8
is the lifting of V" on A*(7*T*M) and R = (VEM5)2 = RA + P and the last equation in (3.21)
comes from (3.8).

Now noticing that the term R°™f is a two-form with two Clifford elements and the term ¢(V"e) is a
one-form with one Clifford element, hence by the property (2.6) or (2.9) of the supertrace and the degree
counting, we get from (3.21) that

lim try[exp(A2 — tryfexp((VA (77T M)y2
Jim [ nles(i ) (T TR
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1
~ lim / / ¢ Tt [Te(e) exp(REM + tTe(Vohe))]dt,

1
= lim / /e_tsztrS[Tc(e)exp(tTc(VChe))exp(RCh’h)]dt,
sum Jo

T—+oco
n 1

1
= Z (7/ try[c(e)c(VChe)? L exp(RO™)] - lim e T TRk 2k—1 gy
SM

1 2]{37 1)' T—+o00 0
= (k—1)! / Ch_\2k—1/ phvk [ ph\2n—2k
= trg[e(e)e(V+-"e RY)F(P%)“"
’;2(214;—1)%!(271—21@)! s le(e)e( )7 (NP )
n O2k
= Z 2n / trye(e)c(VEe)F—L(RA)k (PH)2n—2H], (3.22)
1 (2n)! Jsm
For the second term on the right-hand side of (3.20), by setting
0,=V,— 71"V
we have
[ fanfep(F TR~ fexp( A 0 )
DM(1)
! a o A*(n*T* M 2
= / / atrs[exp((vp (m ) — (1—t)6%)%)]dt
DM (1) Jo
1
_ / 4™ / b6 exp((F47 TN _ (1~ 1)8)2)]at
DM(1) 0
1
= / z/ trg [0 exp((VA T — (1 — 1)6%)?)]dt
SM 0
1
_ / / 6% exp(REME — (1 — £)[VEME, 67] 4 (1 — £)%6% A 65)]d. (3.23)
SM JO
Note that
[VCh,h79u] _ [VCh,u _ ﬂ_*VA*(T*M)79u] + [W*VA*(T*M)7VCh,h _ 7T*VA*(T*M)]
_ [0h7 gh] o [W*VA*(T*M),W*VA*(T*M)} + [ﬂ_*vA*(T*M)7 VCh,h]
— 9208 A B — Q(W*VA*(T*M))2 + [W*VA*(T*M) . vCh,u’ VCh,u] n ch,h’ VCM]
= 20° N 07 — 2(r* VAT TTM))2 _(gChis ga) 4 9 ROD,
SO

[vCh,h7 oh] — g9 A QY — (W*VA*(T*M))2 + RChE. (3.24)

Combining (3.23) and (3.24), we get
[ (enfep(T TR~ fexp(r A 0 )
DM(1)
1
= / / trs[ﬁh eXp(RCh’h + (1 _ t)((?T*vA*(T*M))Q _ RCh,h _ 9h A eh) + (1 _ t)20h A 9“)]dt
SM JO
1
= / / tr[0% exp(ERC™ 4 (1 — ¢)(m* VA (T M2 _ (1 — 1)6% A 6%)]dt
SM JO
1
= / / trs[0% exp(tP? + tRY + (1 — t)(x* VA (T MN2 _ (1 — 1)6% A 67)]dL. (3.25)
SM JO

By (3.3), the term 6% is an End(A*(7*T*M))-valued horizontal one-form, so

tRY 4+ (1 — t)(a* VA (TTMN2 _4(1 — )67 A 0F
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is an End(A*(7*T™* M))-valued horizontal two-form. Hence from (3.25), we get

/ (try[exp((VA T MN2)] g fexp((r VA" (T71))2)))
DM(1)

/ / try[0% exp(tP9))dt
SM

— - 2n—1 I's b Ey2n—1
/SM@H_D_/t dt tr,[63(PRY2n ]

1 / _
= try [07(P%)2" 1. (3.26)
@2n)! s
By (3.19), (3.20), (3.22) and (3.26), we complete the proof of Lemma 3.2. O

Remark 3.3.  The Chern connection is essential to get the formula (3.16), in which the first term follows
from the almost metric-preserving property, while the second term follows from the torsion-freeness.

In the following, by using the induced homogeneous coordinate charts (z¢,3') on SM, we prove
Theorem 1.1 by working out a local version of the formula (3.16). More precisely, we give an explicit
GBC-integrand on M through the integration along the fibres, in which no information of the pull-back
connection 7*V*# is involved.

Proof of Theorem 1.1.  We first compute the term try[c(e)c(VChe)2*~1(RHF(PF)* =2k fork = 1,...,n

From (3.1), (3.9) and (2.5), with respect to the pull-back frame {32} of 7*T'M, we have

@' = —wldi'Ni o, R'=-RIdi'Nio, P'=—Pldi'Nio . (3.27)
oz azJ 87
We also have
cle) = wA —ie = Fy;di? A —pie (3.28)

where w = e* = Fida" is the Hilbert form on SM. Define

Ch_\i .__ _ I Ch,* — _J

(V¥e)' := - FdlogF, (V¥ W), = gzk< 2 2 dlogF |, (3.29)
‘ , , , J

Y= (VO w)(Vhe), =1 .= (Fyi(vChe)J — ?(vc}lv*w)i) (3.30)

By (3.8), we have

C(VChe) = (VChe)* N —lygche = (VCh’*w) N —iygche
= (V" w);did A —(Ve)ii o

Erg

(3.31)
From (3.27)—(3.31), we get

[ ( ) (vChe)Qk*1(Rh)k(Ph)?ﬂ*Qk]
_ rs[(Rh)k(Ph)2n72kc(vChe)2kflc(e)]

>2k—2

= tr, [(—R{d@i Ni_o YH(=Pldi’ Ni_o )P 2H((VO*w);di) A —(Ve)'i o

o&d oxd ozt

(VO w),di? A —(VPe)i )(Fyld:):«l /\—yfz' a>:|

9z9 o&T

= (=1)*tr, {(Rﬂl. CRIFE™M Ni_o_--dd™ Ni_o )(PL o Plro2kdit Ni_o
9371 o&Tk " azt1

dET NG o) Oy (VO W)y, (V)™ - (V) (Ve

oxt2n—2k

N . D . C N y" Ch, . .
LT N g dEPE NG q§_1)<Fyl(v he)ldi Nia ff(v h*w)pd:cp/\zagr)]

oz
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= (—D*Cy Lt (R RI&™ Ni_o_ - di™ Ni_o ) (P Pln2bdi® N
&tk 7

&1

e dE NG o ) (T YR NGy e d@P AT
oat2n—2k 1 k-1 9271 929k —1
J1 ... Rk pt1 ton 2k q1 . Q-1 2T J41 A G
( ) C2k Qtrs [Rzl Rik PSl PS2: 2k T Tpk 1= d A Zmijl
Az Ni_o - dTR NG o dzP N o coed@PFUNT__ o d.il/\ia]
aztl oat2n—2k 929 929k —1 azT

( ) ck- R]l . R]kP]k+1 . P]zn krrjzn B+l ’I‘jZn—l:j2n
2k—2 i i

Th+t1 l2n—k ~ i2n—k+1 i2n—1 " "i2n

tro[di™ Ai_o_ ---di Ni_o ]

o#J1 a&72n

— (1Y k-1 siiizn pi1 Jk Jk+1” Jon—kApJan—k+1 | AnJ2n—1mjon
7( 1) CQk 25 ]2nR R 1k+1 Plzn lezn k41 Ti?n—l‘_‘iZn.

Now we compute the second term tr,[0%(P?)2"~1] in (3.16). Recall that 6 is defined by § = V" —

YErda! A io)]

(3.32)

V2

in Lemma 3.2. Let ¥ = (¢7) be the connection matrix of V* with respect to the frame { +2:}. Then we

get

0% = —(w! — 7" 9)di* Ni o .

oz

Using (2.6), we get

tro[03(PH)2 Y = try[—(w! — 7*07)di" A ii_(fP,idfc’“ A i%)%*l]

:Pijl' szn 1( Jon *’19J2")t1" [d.%‘“ Ai o B N o ]

12n—1 742

o271

611 12 P]l . PJ2n 1( Jan ﬂ_*éu_zn)
22n /"

“Jon T t1 12n—1 22,

Furthermore, by using (3.10), we get

/ Pih . P‘?Q"—l(ﬂ.*,ﬁq2n) — 92 / PJl .o Pl .
1 12n—1 2n 2n 21 2n—1
SM/M SM/M

So combining (3.33) and (3.34), we have

on— n P jon— j2n
\/SM/M trs{eh(Ph) ' 1] B /;M/M 57(1 ;Zn Zjll e P)Z:j;n—llwljsn '

Finally, from Lemma 3.2, (3.32) and (3.35), we finish the proof.

Remark 3.4. Note that the terms

i1-ion PJ1 Jk pIk+1 J2n—kAnJ2n—k+1 J2n—1—=j2n
0; i R P'Lk+1 Pizn—k, 12m — k41 Tianl‘_‘iQn

are globally defined differential forms on SM, while the term 6;1;22’: Pijl1 e Pg;::ll

(3.33)

(3.34)

(3.35)

@;." is not. However,

the vertical exactness property (3.10) of the (h-v)-Chern curvature P guarantees that the following

integral along fibres:

511 “don pit P:anflw'j?n
SM/M “Jon U1 2n—1 2n

is a well-defined global differential form on M.

4 Some special Finsler spaces

In this section, we investigate the GBC-formulae for some special Finsler spaces.
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4.1 Finsler surfaces

As an example of Theorem 1.1, we give an explicit GBC-formula for a closed and oriented Finsler
surface (M, F). Note that in the induced homogeneous coordinate charts (z¢,y%) on SM, we obtain
that from (1.7),

1 111 J r—~J i1t J
o= {= [ smmEze [ [ snenen) (41)
For further investigation, it is more convenient to rewrite (4.1) with respect to the following special
gr-orthonormal oriented frame {eq, es}, where
Fp 0 Fp 0
Vg oxt /g 01%’

In this case, the dual frame {w!,w?} is given by

€1 = €9 =

Y Y
F §cl+F 72

1 ﬁgfdgzl - @yldﬁ > = Fudi' + Fpdi®.

Y TR F wo=

Set
Syt 5y?
N R S v D LUNES LUER
W= Wa Wi Ia (y r YF
Then under the special gp-orthonormal frame above, the Chern curvature forms are

1 3

(RM! = Rb 4+ PP = R Y ,w'w? + PO wlw? + Pb% w?w
By (4.1), one easily verifies the following corollary .
Corollary 4.1.  For any closed and oriented Finsler surfaces (M, F'), we have

1
x(M) = ( { R ,whwiw —/ / s (Gly + Goy? )P Y whw?n?
SM SM/M

/ /SM/M[ (1gF> ;@) i;((lgF) ;Ggﬂpzlnwlww}, (4.2)

where G := (Y [F? iz — [F?00).
Now we assume that (M, F) is a Landsberg surface, i.e., P4, = 0. Due to an observation of

Chern (see [9]), R%,w'w? in fact lives on M. For closed and oriented Landsberg surfaces, Bao-Chern’s
formula (1.5) is the same as (1.8), which has the following form:

/ —R?yw'w? = x(M)Vol(FinslerS*). (4.3)
M

The following integral formula for Landsberg surfaces is interesting.

Corollary 4.2.  Let (M, F) be a closed and oriented Landsberg surface. A Gauss-Bonnet type formula
for the Chern curvature holds:

. 1
[(Vol(FinslerS*))? — (27)?]x(M) = / / ﬁ(Glyl + Goy?) P Y wlw?wd. (4.4)
M JSM/M
Proof.  When the surface (M, F') in Corollary 4.1 is a Landsberg space, we get
1
M) = R - G Goy?) P wlw?w? §. 4.5
X(M) (277)2{/5 Poww?e? /M/SM/MF?’( 1+ Gay?) P w'w (4.5)
Note that for a Landsberg surface, the volume function

/ —w? = Vol(FinslerS™") (4.6)
SM/M

is constant. As a consequence of (4.3), (4.5) and (4.6), we get (4.4). O
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By Corollary 4.2, closed Berwald surfaces either are tori or have 27 as the length of their Finsler
circles. This fact can be derived from Szabd’s rigidity theorem (see [2, p.278]), which shows that any
of the Berwald surfaces must be locally Minkowskian or Riemannian. By (4.1) or (4.3), a closed locally
Minkowskian surface has zero Euler number.

4.2 A Finslerian GBC-formula for Berwald spaces

Recall that a Finsler manifold (M, F') is a Berwald manifold if and only if the (h-v)-Chern curvature P
vanishes. Moreover, for a Berwald space (M, F'), the Chern connection is the pull-back of the Levi-Civita
connection on TM — M for a certain Riemannian metric g7 on M (see [2, Chapter 10] for more
details). Note that when P vanishes, the formula (3.16) becomes very simple, from which we deduce the
following Finslerian GBC-formula for Berwald spaces easily.

Theorem 4.3. Let (M, F) be a closed and oriented Berwald space of dimension 2n. Then one has

—1\" 1 R
My=—] ———— Pf(RCh 2 A AL 2m n
0= (5) varsn S L PR it i (47)

where W™ A - Aw3_| gives the volume form of the fibre when restricted to a fibre of SM.

Proof.  Since the (h-v)-Chern curvature P vanishes for Berwald spaces, from Lemma 3.2 we get

1
M= —— trs Chgy2n—1( piyn].
KON = s [ lelepe(T e (1]
Hence, under the special gp-orthonormal frame {ey, ..., es,} of #™*TM with ey, = e, we have

XM) = Gz [ fele)e(V e (")

1 . o
T (@n)n(2n)2n /sM trsfwg, A Awpn T e(er) - elean) (Roé(ea)éler))"]
1 Aa Aa‘n 2n 2n
— g [ oo R A AR AN AL

“trsle(er) -+ - clean)éler) - - E(e2n)]
—i §a2/\_._/\§02n, A 2%/\/\ 2n
~ 2m2(2n) Jou €ay--aznfla) azn_1 N W1 Won_1
(1) (n 1)

HCh 2 2

—1\" 1 ~
= —) =—————= PR(REMY AW A - A2 .
( 2m > Vol(§2n—1) /M /SM/M () ey 2ot

This completes the proof. O

Remark 4.4. One should notice that in (4.7), the datum ECh, defined by (3.12), is the skew-
symmetrization of RC" with respect to gr. Hence the differential form Pf(RCh) is dependent in general
on the vertical coordinates 3. However, if the Finsler metric F is induced by a Riemannian metric g7
on M, then M itself is a Riemannian manifold. In this case, Pf(ﬁCh) is exactly the Pfaffian Pf(RTM)
defined by (1.2), which is constant along fibres of SM, and therefore, we recover Chern’s formula (1.1)
from the formula (4.7) easily.

5 A general Lichnerowicz formula for Finsler manifolds

In this section, by using Lemma 2.1 and a geometric localization procedure, we prove Theorem 1.2, which
gives a precise form of Lichnerowicz’s original GBC-formula (1.4). The proof depends on a series of
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lemmas below.

Assume that X is a vector field on M with isolated zeros. Then the zero set Z(X) is finite. The
normalized vector field [X] on M \ Z(X) is defined by [X](x) = X(z)/F(x,X) for any x € M \ Z(X).
We choose a background Riemannian metric g7 such that g7 is Euclidean near each p € Z(X). For
a sufficiently small § > 0, let Z5(X) be the open d-neighbourhood of Z(X) in M with respect to the
Riemannian metric g?™ and set Ms; = M \ Zs(X). Then [X] determines a pull-back section [X] of
T TM — TMj.

Using [X], we introduce the following family of superconnections on A*(7*T*M) — T M, for t € [0, 1]:

—

Ay = VA ETM) 4 Teg (V) = tTeq, ([X]) = VA TM) 4 Tep (Y — 1]X]). (5.1)

Clearly, A, 7.0 = A, 1 is just the superconnection defined by the extended Chern connection (3.17) used
in Section 2, and the curvature of A, 7, is given by

Apry =Ry + TV T g (V= t[X])] = T2 )Y —#[X]7,..

For the family of superconnections defined by (5.1), we have the following transgression formula:

. 12 BT 12
d [ e B = i [ e 2o
1 S -~ * * * A —
— lim [ a™ / [Ty, (X)) exp(VA" T30 | Ty (¥ — X))t
T— 00 T Ms 0
1 - A% * % A f—
= lim / trs [Tz, ([X]) exp(VA T TM) 4 Teg (Y — ¢[X]))?]dt. (5.2)
T—o0 TMlozg(x) 70

First, we have the following lemma.

Lemma 5.1. One has

[VCh,h7 Cor (f/ _ [/)(\])] _ (5yz _ (VCh[/)-(\])i)ch ((924) + A, (5.3)

A= 500 13098 (e (55 ) e (557 )):

and VO X] = (VCh[X])iazi is the covariant differential of the section [/X\]
Proof.  Note that near each x € My, we have that from (3.2) and (3.27),

()]l ()

= (d™ g;;)di? A +[—whdi® A i%,gikdﬁk A—i o]

oz

where

= (gikwf + gjkwf + 2F71Aijk;5yk)di‘j A —(gilwédj;’“ A +w5i%)
ozk
= w{CQF ((f@) + 2F—1Aijk5ykd§jj A. (5.4)
Write [X] = [X]iaami near z, so Y — [/X\] = (y' — [X]i)% near [X](z). Then from (2.7), (3.2), (3.7)
and (5.4), we get

—

VO, ey, (V (X))
= [V - e (% )|

A = X e (1 ) + 0 = XD |90 (1)
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. , 9 , o 9 . , y
=T X e (57 ) + O = XDl (5 ) + 20 = IXI)F Agudy il o

= 05"~ (VO e () + 50~ 096 (e (5 ) +eur (555 ) )

This completes the proof. O
Lemma 5.2. For flpyTyl, we have the following localization formula:
lim trsfexp A2 ] = (=2m)" / [X]*Pf(RCa). (5.5)
T—oo J7 M, ” M;

Proof. Tt is clear that

/ trgfexp 121,2)7:,«71]
TM;

:/ / e T et fexp (R + TIV) 7T, g (V = X)) (5.6)
M5 TM(;/M(;

Note that the zero set of the section ¥ — [/X\] in TM;s is exactly [X](Ms). For a fixed 7 > 0, let
B ([X](Mj)) be the open 7-tube neighbourhood of [X](Ms) in TM;. So when 7 is small enough, one
has Vﬁ (" T7M) — gORs and §p = gp on B, ([X](Ms)). Now by the exponential decay property of the

integrand in (5.6) along fibres as T' — +o00, we have

lim / / e_T2W_[X“§FtI‘S[eXp(EE) JrT[%Q*(F*T*]VI)anp (Y/ _ [X])D]
Ms JTMs/Ms

T—o0

= / Jim o~ T WX (o fexp(REME 4 T[VEM, ¢, (V — XD, (5.7)
[(X](M;5) * 70 J B, ([X](M5))/[X](M5)

During the proof of this lemma, we use | — [/X\]| instead of [V — [/)?HQF for simplicity. By (5.3), for any
r € Ms, we obtain

lim o~ TV =X fty fexp(REM + TIVERE, ¢y, (V — [X])])] 1A
T—=o0 JB. ([X](x))

= lim e_Tzly_[/X\“2 {trS [exp (Rtl + PP+ TA + T(Syich (8%)
B (IX](x)) 0%

T— o0
— T(VOX])iey, (5))} }(4n). (5.8)
Note that
P= (%;F—lpijkldx’“ A (VC‘I[/)'(\])Z) (5.9)

gives a well-defined endomorphism P on 7*TM — M\ Z(X), and by (2.4), its lifting P? on A*(x*T*M)
— M\ Z(X) is given by

Pi= > FP g da® A (VX)) A Ai o = PEVX]) (5.10)
. ozl
(2%

Similarly, we define

o () 0 () - b8 o (3) (30

= - T (o, (L) 4 () = MO 6
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—

Moreover, from (3.3), one sees that (VOMX])* = 7*d™[X]" 4+ [X]/w! are purely horizontal one-forms.
Therefore, the right-hand side of (5.8) becomes

lim oAV -IXI? {tr5 [exp(Rh) exp(P? + TA) exp ( - T(VCh[/X\])ich (i))
=00 B, (x]@)) 0%

) ) (4n)
- exp (Téylch (W))} }
2n

— lim o~ TV -IXI? {trs [exp(Rh) exp(PF+TA) ] (1 — T(VX])iey, <£>)

T=0o0 J B, (1X](x)) =1

. 1 + Téyzch (ML> >:| }
i=1 Oz

— 2n P
= lim e~ T IV=IX]] {trs[exp(Rh)Zexp(PuTA) S (=T (Ver X))
B, ([X]()) =0

T—o00
1<i1 << <20

0 — o\ ., 0 . 0 (4n)

2n

o T 1

= lim o TV -IXIP {trs [exp<m> > (,<P£1 +TA,, )6y - (Pl + TASk>6ySk>
T—o0 /B, (1X](x)) = \F!

Ty T\ 0 T TV 0 iht1 0
> TR e (5 ) TR e (5o ) e ()

1<6 < <ip <20

y 9 (4n)

2n
2% _Tv12 1 r—
= lim e~ TV -IXII {trs {exp(Rh) ( > = (PE A+ TAL) (VX)) - (P + TA,,)
T /B, (X)) =M
l/\ S n 8 n a (4n)
: (VC} [X]) '“)TQ 53/1% (8921) L by Cyr (Wn):| }
21y _Tx72 ~ ~ i 0 (4n)
= lim e~ TV -IXII {trs {exp(Rh) exp(P? 4+ TA) exp (Tdylch ( A))} }
T—% /B, ((X](2) o\o
21y _Twi12 ~ ~ . 0 (4n)
= lim eIV =IX]] {trs {exp(Rh + P%) exp(TA) exp (Tdylch <A1>>} } , (5.12)
=00 /B, (1X)()) o0z
where {i1,...,0k, ig+1,- .., 92, } denotes any of the rearrangements of {1,...,2n}.
Now we use the special gp-orthonormal frame field {ej, ..., e, } with e, = Y/F Let {w!,...,w?"}
be its dual frame field. Set 9 5
=’ — =
€a =Unper  Fzp = Vit (5.13)
Then we have
2n 9
Gij = (; vivyg, det(gi;) = det(vf), c¢qp (8:@1) = vic(e,). (5.14)
Set N N N o _ N
(R* + Pw® = —Qfw®, Of := Olviu), ©%:=67vf. (5.15)
By the Euler lemma for homogeneous functions, one has ég“ =0fora=1,...,2n.

Letting 8i denote any 2k indices 1 < by, ba, ..., bor < 2n with repetition, for £ =0,1,2,...,n, one has
the following integral formula:

/ e TP XL W by b2k gl A LA gy 20
R2n
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[HH(z) (20 )]ﬂ[ﬁwwwmu (516)

=1 =1

where (i) denotes the number of times that the value i € {1,2,...,2n} has occurred in S, and clearly,

Zﬁm‘) =

For any bounded smooth function f on T,M, similar to (5.16), one has the following localization

formula:
lim e TV (g — (X (P = (X g (V)T
T2 B (1X]()
2n i
. n 14 (=1)8® )
dertaghty’ A+ = T | TTG—0 - oo sxie). a7

i=1
Let éz = %@ éj be the coefficients of @ = fié A ©. For a fixed k = 0,1,2,...,n, and any fixed
2k numbers 1 < 71 < - -+ < jax < 2n, the following combinatorial fact holds:

1 ~.
119212k ’LQ 12k
2k | Z 631]2 “J2k ARERRA Qz%,l

i1 "izk
14 p i P oy
= e D O (B AGE) A A (B, AGE)
i1 iok
)ﬁk(z) QP11 A QF O P2k—1 j
; k

Tk Z |:H (B (3) = 1)”] ®j1 NOp A G)Jzk 1 @pzw (5.18)

where B runs over all the 2k indices 1 < p1,po, ..., pok < 2n with repetition.

By (5.13)—(5.18), we have

o _ _ ‘ (4n)
lim e TV -IX]P? {trS {exp(Rtl + P%) exp(TA) exp (Tdylcgp (i))] }
=0 S (1X](0) 0z

= lim o~ THV =X {trsJexp(RE + P%) exp(TA) exp(Tdy‘vicy, (eq))]} 4™
T2 JB((X]()

B ;;J (%)(!z;)j DR /BA[X](;@))Q_TW_@P Do, O A B AQEE A A
LNtk det( Ddyt A - A dy®
= Z IR B, ([X](x)) S BZ(ypl P O e
2k
. Z Eal---azn@‘blf ARERW\ é‘”’“ A ﬁagkﬁ Ao A 525271T2"+2k det(v®)dy* A--- A dy*"
1)ﬂk(i)

_ Z T Z [H f(ﬁk(i) - 1)1!] [Z €ar-az, OF A+ N O

NGz A O }([X](@)

a2k+1 a2n—1

n—1
Z o Do, @i Ao A Qi A D A A D22 ([X](@)) (519)
k=

Because the map [X]: M \ Z(X) — TM is given by [X](x) = (z,[X]) for any z € M \ Z(X), we have

o 0  oxXy o
[X]*c’?xi Ozt + ozt dyl’
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and then

[(X]*0y" = [X]*(dy’ + /I da®)

%dﬂ + [XPT%, (X)) da”
=d[X]' + X} ([X]'=}) = X (VO XT) (5.20)

By (3.11), (5.9), (5.10), (5.11), (5.15) and (5.20), we have
(X]"Qp = [X]"Qg, [X]'ep = [X]"Of, [X]*Qs = [X]"Qy. (5.21)

From (3.12), (3.14), (5.7), (5.8), (5.12), (5.19) and (5.21), we obtain

—

fim trofexp(VA " TM) 4 e (V — [X]))?]
T— o0 T M,
n—1 (—71')"
B kz::o m/ X](Mj) [Zeal a2n CAQEE  NQEEEE A AQE 1]
n—1 (_ﬂ_)n
=3 s [Z A AQU A A AR }
1 n—1 n'
_ n ask PR o,
= (_277) oanpl k'(n — / |:Z€a1 “agn A Qazk . A Qagkil A Qa% 1:|
k=0

Thus (5.5) holds. O

Define

/ [X]*Pf(RC™) := lim [ [X]*Pf(RC™). (5.22)
M §—0 M;s

By using Lemmas 2.1 and 5.2, we prove the general Lichnerowicz GBC-formulae under the assumption
that the Finsler metrics are locally Minkowskian near the isolated zeros of the vector field X.

Lemma 5.3.  Let (M, F) be a closed and oriented Finsler manifold of dimension 2n. Let X be a vector
field on M with isolated zeros. Assume that (M, F) is locally Minkowskian near the zeros of X. Then

;1 " * Car _ : VOl(S M)
<27T) /M[X] [Pf(RO™) + dH] pezZ(X) dpiw(s% 3

where

n—1 n+k
a asg 2n 2n
M=) 2n—2/€—1 WZ ar-azn—1@ay N AN Qagi  ANWag ) N Ngy, -
k:l

Proof.  Assume that there is a sufficiently small € > 0 such that the background Riemannian metric

g™ is Euclidean on Z.(X) and (M, F) is locally Minkowskian on Z,/5(X). From now on, we always

assume that 0 < § < ¢/2. Note that for locally Minkowski spaces, the Chern connection V! = d. By
our choice of the background Riemannian metric g7, one has

Vg™ = g™ =0 (5.23)
on Z/5(X). In this case, we define
V=V gr=(1-p)gr+pg™, (5.24)

where p is the cutoff function used in Section 2.
Because 0Z5(X) C Z./2(X), we calculate the last term of (5.2) on Z/5(X).



1924 Feng H T et al. Sci China Math  September 2023 Vol. 66 No.9
From (5.23) and (5.24), a similar computation to that in Lemma 5.1 shows that on Z,/5(X),
VO o (VX)) = |d (4 — t1XT e (2 )| = (dyf — tn*d™ [XT)eor (2o ) + AG),  (5.25
(V50 (F — XD = |d (0 10X, (o )| = (' — ix* M [X] e, (s ) + M), (5.29)

where

A(t) = (v = t[X]) (g, — gij)d™ pdd? A +2(1 = p)(y* — t[X]") Agju '~ dy*daI A
= 5 X e (4 (5 ) + ene (5 ))

o =~ X1 (s, (5 ) + ene (5 ) )

o = 0x09] (e (555 ) + oo (55 ))

e’ <ch ((;;) + cgp (;ﬂ)) = Ay(t)dy'.

During the proof of this lemma, we use [Y — [/X\]| instead of [V — [/X\]|§F for simplicity.
Since RCM = 0 for locally Minkowski spaces and A(t) contains only vertical forms, by (5.24) and (5.25),
V€ 0Z.2(X), we obtain

= N~ N

im 1 ro[Teq (X)) exp(VA (7T M) - _ (4n—1)
! /TM/{ts[T ar ([X]) exp(V,, + Ty, (V — X))} dt

T—o0

dt 1im —T2‘Y—“7‘7‘2{trs[Tch<[3?1>exp(T[vChvh,ch—t[ X]))]n=b

T—o0

215 T2 ; 5 1 a
— 7T Y —t[X]| i, v o * M [ v
/0 dt Th_r)réo o {trs [T[X] Cir <8i‘i> exp ( T d™ [ X ey, (83@1)
) o (4n—1)

1 2n
215 T2 . 8 a
_ : —T2|Y —t[X]] i * IM
7/0 dt lim - {trs [T[X] Cr <%i) |7| (1 tTr*dM [ X cy,. <8$)>

=1
2n

o+ ra >dyl>]}(4n_l)

dt lim *T2\f’*t[/X\]\2t2n71T2n
T—o0

: {trs [Z(—l)”“_l[X]iﬂ*(d[X]l Ao A m A AdIX]P)

=1
2n (4n—1)
) ) )
H (1 + = 0%¢;, (8:6]))% (ax1> e Cp ((%%)] } ) (5.26)
=1

Use a local orthonormal frame field {e,} of gr around ¢[X](x) and assume

e *uj—a 9 =vje
ST
Define
0h, = Ol ubufvl, O) =elull, e =6
c .

cYj za]7

By (5.26) and an integral formula similar to (5.17), we obtain

lim / / {trg[ TCQF )exp(VA (7*T* M) + Tey, (Y [X]))Q]}(‘l”_l)dt
To M

T—o0
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1 L
_ 2713t lim esz\th[X]\szn
0 T— 00 T, M

. {trs |:Z(_1)n+i—1[X]iﬂ_*(d[X]1 A-e- A d/[\)(]z Ao A d[X]Q")

i=1
2n (4n—1)
T (14 5% (e)) dettoieg en) e ean)|
=1
_ 1t2"_1dt li —T2\Y t[X]PT Z 1n+i—1[X]i
) T T M 22 & 1( )

P (XN A AXTEA - Ad[X]2) (=)0 A - A O det(v2)

- trg [éQF (61) T é@F (egn)CgF (61) © Cgp (6271)]

1 o 2n
:/ 271t lim e—Tz\Y—t[X]\2T4n Z(_l)nﬂ'—l[)qi
0 T=oo J1, M pat

7t (d[X]E A .-.Mﬂ A X)) det(v2)OL A - A O

—

:/ £2n- 1dtz P H X (dXTEA - A XA A d[X]P)
0

. —_T2|y — n 1 1 n n n
- fim TMe Y —X]* det(vf) Y “(y" — [X]P1)oht - (yPr = [X]P7)olzn ©f A AOFE,
* Bn
:/ {2n= 1dtz 1)+ X (d[X]E A - AdX]EA -+ Ad[X]?) lim o~ TV —tIX] [P pan
0 T— 00 Ty M
~det(vi)Z(y’“ — (X )upt - (yP2n = [X]P2m)ol2n©f - Opr L, wEkdyT A - A v dy e
Bn
1 2n — 217 T2
:/ 2071ty (=) X A (dX] A AdIXTEA - AdIXTP) Tim e~ T =X an
0 Pt T—o00 T, M

. (det(vf))2 z:(y”1 — [X]PY) Zi e (yPr — [X]pzn)vgzz
. Z 601"'027191%101 o @I%;anwdyl ARERNAN dan
1 2n
= /0 t2"—1dtZ(—W*[X]%*(d[)(]l A NAIXTEA - Ad[XTP™) det (vf) (L[ X ()

—r)" 2n 1\Ba(d)
: zn) 2 {H %(ﬁn(i) - 1)!!]

Bn Li=1
Y eren, Oy, (HX(@)) - OF ., (HX](2)). (5.27)

For convenience, we introduce the following differential form of degree 2n — 1 on T'Z./5(X):

2n :
e M1 e CRUREI ) SR
Bn “i=1
2n i P
- Z(—l)“%(dy1 Ao Ndyt A ANdy®™ )y /det((Gr)ij)- (5.28)
=1

From (5.27) and (5.28), we have

1
Jim [ s, (D exp(¥3 7740 4 e, (5 — oK) P
X JITM |ozs(x) /0
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1
:/ dt/ ©. (5.29)
0 t[X1(825(X))

At any p € Z(X), we denote the Finsler sphere (or Finsler disc, respectively) of radius ¢ > 0 by S, M (¢)
(or D, M (t), respectively). For the case t = 1, we also use S, M instead of S, M (1) for simplicity.

Let 6 — 0. By the mapping degree theory, we have
1

lim dt/ ind / dt/ 5.30

50 Jo " Juxyozsixn ,,;(:X) SpM(t (5.30)

By (5.28) and (5.18), we obtain

1 —
— dt/ / / dF A (dy' A--- Ndyt A - A dy®™)
./o S, M(1) S, M(t Z F (y)

i=1

2n

— 1+ Bn() " ~

e Z[H(g)wm—n}q enOhey O s\ et (31)1)
Bn =1

2n .
(=m)" 14 (-1)f@ ) ,

= E —————(Bn(®) = D €cy ey, Op. oy -+ - OFF
/DpM(l) 2 Bn 1;[1 2 (Bn 7) M €ercanObye bancan

4/ det((Gr)ij)dy*" A - A dy™™

2n ;
1 14 (=1)%( . ] 1 2
= —2m)" —— ———(Bp() =IO\ A---ANOL"
[ 20 3 5o - el
= (—27r)"/ P1(Q), (5.31)
D, M(1)
where we set Q) := —%@ A © as usual.

For any p € Z(X), the tangent space T,M is a flat manifold with the flat connection d and the
Riemannian metric

§F = (gp)”dyz ® dyj.
Let d be the symmetrization of d. According to [5, Proposition 4.3], the curvature of dis just Q. Denote
the curvature of the Levi-Civita connection of gr by R7»M. By [21, Proposition 3.6, one has

Pf(Q) = Pf(R™*M) 4 d) (5.32)

for some differential form 1. Furthermore, on the set D,M (1) \ D,M(1/2), gr is a Hessian metric, i.e.,

Qnr
]

_ 1
:gFZZ[ L/y]dy ®dy

In this case, the curvature form of the Levi-Civita connection of the Hessian metric is just Q (see [19]).
Therefore, dip = 0 holds on D,M (1) \ D,M(1/2).
By (5.31), (5.32) and Stokes’ theorem, we have

dt ) Pf(RT*MY) 1+ do)] = (—27)" Pf(RT»M), 5.33
/ /SM(t) )" /men[ (RTM) 1 dy] = (~2r) /me) (RTM) (5.33)

Following Chern [6], we introduce some differential forms on SM:

O =D €arana QN ANQEE AW A Awll

a2k —1 a2k+41 a2pn—1"

k=0,...,n—1,

and

B 1 nn—1 (—l)k B n—1 ( 1)n+k ~
II:= | — ® Dy, .34
(%) kzo(zn—%—lmkk' o He= Z (2n — 2k — 1)112k ! (5:34)



Feng H T et al. Sci China Math  September 2023 Vol. 66 No.9 1927

Using the GBC-formula for Riemannian manifolds with boundary (see [7]) and (5.34), we obtain

1 n B
() / Pf(RTPM):l—/ I
2m D, M(1) Sp M
1\" (2n—1)! , 5 —1\"
=1—(— - A AW — | —
(%) /SPM (2n — ™1 Wan-17 |\ 9p /SPMH

Vol(S,M) (-1 "
~ Vol(§2n-1) (%) SMH' (5.35)

Combining (5.29), (5.30), (5.33) and (5.35), when & — 0, we see that the last term in (5.2) is

6—0T—o00
. Vol(S, M) —1\"
=— Y ind, (1 e g () / H). (5.36)
peZ(X) VO](S ) 2 SpM

y (3.18), (5.2), (5.5), (5.36) and the Poincaré-Hopf theorem, we obtain

1\*" ! — A (T )
lim lim (271_) /TMl /0 trS[TCQF([X])exp(VQ (FTM) L Tep (Y — t[X]))2)dt
9Zg5(X)

1 2n
. . . A2
= (37) dm i [ e £

n 1 — S~ Ak * A
) lim lim / trs [Tz, ([X]) exp(VA T M) 4 Ty (V — t[X]))?]dt
0

0—0T—o00 TM|6Z5(X)

2n n
o . _ Vol(S,M) (-1
— 2 _ _ p [
= <27r) Jim_Tim . trsfexp A7 7] )~ ind, (1 o152 <2W> /S,, ”H,)

pEZ(X)
, Vol(S, M) —-1\"
=x(M) — Z 1ndp<1—2pn1—(> / H)
pGZ(X) VOI(S ) 21 Sp M
. Vol(Sp, M) -1
= 2 mdPin+( ) > indy
pGZ(X) VO](S ) 21 pez X) Sp ]\/[
Similar to (5.22), we define
/ (X]*dH = lim [ [X]*dH. (5.37)
M =0 J prs
Following the strategy in [1,6,7], by the mapping degree theorem, one has
- / [X]*dH = — lim fdH = ) ind, (5.38)
M 6=0 J ps peZ(X) Sy M
This completes the proof. O

By Lemma 5.3 and modifying the Finsler metric near the isolated zeros of a given vector field, we are
able to give a proof of Theorem 1.2.
Proof of Theorem 1.2.  Let p € Z(X) be any one of the zero points of X. We can find a local coordinate
system (Up; zt, ..., z*")
metric g7™ such that

around p with z%(p) = 0. For simplicity, we change the background Riemannian

gTM |Up — (d.%'l)Q et (d!l?l)Qn
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Now we define a Finsler metric F' on TU, as follows: for any x € U, and y = yi% |l € T. M,

- ) .0
F(%Z/laxi’ ) ::F<p’ylaxi )
x p

It is clear that F is a locally Minkowski metric on T'U,. For a sufficiently small positive number € > 0,

By(e) = {x elU,|r(zx) =

denotes the 7™ ball of radius € enclosed in U,. Set

peEZ(X)
and
M.=M\ Z.(X).

Let ¢(t) be any smooth cutoff function with 0 < ¢(t) < 1, ¢(t) = 1 for ¢ < 0 and ¢(t) = 0 for
t > 1. Tt is clear that |¢'| and |¢”| are bounded and supp(¢®)) = [0,1] for any k& = 0,1,2,... Set

Co := max{[¢'|,[¢"[}.
For each p € Z(X), we define the following cutoff function:

and the following modified metric:

Fpe(w,y) = \/(1 — Op.e(®) F2(2,y) + dpe(x ) A(z,y) = \/(1 = 0p.e(2))F2(2,y) + ¢p.e () F2(p,y).

Because

S0, = (1 6 ()91 5,9) + Bp()915(p,1)

is positive definite, one can easily verify that Fj, . is a well-defined Finsler metric on M.
Set

9p,e,ij (l’, y) =

F. = |: H (1—¢p,e($)):|F2(:ﬂ7y)+ Z [¢p,e(x)F2(p7y)],

PEZ(X) pEZ(X)

One verifies that F, = F}, . around p € Z(X). By definition, F. = F on M., while it is locally Minkowskian
on

Zop(X)= | Byle/2).

PEZ(X)

We use RE®" and H. to denote the geometric invariants related to F.. Obviously, one has RE® = RCar
on T'M,. On the other hand, by the construction of F, and the definition (5.34), one directly verifies that
He = H along S, M for any p € Z(X).

Applying Lemma 5.3 to F, for any 0 < § < €/2, we get

L Vol(S,M) [ —1\" ,

Y. indpre i+ () > indy [ H

pez(X) VOI(S ) 2 pEZ(X) Sp M
_Vol(S,M) [ —1\" ,

= Z dpm + <27r> Z ind, He

PEZ(X) pEZ(X) SpM

-1 " . * Car
~(3) 1m [, e
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~(32) [ e

_ (;)n /Me [X]*PE(RO™) + (;)n /Z E(X)[X]*Pf(Rfar). (5.39)

lim [X]*Pf(RE™) = 0. (5.40)
e—0 Ze (X)

We claim that

The proof of this claim will be presented in Appendix A.
Combining (5.38)—(5.40), we have

. Vol(S,M) —1\"
Y. indp ey - () / [X]"dH
peZ(X) VOI(S ) 21w M
= Z 1ndp7V01(52n71) + (27r> Z ind,, H

peZ(X) peEZ(X) SpM

—1\" —1\"
_ - li X *Pf Car - 1 X *Pf Car
(%) timy [ ()P >+(2W) C%AF(X)[ J*PE(RO™)
_ -1 n- * Car
- (2) e

- (;)n /M [X]*Pf(RO™).

Hence the proof is completed by the assumption on the volumes of the Finsler unit spheres. O

Remark 5.4. It is well known that a Finsler manifold is locally Minkowskian if and only if the
Chern curvature R°" = 0. Thus Bao-Chern’s GBC-formula (1.5) immediately implies that the Euler
characteristic x(M) = 0 for locally Minkowski spaces M, whereas it is hard to get this result directly
from the Lichnerowicz GBC-formula (1.8). On the other hand, our Theorem 1.1 also directly implies the
same vanishing result for locally Minkowski spaces.
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Appendix A

In this appendix, we give a proof of the claim (5.40). We present the following estimations on Z.. We
only need to deal with any one point p € Z(X), because Z(X) is discrete and finite. First, we have

or xk 9%r 1<6kl_a:kxl>

dxk v’ 9zFoxl  r ror

Then we have the estimations for the first derivatives of ¢, .:
2

Obp,e S r(x)—€e/2 Or
‘ ¢< 2 )ax

1
Oz (m)‘ e

X 0~
€

For the second derivatives of ¢, ¢, noticing that the support of the derivatives of ¢, . is just B, (e)\B,(€/2),
we have

o, . 4 1
"’51’7 - < 12Co .
€

dxkox! (x)’ =2 ¢//(7“($)—€/2) or or n ¢/(T(x) - 6/2> e 0%

€/2 Oxk Ol €/2 2§kl

As e — 0, the first and the second derivatives of g, ;;(z,y) with respect to 2 satisfy

09ij Op,e

89 ,€,17
ot @ y) = (1= pe(@) 55 (@, y) + 55 (2) (965 (P, y) = 945 (2, 9)
891” a¢ ,€ agi‘
= (1= dp(@) 53 (2,y) + 5 5 (@) 57 (P +0 - (@ —p),y)a’
—0(1)
and
% Gp.e.ij 9%g; Obp.e . 0gij Obp.e , . 0gi;
PPy,
+ ot (@95 (P Y) = 955 (2, )
azgi' 8¢ € 891" a¢ € agi'
:(1*¢p,e($))m(xa ) — a;,; ( )&Ef( Y) — a;i ( )ax,z( )
82¢p,e agij t
W(fﬂ) Dt (p+0-(x—py

of)
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where 6 € [0,1]. On the other hand, as € — 0, we have

69 J€,07 829 J€,17 829 J€,1]
Fp,E apyk E (.’I;,y) = 0(1)7 FP,E 3zkpaylj (m?y) = O<1)7 ine 6y}faylj (1.7:(/) = O(1>

By (3.4)-(3.6) and (3.10), as ¢ — 0, we have

% 0 % 1 i 0 7
Ol =0 (T is =02 (Puu)sa = By Ty = O,

€

By (3.10), as € — 0, we have

i @i I OTpe)iy Oy} 1
(Bpeli'a = =g = g + 0 = =50 a];kﬂ+0<1)zo<>'

—

Now we estimate VC'[X] as € — 0. By definition,

- ; 0 Xi(z) 9
X(x,y) = [X]'=— =
[ ]( ) [ ]axz (@) Fp,é(va) ozt (@9)
and 5
VO X] = (dM[X] + [X)! (rp,e);kdmk)@.

Assume that the vector field X has the following Taylor expansion near p € Z(X):

[ a [ 6 s
X(x)=X (:c)agcz x:zl_: 0T 55 w—|—0(7’ ), Yzel, (A1)
where the sum is taken over all the multi-indices o = (v, ..., a9y,) with |a] = a3 + -+ + a2, = s, and

2% = (z1)* ... (z?")*2», When € — 0, one easily has

ox?

— 571 ‘.:
97 O®™) fori,j=1,...,2n.

Xt = O(€*),

Set

£e(x) = Fye(w, X) = \/gpeij (. X)X X1,

Because a’,’s are constants and g, . is uniformly bounded and positive definite on B, (¢), we have

E(x) = \/gp’eﬂ»j(;mX) Z agaém"xﬁ +o(r®) = C1r°(2)

lo|=[Bl=s
for some constant C; > 0. Thus as ¢ — 0, we obtain

g . Z‘od:s a’iaxa +O(rs)
€e &e

Furthermore, by the Euler lemma for homogeneous functions, as € — 0 we have

[X])' =

=0(1) fori=1,...,2n.

O&c 1 0¢ 1 [99p.eij ivi L 99p.cij OX® i 9 iyd
0et = %, oak 25, | gt (CIXXIH TG S 0 G XX g (0. X) 5 (XX)
_ 1 OGpe,ij ivj 0 iy
- 2&[ o (T XIXXH Gpcig (0 X 1 (XX)

oxi .
= gp,e,ij(an)W[X]J +O(€)

=0(eh).



1932 Feng H T et al. Sci China Math  September 2023 Vol. 66 No.9

Hence,
1 [ox? ) 1
3 {axk B [X]Zaik} o +0(1) = O(ﬁ) as € — 0.

When € — 0, we get

—

X]*0,. = (g;;.';m, (X)) (Ap i [X])[X]*(VC;;KW) = O(i)

and

PRS2 = () s, X A el + () o XD s A 1T (7] ) =0 1),

By (3.14), as € — 0, we obtain

[X]"PH(RC™) = [X]*PE(RS + Q) = 0(1).

e21171

But the volume of Bp(e) is
Vol(By(e)) = O(e™),

and then we get

<Ce—=>0 ase—0,

| preare)| -
Z.(X)

* Car
> [ e

where C'is a constant. So the claim is valid.
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