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Abstract Vegetation maps are crucial for ecologists and decision-makers, providing essential information on the spatial
distribution of various vegetation types to support ecosystem exploration and management. Despite advancements in Earth
observation and machine learning enabling large-scale vegetation mapping, creating detailed and accurate maps in biodiversity
hotspots remains challenging due to significant environmental heterogeneity and frequent human disturbances. The lack of
sufficient ground-based data and complex climate-vegetation interactions further limits mapping accuracy. In this study, we
developed an integrated framework for multi-source data fusion to enhance vegetation mapping and validation in Yunnan
Province, a global biodiversity hotspot region in Southwest China. The mapping process involved four key steps: (1) vegetation
classification using random forest and Landsat imagery, (2) boundary calibration based on a locally calibrated static climate-
vegetation model, (3) patch correction with independent forest inventory data, and (4) validation using adequate field ob-
servations. This approach enabled the mapping of 17 vegetation types and 44 subtypes in Yunnan Province (1:50000), cate-
gorized based on the growth-form composition of dominant species of the community. The overall accuracies were 0.747 and
0.710 for natural vegetation types and subtypes, and 0.905 and 0.891 for artificial types and subtypes. This high-resolution map
enhances our understanding of vegetation distribution and ecological complexity in this region, offering valuable insights for
policymakers to support conservation efforts and sustainable management strategies.
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1. Introduction

Vegetation maps offer critical insights into the spatial dis-
tribution of ecosystems and land use types from local to
global scales (Franklin, 1995; Pedrotti, 2012). They are es-
sential for scientists and decision-makers, providing a solid

foundation for geo-ecological studies and strategies for ve-
getation conservation, ecological restoration, and sustainable
management (van der Maarel and Franklin, 2012; Liu et al.,
2020). However, large-scale vegetation mapping and its
updates can be challenging due to their high costs in terms of
time and resources. Traditional mapping methods often in-
volve manually delineating vegetation patch boundaries
using contour topographic maps or aerial photographs, with
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vegetation types identified based on expert knowledge
(Kuchler and Zonneveld, 1967; Roberts and Cooper, 1989).
With the increasing impacts of global climate change and
human activities, both natural and artificial vegetation are
undergoing rapid transformations, introducing significant
uncertainties in vegetation mapping (Gottfried et al., 2012;
Fagan et al., 2018; Chen et al., 2019). Consequently, most
traditional vegetation maps struggle to accurately represent
current vegetation distributions and often fail to capture the
dynamics of changing landscapes.
Advancements in Earth observation technologies and

machine learning algorithms have made it possible to map
large-scale vegetation distribution and monitor vegetation
dynamics effectively (Xie et al., 2008; Adam et al., 2010;
Gašparović and Dobrinić, 2020; Del Valle and Jiang, 2022).
Remote sensing datasets, with their global coverage and free
accessibility, significantly reduce the temporal and financial
costs of large-scale vegetation mapping (Tong et al., 2023).
These datasets provide detailed spectral information, in-
cluding plant reflectance, texture, and phenology, which are
crucial for accurate vegetation classification (Tuanmu et al.,
2010; Verrelst et al., 2015; Madonsela et al., 2017). Beyond
multispectral optical satellite bands, other datasets, including
SAR (Grimaldi et al., 2020), LiDAR (Liang et al., 2020), and
UAV imagery (de Castro et al., 2021), are also commonly
employed in vegetation classification. Machine learning al-
gorithms further enhance modern vegetation mapping by
automatically identifying the nonlinear relationships be-
tween surface reflectance and land cover types. Popular al-
gorithms include deep learning (DL) (Ienco et al., 2019),
neural networks (Flood et al., 2019), decision trees (Tsai et
al., 2018), support vector machine (SVM), and random forest
(RF) classifiers. RF is widely used for both vegetation type
classification and vegetation attribute regression, owing to its
robust performance and efficiency in managing high-di-
mensional data and multicollinearity (van Beijma et al.,
2014; Belgiu and Drăguţ, 2016). SVM can yield accurate
maps with small training sample sizes, which is important
given the challenges and costs associated with field data
collection (Mountrakis et al., 2011; Shao and Lunetta, 2012).
DL models require substantial data quality and quantity, such
as hyperspectral high-resolution imagery and extensive
training datasets, which can limit their application in large-
scale vegetation mapping (Kattenborn et al., 2021).
Land Cover and Land Use (LCLU) maps serve as a useful

foundation for detailed vegetation mapping (Hansen and
Loveland, 2012), but the classification systems of existing
LCLUmaps are often too simplistic to capture information at
the levels of vegetation type and subtype (Homer et al.,
2015). Currently, vegetation maps with higher classification
levels are available at various scales and regions. On a
continental or national scale, a new version of China’s ve-
getation map was updated using MODIS land surface pro-

ducts (Su et al., 2020). A seamless vegetation-type map of
India was developed based on IRS LISS-III images (Roy et
al., 2015). The circumpolar Arctic region’s vegetation dis-
tribution was also revised, building upon the strengths of the
original map (Walker et al., 2005; Raynolds et al., 2019). At
a regional scale, Germany’s agricultural areas were classified
into 19 land cover classes using Sentinel-2 data (Preidl et al.,
2020). Different rainforest vegetation types were mapped
using maximum likelihood and random forest classification
methods (Erinjery et al., 2018).
Despite advances in remote sensing and machine learning,

detailed vegetation maps with fine spatial resolution and
high accuracy remain scarce, particularly in regions with
high environmental heterogeneity, rich biodiversity, and
frequent human disturbances (Erinjery et al., 2018; Räsänen
and Virtanen, 2019; Wagner et al., 2019). The main chal-
lenges include a lack of ground-based data, complex climate-
vegetation interactions, indistinguishable forest types, and
persistent human activity. Firstly, insufficient and unevenly
distributed field sampling points present significant limita-
tions for vegetation classification, making it difficult to train
accurate and robust machine learning models (Treitz et al.,
1992). Secondly, relying on a single data source is in-
adequate for detailed vegetation classification in biodiversity
hotspots, where multiple vegetation types may share similar
spectral signatures and phenological traits (Bioucas-Dias et
al., 2013; Tsai et al., 2018). Thirdly, distinguishing secondary
vegetation types that emerge following deforestation or af-
forestation is challenging (Carreiras et al., 2017; Chen et al.,
2020). Moreover, although the distribution of agroecosys-
tems is critical for ecosystem management, it is often over-
looked in current vegetation mapping (Senf et al., 2013).
Yunnan, a province in southwestern China, forms a crucial

part of one of the world’s 36 global biodiversity hotspots
(Myers et al., 2000). An accurate and detailed vegetation
map is essential for effective biodiversity conservation and
ecosystem management in this region (Li et al., 2015).
However, topological variability, ecosystem diversity, and
increasing human disturbance are three main constraints for
vegetation mapping (Ye et al., 2020). The current vegetation
map of Yunnan was created in the 1980s by traditional
mapping approaches based on topographic contour maps,
expert knowledge, and extensive field surveys (Wu and Zhu,
1987). The spatial resolution of this map is too low to reflect
the details of vegetation distribution, and the accuracy of the
map has not been systematically evaluated. Meanwhile, the
spatial distribution of vegetation types has changed drasti-
cally in recent decades (Zomer et al., 2015; Shi and Chen,
2018; Sun et al., 2021). Therefore, there is an urgent need to
produce an updated vegetation map with finer spatial re-
solution, more detailed classification, and higher mapping
accuracy to reflect the current vegetation status in Yunnan.
The aim of this study is to investigate the complexity and
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diversity of ecosystems in Yunnan by mapping the dis-
tribution of vegetation types. We utilize a multi-source data
approach, incorporating remote sensing data, field observa-
tions, forest inventories, environmental factors, and expert
knowledge. Specifically, our objectives were to (1) develop a
data-fusion framework for vegetation mapping and valida-
tion in an ecologically diverse region using multiple data
sources, (2) produce an accurate and up-to-date vegetation
map for Yunnan, and (3) analyze the distribution patterns of
vegetation types to provide recommendations for vegetation
conservation and sustainable management.

2. Methods

2.1 Study area

The ecosystems of Yunnan are extremely diverse due to its
drastic environmental variability and transitional location
between three geographical regions (East Asia, Southeast
Asia, and the Tibetan Plateau) (Figure 1). The environmental
gradients from cold-wet alpine areas to dry-hot valleys
provide diverse niches for plants and animals to survive
drastic climate change (Wang et al., 2018). Tropical rain-
forests and evergreen broad-leaved forests formed by humid
monsoons offer habitats to countless tropical species.
Strongly disturbed by human activities, most ecosystems in
central Yunnan are covered by secondary or artificial vege-

tation types. Karst geography shapes unique patterns of ve-
getation distribution in eastern Yunnan.

2.2 Classification system

The classification system was constructed mainly based on
the Ecosystems List of Yunnan Province (Gao et al., 2021),
which represents a cognitive update on Yunnan Vegetation
three decades after Wu and Zhu (1987). Minor adjustments
were made according to the field observation results. Finally,
17 vegetation types and 44 vegetation subtypes (32 natural
vegetation subtypes, 9 artificial vegetation subtypes, and 3
non-vegetation subtypes) were included in this system
(Appendix Table S1, https://link.springer.com).

2.3 Data sources

2.3.1 Remote sensing data
We obtained Landsat 8 OLI collection-2 Tier-1 level-2 sur-
face reflectance images at 30-m resolution during 2018 and
2020 from USGS Earth Explorer (https://earthexplorer.usgs.
gov/). After masking clouds and shadows, we first filtered
the images by the date corresponding to three seasons: spring
(March, April, and May), summer (June, July, and August),
and autumn (September, October, November). Then we
created composite seasonal mosaic images with the median
method for six image bands (2-blue, 3-green, 4-red, 5-NIR,

Figure 1 Study area and physiognomy of major vegetation types in Yunnan.
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6-SWIR1, and 7-SWIR2), and calculated two vegetation
indices (NDVI and EVI) with the mosaic images in each
season. Photos from Google Earth at level 19 with a re-
solution of less than 1 m were used to support the visual
interpretation of vegetation types. Additionally, four topo-
logical factors calculated from ASTER Global Digital Ele-
vation at 30-m spatial resolution were included in the
following analyses: elevation, slope, aspect, and roughness.

2.3.2 Field data
During 2018–2020, we collected more than 20000 field
sample points and 5000 field plots throughout Yunnan. After
one-by-one checking and screening, 15066 sample points
and 2052 plots were selected for this study (Figure 2). The
selected sample points are evenly distributed throughout
Yunnan and cover all the 44 vegetation types in our classi-
fication system. The selected plots provided reliable refer-
ences for map validation and covered 28 natural vegetation
types. The investigation of original vegetation and planta-
tions was carried out by the Yunnan Institute of Forest In-
ventory and Planning during 2010–2020, identifying and
mapping the patches of original and artificial vegetation

throughout Yunnan (Figure 2). Original vegetation patches
refer to vegetation that is relatively old, has not been sig-
nificantly disturbed by human activities, and retains its nat-
ural structures and functions. The identification and
investigation of these original vegetation patches are detailed
in Tao et al. (2016). Artificial vegetation patches refer to
continuously managed plantations (e.g., rubber or eucalyptus
plantations) or gardens (e.g., fruit orchards or tea gardens).
These were all planted according to Yunnan’s afforestation
plans, which include both the extents and species of artificial
vegetation patches. This independent investigation dataset
not only marked the distribution area of original and artificial
vegetation but also recorded the dominant species of most
patches.

2.3.3 Environmental factors and PNV map
A potential natural vegetation (PNV) map was derived from
the Comprehensive and Sequential Classification System
(CSCS) with monthly climate data in Yunnan (Ren et al.,
1980; Liang et al., 2012). Monthly mean temperature (MAT,
°C) and monthly precipitation (MAP, cm) were interpolated
with data from 184 meteorological stations in/around Yun-

Figure 2 The spatial distribution of 15066 field sample points (a), 2052 natural vegetation plots (b), original vegetation patches (c), and artificial vegetation
patches (d).
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nan. The interpolation process was performed with thin plate
smoothing splines in ANUSPLIN version 4.4, and DEM data
were induced as a covariate factor (Hutchinson, 1995).
Based on the accumulated temperature above 0°C (GDD0)
and the degree of moisture (K), CSCS classified Yunnan into
17 potential vegetation types, which allowed us to set reli-
able climatic boundaries for vegetation types. We summar-
ized the altitudinal and climatic boundaries of the 16 PNV
types on 23 mountains in Yunnan according to 1930 field
sample points collected from literatures, in order to refine the
thresholds for heat (GDD0) and humidity (K) clustering of
each PNV type. Details of the CSCS model and the PNV
map are provided in Xiahou et al. (2024).

2.4 Data processing and validating

We employed a data-fusion-based framework to map and
validate the distribution of vegetation types in Yunnan with

various data sources (Figure 3). The systematic framework
contained four major steps: (1) vegetation classification
based on the random forest and Landsat images, (2)
boundary calibration based on a locally calibrated climate-
vegetation relationship (PNV map), (3) patch correction with
independent forest inventory data, and (4) validation with
adequate ground-based observations.

2.4.1 Vegetation classification
To track the best-performed method for vegetation classifi-
cation, we compared the three most used algorithms for re-
mote sensing vegetation classification, including Random
Forest (RF), Support Vector Machine (SVM), and Deep
Learning (DL). The 15066 sample points were randomly
divided into a training dataset (70%) and a test dataset (30%)
to train and test the performance of three models. After the
trial tests, we fitted (1) an RF model with 1000 trees and 5
random variables at each split, (2) an SVMmodel with linear

Figure 3 Workflow for mapping vegetation types with multi-source data.
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kernel, and (3) a DL model with 8 hidden layers (with 128
neurons each) and input/output layers (with softmax action).
Results showed that the RF model has the highest classifi-
cation accuracy for our dataset. Therefore, we finally used
the random forest algorithm to classify vegetation in Yunnan.
Training data for the model were 15066 selected field sample
points.

2.4.2 General category & boundary calibration
We systematically adjusted the climatic boundaries of zonal
vegetation types according to the PVNmap, which is an ideal
reference for boundary modification since it integrated both
climatic limitations and empirical knowledge about the en-
vironmental ranges of zonal vegetation types. Specifically,
we compared the potential and realistic spatial distribution of
each zonal vegetation type and modified the vegetation
patches located outside the potential distribution area to the
corresponding potential vegetation types. This step was
especially useful in distinguishing vegetation types with si-
milar appearance and spectral characteristics but distributed
in different climatic and geographic zones.

2.4.3 Specific category & patch correction
We masked the vegetation map with the original and artifi-
cial vegetation patches obtained from the field forest in-
ventory data. Unmatched regions were directly modified
according to the inventory data because it was difficult to
recognize specific forest types by remote sensing, and the
forest inventory data were generated by reliable field sur-
veys. Expert advice was also considered when we manually
inspected and partially adjusted the vegetation map because
knowledge about the species composition, community
structure, succession process, causes of formation, and plant
flora was extremely important for understanding and mod-
elling the spatial distribution of vegetation types. Visual in-
spection helps us improve the accuracy of transitional and
non-typical vegetation types in complex ecosystems like
tropical/subtropical regions. Moreover, we incorporated
patches smaller than 5 ha into their neighbors for the final
map presentation, because in field surveys we found that the
distribution of vegetation types often has a certain degree of
continuity, and vegetation patches smaller than 5 ha are rare
and unstable.

2.4.4 Validation & cartographic synthesis
Accuracies of the Yunnan vegetation map were evaluated at
the vegetation type and subtype levels. Reference data
comprised 2052 natural vegetation plots and 588 artificial
vegetation plots with detailed information about the vege-
tation communities in Yunnan to calculate the overall accu-
racy, the precision of each vegetation type and subtype, and
the recall. We used the field plots since they are more care-
fully investigated than the field sample points. Overall ac-

curacy refers to the ratio of correctly classified field plots to
the total number of field plots. Precision is the ratio of cor-
rectly classified field plots for a specific vegetation type to
the total number of plots predicted to be that type. Recall is
the ratio of correctly classified field plots to the total number
of field plots of that type. Data processing in this study was
based on QGIS 3.16, R 4.0, Google Earth Engine, and AN-
USPLIN 4.4.

3. Results

3.1 Vegetation map adjusted with ground-based data

The overall classification accuracies for RF, SVM, and DL
were 0.518, 0.458, and 0.371, respectively. RF showed the
best performance in vegetation classification for our datasets.
The accuracies of RF and SVM were acceptable considering
a large number of vegetation types (44 types) and a limited
training dataset in such a large area. Besides, many types
share similar spectral and terrain characteristics, which
makes it difficult to classify precisely by remote sensing
images at the level of vegetation subtypes. However, the
classification can be right at the level of vegetation types or
vegetation groups, setting a good foundation for boundary
calibration and patch correction.
Overall, 48.41% (179117 km2) of the total area in Yunnan

was modified through boundary calibration and patch cor-
rection. Among these changes, 25.54% (94498 km2) was
corrected by field investigation data of original and artificial
vegetation, making the greatest contributions to map im-
provements. 14.37% (53169 km2) of the total area was ca-
librated by PVN map mainly at the subtype level. The rest
8.5% (31450 km2) was corrected according to expert advice
and manual inspection, which mainly targeted at some spe-
cial vegetation types and special regions.

3.2 Spatial distribution of vegetation types in Yunnan
Province

The most extensive vegetation type in Yunnan is the mid-
subtropical coniferous forest (primarily Pinus yunnanensis),
covering approximately 103108 km2. This forest is widely
distributed across the province, extending from southern
subtropical areas to the northwestern mountains, with a
significant presence on the Central Yunnan Plateau (Figure
4a). Another key natural vegetation type on the Plateau is the
semi-humid evergreen broad-leaved forest (4191 km2), much
of which has been degraded due to human activity and fire
disturbances. Cropland, covering around 82448 km2, is the
second most widespread vegetation type in Yunnan, pri-
marily found in intermountain basins and gentle foothills,
underscoring the region’s agricultural importance. Following
these are three subtropical vegetation types located in Yun-
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Figure 4 Map of Yunnan vegetation 44 subtypes after modification (a), total area and patch area (b), and environmental range of vegetation subtypes along
MAT (Mean Annual Temperature) and AP (Annual Precipitation) axes (c).
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nan’s southern mountains: tropical and subtropical mountain
shrubland (33113 km2), warm-tropical coniferous forest
(17626 km2), and monsoon evergreen broad-leaved forest
(17023 km2). In northwestern Yunnan, cool-temperate con-
iferous forest (12182 km2, mostly Pinus armandii) and cold-
temperate coniferous forest (13749 km2, mostly Picea and
Abies), along with temperate mountain shrubland (5451 km2)
and meadows (5734 km2), form the vertical vegetation gra-
dient of the mid-to-upper slopes of the Hengduan Mountains.
In southern Yunnan, mid-mountain moist evergreen broad-
leaved forest (6390 km2) and mountain mossy evergreen
broad-leaved forest (1533 km2) are significant natural ve-
getation types in the warm and humid mountain regions.
Rainforest, covering approximately 3029 km2 and char-
acterized by dense, diverse flora, is concentrated in tropical
valleys with favorable moisture conditions. Deciduous
(1178 km2) and semi-evergreen (1652 km2) monsoon rain-
forests are prevalent in wide valleys influenced by the
monsoon climate. The dry-hot valley savanna (5130 km2) is
a distinctive vegetation type found in deep valleys perpen-
dicular to the summer monsoon direction. Among artificial
forests, nut plantations are the largest, covering around
11836 km2, followed by rubber plantations (9706 km2),
which are predominantly found in the southern tropical re-
gions where rubber cultivation is prominent.
Patch area indicates the degree of fragmentation among

vegetation types. The largest patch areas for natural vege-
tation are found in three alpine types: cold-temperate con-
iferous forests, moist evergreen broad-leaved forests, and
alpine meadows (Figure 4b). In contrast, low-altitude vege-
tation types, such as deciduous broad-leaved forests and
moist rainforests, have smaller patch areas. Among artificial
vegetation, rubber plantations, and cropland have larger
patches compared to other plantations and gardens.
Regarding the environmental range of vegetation types,

most prefer moderate temperatures (around 15°C) and pre-
cipitation (around 80 cm), including the dominant warm-
temperate coniferous forest and cropland (Figure 4c). Tro-
pical vegetation types, such as rainforests and rubber plan-
tations, occupy the hottest and most humid regions.
Evergreen broad-leaved forests also thrive in areas with high
precipitation but prefer cooler temperatures than rainforests.
Alpine regions are dominated by cold-adapted vegetation,
including meadows, temperate mountain shrubland, and
cold-temperate coniferous forests.

3.3 Accuracy assessment

The overall accuracies of natural vegetation types and sub-
types are 0.747 and 0.710, respectively (Table 1; Appendix
Table S2). For artificial vegetation types and subtypes, the
overall accuracies are 0.905 and 0.891, respectively (Table 2;
Appendix Table S3). In general, the overall accuracy for

artificial vegetation types is much higher than the accuracy
of natural vegetation types. The widespread zonal vegetation
types showed higher accuracy than fragmented and sec-
ondary vegetation types in our vegetation map. Among all
natural vegetation types, sub-alpine meadow, dry-hot valley
shrubland, and dry-hot valley savanna have the largest
mapping accuracies (above 0.8). Accuracies of most ever-
green broad-leaved forest types and coniferous forest types
exceed 0.7, higher than the average mapping accuracy of
other vegetation types. The accuracies of rainforest types are
around 0.6, which is lower than the average accuracy but still
acceptable since mapping the distribution of rainforests is
always a great challenge. Accuracies of fragmented and
secondary vegetation types are lower than expected, such as
sclerophyllous evergreen broad-leaved forests, deciduous
broad-leaved forests, and bamboos.

3.4 Detailed maps of vegetation types

We used five 30 km×30 km examples across Yunnan to
present the details of our final vegetation map and compared
these to the preliminary vegetation map before modification
and the vegetation map for the 1980s. In general, our ulti-
mate map after the systematic and patch correction showed
more details than the other two maps (Figure 5). Specifically,
in alpine areas, our map not only divided meadow and
coniferous forest into more detailed types but also re-
cognized more sub-alpine shrubland and sclerophyllous
evergreen broad-leaved forests. In the tropics, the distribu-
tion of plantations and gardens was better mapped with our
ultimate map than the other two maps. Around cities, we
made great efforts to distinguish different artificial land uses
and modify the misclassified patches. Additionally, vegeta-
tions in karst hills and dry-hot valleys were particularly fo-
cused on.

4. Discussion

4.1 Accuracies of Yunnan vegetation map

This study generated a practical framework for vegetation
mapping and validating in a global biodiversity hotspot with
high ecologically complex. The overall accuracies were
0.747 and 0.710 for natural vegetation type and subtypes,
and 0.905 and 0.891 for artificial vegetation type and sub-
types. Research has shown that the accuracies of vegetation
maps are strongly related to spatial resolution, classification
system, and study area, besides data sources and mapping
approaches (Xie et al., 2008; Räsänen and Virtanen, 2019).
This study attempted to find a balanced method between
spatial resolution, classification system, mapping accuracy,
and mapping efficiency, to comprehensively reflect the dis-
tribution of heterogeneous vegetation types and complex
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ecosystems in this provincial biodiversity hotspot region.
At the continental scale, vegetation map classification

systems tend to be comprehensive but have coarse spatial
resolutions due to computational constraints. These maps
typically have lower mapping accuracies compared to our
map, as they cover large areas with heterogeneous environ-
ments and complex vegetation types (Roy et al., 2015;
Raynolds et al., 2019). For instance, the overall accuracies of
the updated vegetation map of China are 64.8% at the ve-
getation type group level and 61% at the vegetation type/
subtype level (Su et al., 2020). At the regional scale, many

studies have produced vegetation maps with high spatial
resolution and mapping accuracy. For example, the dis-
tribution of five types of rainforests and tropical plantations
was mapped with 75% accuracy (Erinjery et al., 2018). A
land use map of the Sahel region achieved an overall accu-
racy of 72%±3.9% (Schulz et al., 2021), and 24 vegetation
types in Western Australia were classified with 74% accu-
racy (Macintyre et al., 2020). However, the application of
these maps is often limited by their simple classification
systems and small mapping extents (Li et al., 2020; Lopes et
al., 2020). At the provincial scale, the accuracy of vegetation

Table 1 Recall and precision of natural vegetation types and subtypes

Vegetation type Number Recall Precision Vegetation subtype Number Recall Precision

Rainforest 110 0.71 0.83
Seasonal rainforest 71 0.61 0.74

Mountain rainforest 39 0.59 0.64

Monsoon rainforest 34 0.59 0.38
Semi-evergreen monsoon rainforest 19 0.53 0.30

Deciduous monsoon rainforest 15 0.47 0.37

Evergreen broad-leaved forest 412 0.76 0.83

Monsoon evergreen broad-leaved forest 179 0.71 0.82

Semi-humid evergreen broad-leaved forest 137 0.75 0.83

Moist evergreen broad-leaved forest 15 0.60 0.47

Mid-mountain moist evergreen broad-leaved forest 56 0.73 0.71

Mountain mossy evergreen broad-leaved forest 16 0.69 0.85

Mountaintop mossy dwarf forest 8 0.75 1.00

Sclerophyllous evergreen
broad-leaved forest 59 0.53 0.76

Cold-temperate sclerophyllous evergreen
broad-leaved forest 21 0.54 0.73

Dry-hot sclerophyllous evergreen
broad-leaved forest 35 0.51 0.78

Deciduous broad-leaved forest 56 0.10 0.63 Deciduous broad-leaved forest 56 0.10 0.63

Sub-tropical coniferous forest 474 0.74 0.74
Warm-subtropical coniferous forest 48 0.65 0.69

Mild-subtropical coniferous forest 426 0.75 0.74

Temperate coniferous forest 350 0.83 0.93
Cool-temperate coniferous forest 96 0.71 0.70

Cold-temperate coniferous forest 253 0.76 0.90

Bamboo forest 22 0.41 0.69
Tropical bamboo forest 15 0.40 0.75

Sub-tropical bamboo forest 7 0.43 0.60

Savanna 138 0.83 0.74 Dry-hot valley savanna 140 0.80 0.95

Shrubland 167 0.69 0.60

Dry-hot valley shrubland 30 0.69 0.66

Tropical mountain shrubland 35 0.51 0.78

Sub-tropical mountain shrubland 39 0.67 0.51

Temperate mountain shrubland 57 0.72 0.51

Meadow 235 0.88 0.88

Sub-alpine meadow 172 0.87 0.86

Alpine meadow 14 0.76 0.43

Alpine scree meadow 14 0.79 1.00

Swamp meadow 27 0.52 0.82

Overall accuracy 0.747 Overall accuracy 0.710
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maps largely depends on the complexity of the vegetation
and environment in the study area. Regions with homo-
geneous environments and low biodiversity tend to have

high mapping accuracy, while more complex and biodiverse
areas show lower accuracy (Zhang et al., 2019; Ghorbanian
et al., 2020; Liu et al., 2020; Preidl et al., 2020).

Table 2 Recall and precision of artificial vegetation types and subtypes

Vegetation type Number Recall Precision Vegetation subtype Number Recall Precision

Cropland 249 0.91 0.99 Cropland 249 0.91 0.99

Plantation 237 0.89 0.94

Rubber plantation 39 0.92 0.97

Eucalyptus plantation 43 0.93 0.95

Nut plantation 29 0.79 0.85

Fruit plantation 21 0.95 0.76

Other deciduous broad-leaved plantation 29 0.82 0.92

Other evergreen broad-leaved plantation 76 0.86 0.91

Garden 102 0.86 0.92
Tea garden 48 0.89 0.93

Other gardens 54 0.81 0.89

Overall accuracy 0.905 Overall accuracy 0.891

Figure 5 A comparison of vegetation details in five areas in Yunnan reflected by remote sensing images and different vegetation maps: Google Earth image
(I), ultimate vegetation map (II), preliminary vegetation map (III), and vegetation map in “Yunnan Vegetation” in the 1980s (IV). The colors of the vegetation
types are shown in Figure 4. Locations of these five examples were showed in Appendix Figure S2.
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4.2 Advantages and shortages of the data-fusion-based
mapping approach

The relatively high accuracy of our map is mainly due to
various data sources, data-fusion-based mapping approaches,
and a comprehensive understanding of Yunnan vegetation
(Del Valle and Jiang, 2022). Compared with single-data-
source vegetation mapping, our data-fusion-based mapping
framework and various data sources generated more com-
prehensive and accurate vegetation maps, considering the
diverse and complicated vegetation communities in Yunnan
(Ran et al., 2012; Zhang and Xie, 2014; Yao et al., 2020). We
solved the problem that multiple vegetation types share si-
milar spectral signatures, overcoming the shortage of using
only remote sensing data. Sufficient ground-based data are
the foundation for accurate vegetation mapping and vali-
dating, even with higher quality remote sensing images and
updated classification algorithms. In this study, 15066 field
sample points throughout the research area are used as train
data for the random forest algorithm, which is more suffi-
cient and reliable than most vegetation maps (Lopes et al.,
2020; Wu et al., 2021). This ensures the robustness of the
algorithm and the accuracy of classification. Forest inventory
data also help us refine the details of our vegetation map by
distinguishing the subtypes of forest (original forest & sec-
ondary forest, natural forest & plantation) and recognizing
tree species of gardens (tea & fruit & nut) and plantations
(rubber & eucalyptus, etc.), which are significant for vege-
tation conservation and sustainable management but often
ignored in vegetation maps (Trisasongko and Paull, 2020;
Azizan et al., 2021). We also incorporated temperature and
precipitation into the vegetation map by the CSCS model and
PNV map, instead of treating them as environmental factors,
since the relationship between vegetation distribution and
climate conditions in Yunnan is complex, thus cannot be
simply simulated (Biermann, 2007; Ni and Herzschuh, 2011;
Zhu et al., 2016; Fan and Bai, 2021). In the CSCS model,
accumulated temperature, humidity index, and their inter-
actions were considered, as well as the empirical knowledge
about the distribution of zonal vegetation types (Liang et al.,
2012; Du et al., 2022). The thresholds between different
vegetation types were carefully adjusted, and the accuracies
of the PNV map were evaluated according to field data and
expert advice. Therefore, the PNV map offered a more sys-
tematic and robust reference to adjust the climatic boundaries
for zonal vegetation types.
However, we also noticed that the accuracies of some

vegetation types still need to be improved. It was difficult to
accurately classify transitional, secondary, fragmented, and
scattered vegetation types. For transitional and non-typical
vegetation types like monsoon rainforest, it is difficult to
define and recognize the key features by remote sensing
images and vegetation-climate models. More knowledge

about plant taxonomy and flora is needed to improve the
accuracy. For secondary vegetation types like savanna, their
appearance and distribution are diverse and unstable due to
the frequent natural or artificial disturbances, which brings
higher requirements on the quantity and quality of field data
for accurate classification. For fragmented and scattered
vegetation types such as deciduous broad-leaved forests and
bamboo, specifically targeted field surveys are inevitable for
future improvements.

4.3 Vegetation distribution and biodiversity conserva-
tion

This study reveals the environmental heterogeneity, ecolo-
gical complexity, and biodiversity of Yunnan through its
vegetation distribution. Basically, the climate gradients,
ranging from tropical (MAT > 25°C) to cold (MAT < −5°C),
and from humid (AP > 2000 mm) to arid (AP < 500 mm),
fundamentally shape the diversity of vegetation types, which
in turn drives overall biodiversity. Horizontally, the unique
terrain, with lower elevations in the south and higher in the
north, creates a distinct zonation of climate and vegetation.
Southern Yunnan is characterized by rainforests, monsoon
rainforests, and monsoon evergreen broad-leaved forests.
The central Yunnan plateau hosts semi-humid evergreen
broad-leaved forests and mid-temperate coniferous forests,
while cold-temperate coniferous forests dominate the
northwestern mountains. Vertically, Yunnan’s fragmented
landscape, with alternating mountains and valleys, results in
pronounced mountainous vegetation zones. In southern
Yunnan, vegetation transitions from moist rainforests in the
valleys to mountain rainforests, monsoon evergreen broad-
leaved forests, mid-mountain moist evergreen broad-leaved
forests, mountain mossy evergreen broad-leaved forests, and
mountain-top mossy dwarf forests at higher elevations. In the
northwest, vegetation ranges from dry-hot valley savannas to
temperate coniferous forests, mountain shrublands, and al-
pine meadows. Furthermore, Yunnan’s vegetation exhibits
significant transitional characteristics due to the simulta-
neous influence of the southwestern and southeastern sum-
mer monsoons. The southwestern monsoon primarily affects
the southern region, leading to vegetation similar to that of
the Indochina Peninsula, while the southeastern monsoon
shapes the eastern region’s vegetation, making it resemble
that of the South China monsoon region.
Our vegetation map also illustrates specific regions and

vegetation types that need to be focused on in biodiversity
conservation and ecosystem management. Attention should
be paid to highly fragmented and disturbed vegetation types
with small patch areas, such as rainforests and seasonal
rainforests. These vegetation types are seriously threatened
by drastic climate changes and frequent human activities and
are difficult to restore after destruction (Taubert et al., 2018;
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Liu et al., 2019). Secondary vegetation types are usually in
the transitional state of short-term vegetation recovery after
the destruction of the natural forest. By reducing human
disturbance and increasing protection measurements, these
types have the potential to succeed toward the advanced
plant communities and thus impact ecosystem services and
the carbon cycle in the future (Wang et al., 2017; Zeng et al.,
2019). Furthermore, the conservation of natural vegetation
types with climax community structure should not be ne-
glected. These vegetation types provide important habitats
and refuges for plants and animals to avoid disturbance
(Verrall and Pickering, 2020).

5. Conclusion

This study mapped the spatial distribution of vegetation
types in Yunnan Province (1:50000), highlighting the com-
plexity and diversity of its ecosystems. We developed a new
data-fusion approach that integrates multiple data sources to
address the challenges of large-scale remote sensing vege-
tation mapping in biodiversity hotspot regions. Specifically,
we (1) utilized extensive ground-based observations to pro-
vide representative training data for the random forest clas-
sifier and reliable references for map validation, (2) modeled
the climate-vegetation relationships to systematically refine
vegetation type boundaries, (3) incorporated independent
forest inventory data to differentiate detailed forest types,
and (4) used forestry planning data to map artificial eco-
systems. Consequently, the spatial distribution of 17 vege-
tation types and 44 subtypes in Yunnan. The overall
accuracies were 0.747 and 0.710 for natural vegetation types
and subtypes, and 0.905 and 0.891 for artificial types and
subtypes. With a 30 m spatial resolution, this map offers
detailed, reliable, and spatially precise information, sup-
porting further exploration of ecosystem properties and
providing a solid foundation for biodiversity conservation
and sustainable ecosystem management.
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