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Abstract In this paper, we prove that the nearly integrable system of the form

H(x, y) = h(y) + εP (x, y), x ∈ Tn, y ∈ Rn, n > 3

admits orbits that pass through any finitely many prescribed small balls on the same energy level H−1(E)

provided that E > minh, if h is convex, and εP is typical. This settles the Arnold diffusion conjecture for

convex systems in the smooth category. We also prove the counterpart of Arnold diffusion for the Riemannian

metric perturbation of the flat torus.
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1 Introduction

In this paper, we consider nearly integrable Hamiltonian systems of the form

H(x, y) = h(y) + εP (x, y), (x, y) ∈ T ∗Tn, n > 3, (1.1)

where h is strictly convex, i.e., the Hessian matrix ∂2h
∂y2 is positive definite. It is also assumed that both

h and P are the Cr-functions with 7 6 r 6 ∞ and minh = 0.

1.1 The problem and the theorems

The problem of studying the (in)stability of the above system H was considered to be the fundamental

problem of Hamiltonian dynamics by Poincaré. According to the celebrated Kolmogorov-Arnold-Moser

(KAM) theorem, there exists a large measure Cantor set of Lagrangian tori on which the dynamics is

conjugate to irrational rotations and the oscillation of the slow variable (or called the action variable) y

is at most O(
√
ε). The KAM theorem also excludes the possibility of large oscillations of y in the case
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of n = 2 since each energy level, which is three-dimensional, is laminated by two-dimensional KAM tori

and each orbit either stays on a KAM torus or is confined between two tori. For n > 3, there does not

exist topological obstruction for the slow variable y to have the O(1) oscillation. Thus Arnold [3,4] made

the following conjecture.

Conjecture (See [3,4]). For any two points y′ and y′′ on the connected level hypersurface of h in the

action space, there exist orbits of (1.1) connecting an arbitrary small neighborhood of the torus y = y′

with an arbitrary small neighborhood of the torus y = y′′, provided that ε ̸= 0 is sufficiently small and

P is generic.

In this paper, we prove the conjecture for convex Hamiltonians in the smooth category in the sense of

cusp-residual genericity. We next give the precise statement of our main theorem.

By adding a constant to H and introducing a translation y → y + y0, one can assume minh(y)

= h(0) = 0. For E > 0, let H−1(E) = {(x, y) : H(x, y) = E} denote the energy level set, and B ⊂ Rn

denote a ball in Rn such that
∪

E′6E+1 h
−1(E′) ⊂ B.

Let r0 > 7 be a positive number and r0 6 r 6 ∞. Let Sr ⊂ Cr(Tn × B) (resp. Br ⊂ Cr(Tn × B))

be the set of functions f ∈ Cr(Tn ×B) satisfying ∥F∥Cr0 = 1 (resp. ∥F∥Cr0 < 1). For a perturbation P

independent of y that we call the Mañé perturbation, we use the same notation Sr ⊂ Cr(Tn) (resp.

Sr ⊂ Cr(Tn)) for the set of Cr functions on Tn with Cr0-norm 1 (resp. < 1).

Definition 1.1 (The cusp-residual set). A set C is said to be cusp-residual in Br if there exists a

residual set R ⊂ Sr in the Cr topology such that for each P ∈ R, there are a number aP ∈ (0, 1] that

depends on P ∈ Cr0 continuously, and a residual set RP ⊂ (0, aP ) such that C = ∪{λP | P ∈ R, λ ∈ RP }.
Let Φt

H denote the Hamiltonian flow determined by H. Given an initial value (x, y), Φt
H(x, y) generates

an orbit of the Hamiltonian flow (x(t), y(t)). An orbit (x(t), y(t)) is said to visit Bϱ(y0) ⊂ Rn if there

exists a t ∈ R such that y(t) ∈ Bϱ(y0), a ball centered at y0 with radius ϱ. Our main theorem is as

follows.

Theorem 1.2. Given any small ϱ > 0, there exist an ε and a cusp-residual set C ⊂ Cr(Tn × B) for

n > 3 such that for each P ∈ C and given finitely many small balls Bϱ(yi) ⊂ Rn, where yi ∈ h−1(E)

with E > minh, there exists the Hamiltonian flow Φt
H admitting orbits which visit the balls Bϱ(yi) in any

prescribed order. Moreover, the theorem still holds if we replace the function space Cr(Tn×B) by Cr(Tn).

In particular, the theorem implies that for any small ϱ, there exist ϱ-dense orbits on the energy level

provided that ε is small enough and P is chosen in the cusp-residual set. We also refer readers to the

paper1) for a survey of our series of works, including in particular an outline of the proof of the main

theorem.

Note that in the above theorem, we allow the perturbation to be in Cr(Tn), i.e., depending only on

the angular variables, which is called the Mañé perturbation (see [35]). This enables us to prove the

following theorem on Arnold diffusion for toral geodesic flows.

Let S ∈ SL(n,R) be a matrix of determinant 1 and Tn
S := Rn/(SZn) be a torus determined by S. The

flat metric on Rn naturally induces a flat metric ds2 =
∑n

i=1 dx
2
i on Tn

S , where xi (i = 1, 2, . . . , n) are

coordinates on Rn. We consider the perturbation of the metric ds2 of the form

ds2ε∆ =

n∑
i=1

dx2i +
∑
i,j

εdij(x)dxidxj ,

where ∆(x) = (dij(x)) ∈ Symr(Tn
S) and Symr(Tn

S) is the space of symmetric n×n matrices whose entries

are in Cr(Tn
S). We define the Cr-norm on Symr(Tn

S) as ∥∆∥Cr =
∑

i6j |dij |Cr , where the | · |Cr -norm is

the usual one. With the Cr-norm, we introduce the sphere Sr and the ball Br in Symr(Tn
S) as before.

Theorem 1.3. Given any small ϱ > 0, there exist an ε and a cusp-residual set C ⊂ Symr(Tn
S) for

n > 3 such that for each ∆ ∈ C and given finitely many small balls of radius ϱ in the unit tangent bundle

of (Tn
S , ds

2
ε∆), there exists an orbit of the geodesic flow visiting the balls in any prescribed order.

1) MSRI proceeding of “Hamiltonian systems, from topology to applications through analysis”, to appear.
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This theorem shows that a typical perturbation of the geodesic flow of the flat torus Tn
S admits almost

dense orbits in the unit tangent bundle.

If we restrict only to conformal perturbations, i.e., the perturbed metrics of the form

ds2εV = (1 + εV )

n∑
i=1

dx2i on Tn
S ,

where V ∈ Cr(Tn
S), we have the following theorem.

Theorem 1.4. Given any small ϱ > 0, there exist an ε and a cusp-residual set C ⊂ Cr(Tn
S) for n > 3

such that for each V ∈ C and given finitely many small balls of radius ϱ in the unit tangent bundle of

(Tn
S , ds

2
εV ), there exists an orbit of the geodesic flow visiting the balls in any prescribed order.

1.2 Historical remarks

Arnold first introduced the system

H(I, θ, y, x, t) =
y2

2
+
I2

2
+ (cosx− 1)(1 + ε(sin θ + sin t)) (1.2)

with (I, θ; y, x; t) ∈ T ∗T1×T ∗T1×T1 in [1] and proved that the orbit exists with I(0) < A and I(T ) > B

for any A < B. The idea is that when ε = 0, the subsystem H0 = y2

2 +(cosx−1) admits a hyperbolic fixed

point (y, x) = (0, 0) with stable and unstable manifolds (W s and Wu) both the homoclinic orbit on the

energy level H0 = 0. When viewed in the phase space, this gives a normally hyperbolic invariant cylinder

(NHIC, see Appendix B) C = {(I, θ, 0, 0)} ⊂ T ∗T2 foliated by circles with constant I. Note that the

perturbation ε(cosx − 1)(sin θ + sin t) is special since it vanishes on the NHIC. When the perturbation

is turned on, the NHIC is untouched but the stable and unstable manifolds (W s and Wu) are made

intersect transversely for each I, and so are all nearby I and I ′. Then the diffusion orbit can be found

by following the stable-unstable paths.

As the perturbation in Arnold’s example is special, it was then natural to ask if the similar result holds

if we replace the perturbation by a generic one and assume the presence of an NHIC. Such systems are

called of a priori unstable type in literature. The NHIC C persists under the perturbation, but the main

difficulty lies in the fact that the dynamics on the perturbed NHIC Cε has a Cantor set of invariant curves

and nearby curves may have gaps of width O(
√
ε) by the KAM theory, while the stable and unstable

manifolds of each invariant curve can split at most in order ε, and thus Arnold’s mechanism itself is

not sufficient. Orbits crossing the gaps were known to Birkhoff [11, Chapter VIII] and Mather [38], but

to utilize Arnold’s mechanism to cross the invariant curves, one has to show that stable and unstable

manifolds of all the invariant curves intersect transversely for generic perturbations, which is a highly

nontrivial problem since there are uncountably many invariant curves. This genericity problem was

solved by Cheng and Yan [17, 18] exploiting the regularity of weak KAM solutions with respect to the

cohomology classes. We refer the readers to the ICM talk of Bernard [8] for a survey of difficulties of a

priori unstable systems and Cheng-Yan’s contribution, and [7,22,24,28,42,43] for other works on a priori

unstable systems.

The study of systems of a priori unstable type is important for understanding the above conjecture,

since such a system can be obtained via a normal form in the part of the phase space where ω(y) := ∂yh(y)

admits n− 2 resonances, which gives rise to the result [10].

Definition 1.5 (Resonance). A frequency ω(y) = ∂h
∂y ̸= 0 is said to admit a resonance relation, if

there exists an integer vector k ∈ Zn \{0} such that ⟨k,ω(y)⟩ = 0 at the point y. The number of linearly

independent resonance relations is called the multiplicity of the resonance. A nonzero frequency is called

a complete resonance point if the multiplicity is n− 1.

However, these regions of (n − 2)-resonances are not connected and it is not avoidable to encounter

complete resonances. In particular, when n = 3, only single and double resonances occur and a priori

unstable systems can be used to model the single resonance. An energy level {h(y) = E} is a 2-sphere, on
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which a resonance relation ⟨k,ω(y)⟩ = 0 determines a curve and for some y there is a second resonance

k′. Arnold [3] identified that the main difficulty for proving the conjecture is the double resonance, where

the problem is reduced to a nonperturbative mechanical system of the form of two degrees of freedom

G(x, y) =
1

2
⟨Ay, y⟩+ V (x), (x, y) ∈ T ∗T2, (1.3)

where A is positive definite and maxV = 0. We derive this subsystem in Section 6.

Mather [39] announced a version of Theorem 1.2 in the case of n = 3 for Cr perturbations with r =

3, 4, . . . ,∞, ω, and made the following main contributions among others: (1) developing the variational

method for twist maps and Tonelli Lagrangian systems, now known as the Aubry-Mather theory and the

Mather theory, respectively; (2) formulating a notion of cusp-residual genericity; (3) the partial result on

dynamics around the strong double resonance, such as minimal homoclinic orbits for degenerate Jacobi

metrics [40], corresponding to the case of the zero energy level of the system (1.3). However, Mather was

not able to fulfill his announcement. Theorem 1.2 with n = 3 was proved by the first author in a series

of works [13–15, 20]. In particular, the author discovered a mechanism for crossing the strong double

resonance (see [13] and Figure 1) which also plays an important role in the present paper. There is also

another work [32] following the strategy outlined by Mather.

We emphasize the role played by the genericity argument of [17,18] (reproduced in Appendix E) in our

work, which is the only currently known method to establish the genericity in the variational approach.

It relies crucially on the Aubry-Mather theory for twist maps in T ∗T1 (essentially Lemma E.8), which

is why we have to perform n − 2 steps of reductions of orders to search for NHICs homeomorphic to

T ∗T1. An improvement of the argument to Mañé perturbations (see [13, Theorem 4.2]) allows us to get

Theorems 1.3 and 1.4, as well as the Cr(Tn) part of Theorem 1.2. It needs to construct bump functions

as perturbations, which is the main obstruction to proving Arnold diffusion for analytic perturbations.

It also plays an important role in other experts’ work such as [10,32].

1.3 The outline of the proof

In this subsection, we give an outline of the proof.

The starting point of the proof is a normal form package which we expect to have wide applications

beyond Arnold diffusion. The package includes a KAM normal form around resonances and a number of

symplectic transformations and reductions.

The KAM normal form dictates that close to y⋆ where ω(y⋆) is resonant against integer vectors

k1, . . . ,km, a symplectic transformation can be introduced to transform the Hamiltonian to the one

with the same unperturbed part but with the perturbation dominated by Πk1,...,kmP where Πk1,...,km is

the L2-projector to the Fourier modes in span{k1, . . . ,km}. In particular, for the single resonance, i.e.,

m = 1, the normal form package gives us a Hamiltonian of a priori unstable type and the nondegenerate

global maximum of Πk1P (y, ·) corresponds to an NHIC homeomorphic to T ∗Tn−1 when y is varied.

Figure 1 (Color online) The n = 3 case. The green curve encloses the flat of the α-function of (1.3), and the red curve

is of cohomology equivalence
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The n = 3 case was outlined above, and we proceed to the case of n > 3. We find normally hyperbolic

invariant cylinders (NHICs) are
√
ε-away from the complete resonance (the resonance with multiplicity

n− 1) and study the dynamics within a
√
ε-neighborhood of the complete resonance.

First, away from the complete resonance, using a scheme of reductions of orders, we find two-

dimensional NHICs restricted to which the time-1 map of the system is a twist map and construct diffusion

orbits as in a priori unstable systems. The idea of the scheme is to consider the frequency path along

which there are at least (n − 2) linearly independent resonant integer vectors k′,k′′, . . . ,k(n−2) ∈ Zn

forming a hierarchy |k(i)| ≪ |k(i+1)|, i = 1, . . . , n − 3 except that for finitely many points, there are

(n− 1) linearly independent resonant integer vectors forming such a hierarchy |ki| ≪ |ki+1|, i ̸= j with

two vectors having comparable lengths. We show that for any two balls in the frequency space of a

given energy level, there is such a frequency curve with a hierarchy structure shadowing a path with

the Diophantine property (see Lemma 13.1). The hierarchy structure allows us to treat Πk′,k′′,...,k(i+1)P

as a small perturbation of Πk′,k′′,...,k(i)P so that the NHICs in the latter system persists also in the

former. With the persistence and symplecticity of the NHICs (see [23]), we restrict the Hamiltonian to

the NHICs to get a system of fewer degrees of freedom. By repeated reductions of orders utilizing the

hierarchy structure, we eventually obtain two-dimensional NHICs.

Second, the dynamics near the complete resonance, with the existence of NHICs unknown, is much

more delicate. In particular, repeated order reductions are not allowed near the complete resonance due

to the lack of regularity of the NHICs after the first step of the order reduction (generically only C1+ by

Theorem B.2 of the normally hyperbolic invariant manifold (NHIM)). The mechanisms of crossing the

double resonance in the n = 3 case are not sufficient to cross the complete resonance here. Indeed, when

viewed in the space of cohomological classes, the two channels corresponding to two NHICs in the phase

space that we would like to find orbits to connect typically have a misalignment in the extra dimensions

so that they cannot be connected by the paths constructed in [13] (see Figure 1). To overcome this

difficulty, we find a new mechanism to bridge the channels complementary to the paths obtained by the

mechanism of [13] (the blue path of Figure 2).

A main disadvantage of our proof is that the speed of the diffusion orbits gets slowed down as the

dimension n gets larger, which is unnatural considering statistical physics. This is because the argument

relies crucially on the complete understanding of the Aubry-Mather sets in the two-dimensional case. So

we propose the following open problem.

Open problem 1. Find an effective proof of the main result, which does not rely on the Aubry-Mather

theory for twist maps and gives more abundant and faster diffusion orbits as n gets larger.

In the conclusion part of the main theorems above, we only get ϱ-dense orbits for small enough ε.

One may wonder whether we can get dense orbits, which would verify the quasi-ergodic hypothesis. The

following problem was asked by Herman [29].

Open problem 2 (See [29]). Find a C∞-Hamiltonian H in any small Ck-neighborhood k > 2 of

H0(r) = 1/2∥r∥2 such that the Hamiltonian flow has a dense orbit on H−1(1/2). One may even ask

whether a generic Hamiltonian does so.

Contour line for cohomology equivalence

Figure 2 (Color online) The pizza and the ladder climbing in the n > 3 case, which project to Figure 1 on the c1-c2 plane
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The analytic case was announced in [39] but remains open until now. Built on our work on the phase

space dynamics, the main difficulty is to extend the genericity argument of [17, 18] to allow analytic

perturbations. Furthermore, the convexity is assumed for the purpose of applying the variational method.

However, this excludes lots of interesting integrable systems with singular fibers (see [25]). Thus we

propose to study the following open problem.

Open problem 3. Study the problem of Arnold diffusion for perturbations of more general integrable

systems, for example, Hitchin integrable systems [31] and quantum integrable systems, etc., in the analytic

category.

2 The proof of the main theorem

In this section, we prove the main theorem based on some propositions. Please refer to Appendix A

for a brief introduction of the Mather theory where more notations are given including the Tonelli

Hamiltonian H and Lagrangian L, minimal measures, cohomology class c, rotation vector h, Mather sets

M̃(c) and M̃h, Aubry set Ã(c), Mañé set Ñ (c), α- and β-functions, weak KAM solutions u±c and barrier

functions Bc, etc. To proceed, it is important to keep in mind the dictionary in Table 1.

Notation 1. Our convention of using | · | is as follows:
• It is the usual absolute value when applied to real or complex numbers.

• It is the ℓ1 norm when applied to an integer vector k ∈ Zn which is a row vector.

• It is the ℓ∞ norm when applied to a frequency ω ∈ Rn which is a column vector.

We use ∥ · ∥ to denote the Euclidean norm.

2.1 The general strategy

Given two points y′ and y′′ with h(y′) = h(y′′) and a small number ϱ > 0, we wish to find an orbit

{(x(t), y(t)), t ∈ [0, T ]} of the system (1.1) for some time T such that |y(0)−y′| < ϱ and |y(T )−y′′| < ϱ.

Let BR(0) be an open ball of radius R centered at the origin where R is chosen such that y′, y′′ ∈ BR(0).

Then the map ω := ∂h : BR(0) → ω(BR(0)) is a diffeomorphism by the convexity of h. For the integrable

system (ε = 0 in (1.1)), the vector ω(y) is the frequency of the rotation x 7→ x + ω(y)t mod Zn, t ∈ R
on the torus Tn × {y}, so we call ω(BR(0)) the frequency space. Therefore to find the path {y(t)}Tt=0

connecting neighborhoods of y′ and y′′ in the perturbed system, we can instead find a path in the

frequency space connecting neighborhoods of ω(y′) and ω(y′′).

For the nearly integrable system (1.1), the action variable y is not conserved, nor is ω(y). Instead, we

use the cohomology class c ∈ H1(Tn,R) as a substitute of the action variable y, the homology class (or

called the rotation vector of the Mather set) h ∈ H1(Tn,R) as a substitute of the frequency ω(y) and the

α-function as a substitute of the unperturbed Hamiltonian h(·). In fact, when ε = 0 and we choose y = c,

then the unperturbed Hamiltonian h(y) = α(c) and ω(y) = ∂h(y) = ∂α(c), and the Aubry set Ã(c) is

exactly the invariant torus Tn × {y} and it has the rotation vector h = ∂α(c) = ω(y). When ε > 0,

though y(t) is no longer conserved, we can still associate an Aubry set Ã(c) with each cohomology class c

and there are a well-defined α-function α : H1(Tn,R) → R and its Legendre dual β : H1(Tn,R) → R.

Table 1 The dictionary of hyperbolic and variational objects

Hyperbolic objects Variational objects

The hyperbolic invariant set The Aubry or Mather set

Stable/unstable manifolds Graphs of differentials of weak KAMs

Intersections of stable/unstable manifolds Critical points of the barrier function

Minimal homo- or hetero-clinic orbits The Mañé set\the Mather set



Cheng C-Q et al. Sci China Math August 2023 Vol. 66 No. 8 1655

2.2 The abstract variational framework

In this subsection, we explain our variational mechanisms of constructing orbits connecting two Aubry

sets.

Roughly speaking, a generalized transition chain is such a path Γ: [0, 1] → H1(M,R) that for any

s, s′ ∈ [0, 1] with |s − s′| ≪ 1, the Aubry sets Ã(Γ(s)) and Ã(Γ(s′)) are connected by an orbit. Let

us formulate the definition of the generalized transition chain for the autonomous Tonelli Hamiltonian

H : T ∗M → R where M = Tn with n > 3 (the nonautonomous version is given in Appendix D). To use

the variational method, we perform a Legendre transformation to obtain a Tonelli Lagrangian system

L : TM → R which defines the Euler-Lagrange flow Φt
L : TM → TM , t ∈ R. An orbit (γ, γ̇) of the

Euler-Lagrange flow Φt
L is said to connect two Aubry sets if the α-limit set of the orbit is contained in

one Aubry set and the ω-limit set is contained in the other.

Definition 2.1 (The generalized transition chain: The autonomous case). Two cohomology classes c, c′

∈ H1(M,R) are said to be joined by a generalized transition chain if there exists a continuous path

Γ : [0, 1] → H1(M,R) such that Γ(0) = c, Γ(1) = c′ and α(Γ(s)) ≡ E > minα, and for each s ∈ [0, 1], at

least one of the following cases takes place:

(H1) In some finite covering manifold π̌ : M̌ → M , the Aubry set A(Γ(s)) consists of two classes

A1(Γ(s)) and A2(Γ(s)). There are two open domains N1 and N2 with N̄1 ∩ N̄2 = ∅, a decomposition

M̌ = M1 × Tℓ, (n − ℓ − 1)-dimensional disks {Om ⊂ M1} with Ōm ∩ Ōm′ = ∅, an (n − 1)-dimensional

disk Ds and two small numbers δs, δ
′
s > 0 such that

(i) the Aubry sets A1(Γ(s)) ⊂ N1, A2(Γ(s)) ⊂ N2 and A(Γ(s′)) ⊂ (N1 ∪N2) for each |s′ − s| < δs;

(ii) π̌N (Γ(s), M̌) |Ds
\(A(Γ(s)) + δ′s) is non-empty, of which each connected component is contained in

Om × Tℓ, where +δ′s means a δ′s-neighborhood;

(iii) ⟨Γ(s′)− Γ(s), g⟩ = 0 holds for each g ∈ H1(M̌,M1,R).
(H2) For each s′ ∈ (s − δs, s + δs), the cohomology class Γ(s′) is equivalent to Γ(s): some section Σs

and some small neighborhood U of N (Γ(s)) ∩ Σs exist such that ⟨Γ(s′) − Γ(s), g⟩ = 0 holds for each

g ∈ H1(U,Z).
Remark 2.2. (1) Item (H1) with ℓ = 0 is a variational reformulation of Arnold’s mechanism

(see [1]) which relies on the existence of NHICs on which Aubry sets lie and (H1)(ii) is the variational

characterization of the transverse intersection of the stable and unstable manifolds of the Aubry sets.

(2) Item (H2) is called cohomological equivalence (c-equivalence), which will be used in Section 7.

(3) The case (H1) with ℓ > 0 is a generalization of Arnold’s mechanism by allowing the stable and

unstable sets of the Aubry sets to have incomplete intersections in the sense that the stable and unstable

sets are allowed to merge in the Tℓ components and are only required to intersect transversely in the M1

component.

Once such a generalized transition chain exists, one can construct connecting orbits.

Theorem 2.3 (See [13, 34]). If c is connected to c′ by a generalized transition chain Γ as in

Definition 2.1, then

(1) there exists an orbit of the Lagrange flow dγ := (γ, γ̇) : R → TM which connects the Aubry set

Ã(c) to Ã(c′), namely, the α-limit set α(dγ) ⊆ Ã(c) and the ω-limit set ω(dγ) ⊆ Ã(c′);

(2) for any c1, c2, . . . , ck ∈ Γ and arbitrarily small δ > 0, there exist times t1 < t2 < · · · < tk such that

the orbit dγ passes through the δ-neighborhood of the Aubry set Ã(ci) at the time t = ti.

For the sake of completeness, we include a proof in Appendix D.3.

The framework is a bit abstract. We illustrate it using Arnold’s Example 1.2. We lift the system to

T ∗T × T ∗2T × T, and thus the NHIC has two copies Cl = {(I, θ, 0, 0)} and Cr = {(I, θ, 0, 2π)}, where
I ∈ [A,B] and θ ∈ T1.We consider the path Γ : [0, 1] → H1(T2,R) of the form {(I, 0)} and for each I, the

Aubry set Ã(I, 0) consists of the two circles {(I, θ, 0, 0)} and {(I, θ, 0, 2π)}, where θ ∈ T1. The Mañé set

satisfies Item (H1)(ii) if the ε-perturbation is turned on by the transverse intersection of the stable and

unstable manifolds of the two components of the Aubry set. Thus by Theorem 2.3, we get the diffusion

orbit in Arnold’s example.
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2.3 Existence of the generalized transition chain

We have the following more elaborative statement on the existence of the generalized transition chain.

Theorem 2.4. Let the Hamiltonian system H = h+ εP ∈ Cr(T ∗Tn,R) be as in (1.1) restricted to the

energy level E > minh. For any ϱ > 0 and any M open balls B1, . . . ,BM of radius ϱ centered on h−1(E),

there exist some ε0 > 0 and an open and dense set R ⊂ Sr such that for each P ∈ R, there exist an εP
depending on P ∈ Cr0 continuously and a residual set RP ⊂ (0,min{εP , ε0}) such that for all ε ∈ RP ,

the following hold:

(1) There exists a continuous frequency path {ω(t)} ⊂ H1(Tn,R) with ∂β(ω(t)) ∈ α−1(E), t ∈ [1,M ]

satisfying

(a) ω−1(ω(i)) ∩Bi ̸= ∅, i = 1, 2, . . . ,M ;

(b) each point ω(t) is resonant with multiplicity at least n− 2. There are finitely many marked points

on ω(t) denoted by ω1, . . . , ωm, where m is independent of ε, that are resonant with multiplicity n− 1.

(2) On the energy level E, there are finitely many disjoint Cr−1 normally hyperbolic invariant cylinders

(NHICs, see Appendix B) homeomorphic to T ∗T× T.
(3) For each ωi (i = 1, . . . ,m), there exists a λi > 0 such that

(a) the Mather sets of rotation vectors ω(t) with |ω(t) − ωi| > λi
√
ε for all i = 1, 2, . . . ,m, lie in the

NHICs;

(b) any continuous curve lying in the interior of {∂β(ω(t)) | |ω(t) − ωi| > λi
√
ε} ⊂ α−1(E) is a

generalized transition chain satisfying (H1);

(c) the two neighboring connected components {∂β(ω(t)) | |ω(t)− ωi| > λi
√
ε} ⊂ α−1(E) near ∂β(ωi)

are joined by a generalized transition chain satisfying (H2).

Next, we explain how the main Theorem 1.2 follows from this theorem.

Proof of Theorem 1.2. Indeed, given ballsB1, . . . , BM of radius ϱ centered on h−1(E), we first construct

a frequency path ω(t) (t ∈ [0,M ]) as stated. By Items (3)(b) and (3)(c) of the above theorem, there

exists a continuous curve of the generalized transition chain visiting small neighborhoods of ∂β(ω(i))

⊂ α−1(E), i = 1, . . . ,M. By Theorem 2.3, we see that once a generalized transition chain is known to

exist, an orbit can be constructed by shadowing Aubry sets whose cohomology classes are on the chain.

By Item (1)(a) and Subsection 2.1, such an orbit necessarily visits the two balls B1, . . . , BM as ordered.

This proves Theorem 1.2.

The remaining part of this paper is devoted to proving Theorem 2.4. In the main body, we complete a

proof for n = 4 in Section 11, which contains essentially all the main ideas. The proof for general n > 4

is given in Appendix C.6.

3 The KAM normal form

In this section, we derive the KAM normal form (see Proposition 3.3), which roughly says that if the

frequency vector ω⋆ admits only resonances k1, . . . ,km, then only Fourier modes in the span of these

integer vectors would dominate. The normal form belongs to our general normal form package, which

allows us to reveal the rotator + pendulum structure near a resonance. The package has wide applications

beyond the purpose of Arnold diffusion. It includes the following:

(1) The
√
ε-blowup (see Subsection 3.1): this is to restrict to an O(

√
ε) neighborhood in the action

space and blow it up to O(1) size. The outcome is Proposition 3.2 below, which has the structure of

kinetic energy + potential energy up to an O(
√
ε)-perturbation.

(2) The resonant normal form (see Proposition 3.2): this is to introduce a symplectic transformation

to suppress all the nonresonant Fourier modes in the potential energy.

(3) The linear symplectic transformation and the shear transformation (see Subsection 5.1): this is

to perform two linear symplectic transformations to reduce the normal form into a slow-fast system up

to a perturbation, where the slow part is a nonperturbative mechanical system independent of ε (see,

e.g., (1.3)) and the fast part is integrable whose dynamics is rotating with speed O(ε−1/2).
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(4) Normal hyperbolicity : in the slow part obtained in Item (3), a nondegenerate maximum point

of the potential gives rise to a hyperbolic fixed point in the slow part which further gives rise to an

NHIC in the full system. The NHIC persists under small perturbations by the classical hyperbolic theory

(see Appendix B).

We remark that this normal form package is completely elementary, which does not involve the variational

theory. We apply the variational theory to construct the diffusion orbit in the system after applying the

normal form. It is known in [6] that the variational invariant sets such as the Mather set, the Aubry set

and the Mañé set are invariant under symplectic transformations.

3.1 The
√
ε-blowup

We first introduce the Cr-norm (r ∈ N) as follows.
Definition 3.1 (The Cr-norm). For a function f(x, y) defined on a domain D×Tn, we define the Cr

norm as

|f |Cr := sup
y∈D

( ∑
k∈Zn

∑
|α|+|β|6r

∣∣∣∣∂|α|fk∂yα
(y)

∣∣∣∣(|kβ |+ 1)

)
,

where fk is the k-th Fourier coefficient and we use the multi-index notation xα = xα1
1 · · ·xαn

n for

α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Zn, αi, βi > 0 and i = 1, 2, . . . , n.

Fix y⋆ ∈ h−1(E). We introduce the
√
ε-blowup

y − y⋆ :=
√
εY, t = τ/

√
ε, H(x, y) = εH(x, Y ), (3.1)

where Y , τ and H are the blowed-up action variable, time and Hamiltonian, respectively. The
√
ε-blowup

is done in the region ∥y − y⋆∥ <
√
εΛ so that ∥Y ∥ < Λ.

Notation 2. We use the notation | · |r to denote the Cr norms with respect to the variables x and Y

in the blowup system.

Proposition 3.2. The Hamiltonian after the
√
ε-blowup becomes

H(x, Y ) =
h(y⋆)

ε
+

1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+ V(x) + P(x,

√
εY ), (3.2)

where

(1) h(y⋆)
ε + 1√

ε
⟨ω⋆, Y ⟩+ 1

2 ⟨AY, Y ⟩ is the first three terms of the Taylor expansion of h(y) around y⋆;

(2) ω⋆ = ∂h
∂y (y

⋆);

(3) A = ∂2h
∂y2 (y

⋆) is a positive definite constant matrix;

(4) V(x) = P (x, y⋆);

(5) |P|r−3 6 Cr,Λ(|P |Cr + |h|Cr )
√
ε.

Proof. The first four items are evident. We now focus on Item (5). The term P has a decomposition

P = PI + PII ,

where

PI =
1

ε

(
h(y⋆ +

√
εY )− h(y⋆)−

√
ε⟨ω, Y ⟩ − ε

2
⟨AY, Y ⟩

)
=

√
ε

6

∑
16i,j,k6n

YiYjYk

∫ 1

0

∂3h

∂yi∂yj∂yk
(t
√
εY + y⋆)t2dt,

PII = P (x, y⋆ +
√
εY )− P (x, y⋆) =

√
ε

⟨
Y,

∫ 1

0

∂P

∂y
(x, t

√
εY + y⋆)dt

⟩
.

(3.3)

We have the following estimates:∣∣∣∣∂|α|+|β|PII

∂xα∂Y β

∣∣∣∣ 6 Cβ,Λ|P |Cr

√
ε
|β|+1

, 0 6 |β| 6 r − 1,∣∣∣∣∂βPI

∂Y β

∣∣∣∣ 6 Cβ,Λ|h|Cr

√
ε
|β|+1

, 0 6 |β| 6 r − 3.

(3.4)
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Putting these estimates together we get the estimate in Item (5).

In the following, we assume that |P |Cr0 6 1.

3.2 The KAM normal form

In this subsection, we work out a general normal form.

Notation 3. (1) Given a collection of linearly independent irreducible integer vectors k1, . . . ,km ∈ Zn,

m < n and a function f ∈ Cr(Tn), we denote by Πk1,...,kmf the function consisting of Fourier modes of

f in spanZ{k1, . . . ,km}.
(2) We denote by Πk1,...,kmC

r(Tn) the space of Cr-functions on Tn consisting of Fourier modes in

spanZ{k1, . . . ,km}, and it is similar for Πk1,...,kmC
r(T ∗Tn).

(3) We use Cr to refer to either of the function spaces Cr(T ∗Tn) and Cr(Tn).

Proposition 3.3 (The KAM normal form). Let k1, . . . ,km be m (< n) linearly independent irreducible

integer vectors. Given any small δ, there exists an ε0 = ε0(δ,Λ) such that for all ε < ε0, the following

holds. Let ω⋆ = ∂h(y⋆) satisfy the following:

|⟨k, ω⋆⟩| > ε1/3, ∀k ∈ Zn
K \ spanZ{k1, . . . ,km}, K = (δ/3)−

1
2 . (3.5)

Then there exists a symplectic transformation ϕ defined on BΛ(0)× Tn satisfying |ϕ− id|r0−1 = O(ε1/6)

and sending the Hamiltonian H in the equation (3.2) to the following form:

H ◦ ϕ(x, Y ) =
1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+Πk1,...,kmV + δR(x, Y ), (3.6)

where

(1) the remainder δR(x, Y ) = δRI(x) + δRII(x, Y ), and δRI consists of all the Fourier modes of V not

in the set spanZ{k1, . . . ,km} ∪ Zn
K ;

(2) the remainders RI and RII satisfy |RI |r0−2 6 1 and |RII |r0−5 6 1.

The point of the normal form is that if the frequency vector ω⋆ admits only resonances k1, . . . ,km,

then Fourier modes Πk1,...,kmV would dominate.

Proof of Proposition 3.3. We decompose the Hamiltonian (3.2) as follows:

H =
1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+Πk1,...,kmV +R6(x) +R>(x) + P(x,

√
εY ),

where

(1) R6(x) +R>(x) consists of all the Fourier modes of V(x) in Zn\spanZ{k1, . . . ,km};
(2) the Fourier modes with

k ∈ Zn
K \ spanZ{k1, . . . ,km}

are put in R6 and those in Zn \ (spanZ {k1, . . . ,km} ∪ ZN
K) are put in R>.

We have the estimate |R>|r0−2 6 δ since we have K = (δ/3)−1/2.

Only one KAM iteration is enough. We use a new Hamiltonian
√
εF whose induced time-1 map ϕ1√

εF

gives rise to a symplectic transformation

H ◦ ϕ1√εF = H+
√
ε{H, F}+ ε

2

∫ 1

0

(1− t){{H, F}, F}(Φt√
εF )dt

=
1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+Πk1,...,kmV +

⟨
ω⋆,

∂F

∂x

⟩
+R6(x) +R>(x) + P(x,

√
εY )

+
√
ε

⟨
AY +

∂P

∂Y
,
∂F

∂x

⟩
+
ε

2

∫ 1

0

(1− t){{H, F}, F}(Φt√
εF )dt,
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where F satisfies the cohomological equation

R6(x) +
⟨
ω⋆,

∂F

∂x

⟩
= 0.

Notice that F is a function of x only. Notice also that |P |Cr0 6 1 and V(x) = P (x, y⋆), so we get√
ε|F |r0 6 ε1/6 by solving the cohomological equation with (3.5).

Let δRI = R>. So we have |RI |r0−2 6 1. Let

δRII = P(x,
√
εY ) +

√
ε

⟨
AY +

∂P

∂Y
,
∂F

∂x

⟩
+
ε

2

∫ 1

0

(1− t){{H, F}, F}(ϕt√εF )dt.

We have

(1) |P|r0−3 6 Cε1/2 by Proposition 3.2;

(2) using the derivative estimates of F and the fact that ∥Y ∥ 6 Λ, we find∣∣∣∣√ε⟨AY +
∂P

∂Y
,
∂F

∂x

⟩∣∣∣∣
r0−4

= O(ε1/6);

(3) since {H, F} = { 1√
ε
⟨ω⋆, Y ⟩+ 1

2 ⟨AY, Y ⟩+ V(x) + P, F}, we find∣∣∣∣ε2
∫ 1

0

(1− t){{H, F}, F}(ϕt√εF )dt

∣∣∣∣
r0−5

= O(ε1/3).

Therefore, we have |δRII |r0−5 = O(ε1/6) and can make the term δRII less than δ in the Cr0−5 norm by

decreasing ε. The proof is now completed.

4 The initial construction of the frequency line

The frequency path ω(·) in Theorem 2.4 is constructed inductively. In this section, we perform the first

step of the construction.

Definition 4.1 (The Diophantine vector). We say that a vector v ∈ Rd, d > 1 is Diophantine, if there

exist α, τ > 0 such that

|⟨v,k⟩| > α

|k|τ
, ∀k ∈ Zd \ {0}. (4.1)

We define v ∈ DC(d, α, τ).

In this section, we start with a Diophantine vector ω∗ = (ω∗
1 , ω

∗
2 , . . . , ω

∗
n) up to a scalar multiple and

find in its ϱ-neighborhood a frequency path ω− admitting at most two resonances along which we move

the first entry arbitrarily. Once we know how to move the first entry arbitrarily, the same strategy can

be applied to moving the other entries one by one, and eventually, we can arrive at the ϱ-neighborhood

of another Diophantine vector.

Throughout the paper, we use the following notations.

Notation 4 (The hat notation and the tilde notation). We fix the meaning of the hat notation and

the tilde notation throughout the paper. For a vector v = (v1, . . . , vn) ∈ Rn, we write v = (ṽi, v̂n−i),

where we have v̂n−i = (vi+1, vi+2, . . . , vn) ∈ Rn−i and ṽi = (v1, . . . , vi) ∈ Ri for 1 < i < n. We omit the

subscript i if i = 2.

4.1 The choice of the frequency path and its number-theoretic property

For given ϱ, τ > 0, let α > 0 be a small positive number. Consider the frequency segment ω− ∈ Rn of

the form

ωa = ρa

(
a,
P

Q
ω∗
2 ,
p

q
ω∗
2 , ω̂

∗
n−3

)t

, P,Q, p, q ∈ Z, a ∈ [ω∗i
1 − ϱ, ω∗f

1 + ϱ], (4.2)
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ω̂∗
n−3 = (ω∗

3 , . . . , ω
∗
n) ∈ DC(n − 3, α, τ) and ω̂∗

n−2 = (ω∗
2 , ω̂

∗
n−3) ∈ DC(n − 2, α, τ). Here, the scalar ρa is

chosen such that h(ω−1(ω−)) = E. We choose P
Q and p

q such that |PQ − 1| < ϱ/2 and |pqω
∗
2 − ω∗

3 | < ϱ/2

and in addition g.c.d.(pQ, Pq) = 1.

The scalar ρa does not affect the resonance relations. Since we know that y lies on an energy level E

and the energy hypersurface h−1(E) encloses a convex set containing the origin, the equation h(ω−1(ω−))

= E, ω(y) = ∂h(y) determines uniquely ρa. For example, when h(y) = 1
2∥y∥

2, we easily see that

ρa =

√
2E

∥(a, PQω
∗
2 ,

p
qω

∗
2 , ω̂

∗
n−3)∥

.

Since we assume ω̂∗
n−2 ∈ DC(n − 2, α, τ), we have at most two resonances as a varies in an interval.

We always have the first resonance given by the integer vector k′ = (0, Qp,−qP, 0̂n−3). The g.c.d. of all

the components of k′ is 1. Then we have
1 0 0 0̂n−3

0 Qp −qP 0̂n−3

0 r s 0̂n−3

0̂n−3 0̂n−3 0̂n−3 idn−3




a
P
Qω

∗
2

p
qω

∗
2

ω̂∗
n−3

 =


a

0
1
qQω

∗
2

ω̂∗
n−3

, (4.3)

where r and s are such that sQp+ rqP = 1. We denote the n× n matrix by M ′ ∈ SL(n,Z).

4.2 The double resonance, away from triple or more resonances

In this subsection, we consider the vector (4.2) at the double resonance. We fix some large number K

and define Zn
K = {k ∈ Zn | |k| < K}. As a varies in an interval, we may encounter double resonance

points

{ωa | ⟨k, ωa⟩ = 0 for some k ∈ Zn
K \ spanZ{k′}}.

There are finitely many such double resonance points, whose number depends only on K.

In this paper, we only consider those resonant integer vectors that are irreducible.

Definition 4.2. An integer vector k ∈ Zn \ {0} is called irreducible if its entries have no common

divisor except 1.

The next lemma shows that for fixed K, points along the frequency line ω− are uniformly bounded

away from triple or more resonances.

Lemma 4.3. Let an irreducible vector ko ∈ Zn
K \ spanZ{k′} be the second resonance of ω− at some

point a = ao, i.e., ⟨ko, ωo⟩ = 0 for ωo := ωao . Then there exists a µ = µ(q,Q,K, τ, α,M ′) such that for

all k ∈ Zn
K \ spanZ{k′,ko}, we have the estimate

|⟨k, ωo⟩| > 2nKµ. (4.4)

Proof. We use the linear transformation (4.3) to convert ωa to the vector

ω′
a =M ′ωa = ρa

(
a, 0,

1

qQ
ω∗
2 , ω̂

∗
n−3

)t

.

Define k̃o = (k̃o1, k̃
o
2, . . . , k̃

o
n) := koM ′−1 so that we have

0 = ⟨ko, ωo⟩ = ⟨koM ′−1,M ′ωo⟩ =: ⟨k̃o, ω′o⟩.

We have k̃o1 ̸= 0 since otherwise ⟨k̃o, ω′
a⟩ = 0 for all a, which is impossible considering that ω̂∗

n−2 is

Diophantine. We want to bound |⟨k, ωo⟩| from below for all

k = (k1, k2, . . . , kn) ∈ Zn
K \ spanZ{k′,ko}.
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We set k̃ = (k̃1, k̃2, . . . , k̃n) := kM ′−1 to get ⟨k, ωa⟩ = ⟨kM ′−1,M ′ωa⟩ = ⟨k̃, ω′
a⟩.

We introduce a new vector k̄ = k̃ − k̃1

k̃o
1

k̃o = 1
k̃o
1

(k̃o1k̃ − k̃1k̃
o). The new vector

k̃o1k̄ = k̃o1k̃ − k̃1k̃
o := (0, k̄2, k̄3,

ˆ̄kn−3) ∈ Zn

has zero first entry. We further introduce a new vector ¯̄k = (0, k̄2, k̄3, qQ
ˆ̄kn−3) ∈ Zn. We estimate the

norm of ¯̄k as

|¯̄k| 6 qQ|k̃o1k̃ − k̃1k̃
o| 6 2qQ|k̃o| · |k̃| 6 2qQ(∥M ′∥∞ ·K)2.

Using the Diophantine conditions and the fact that ω′
a has zero second entry, we have

|⟨k, ωo⟩| = |⟨k̃, ω′o⟩| = |⟨k̄, ω′o⟩| =
∣∣∣∣ 1k̃o1 ⟨(k̃o1k̃ − k̃1k̃

o), ω′o⟩
∣∣∣∣

=
ρa

k̃o1qQ
|⟨¯̄k, (0, 0, ω∗

2 , ω̂
∗
n−3)⟩| >

infa ρa

k̃o1qQ

α

|¯̄k|τ

> α infa ρa
2τ (qQ)τ+1(∥M ′∥∞K)2τ+1

. (4.5)

To get the statement, it is enough to define the right-hand side by 2nKµ.

Finally, we have the following fact.

Lemma 4.4. Let ko and ωo be as in Lemma 4.3. Then there exists a matrix Mo ∈ SL(n,Z) such that

M ′′ :=MoM ′ ∈ SL(n,Z) has the first row ko and the second row k′.

Proof. Define ω′o = M ′ωo and k̃o = koM ′−1. We have ⟨ko, ωo⟩ = ⟨koM ′−1, ω′ao⟩ = 0. We set the

second entry of k̃o to be zero and treat it as a vector in Zn−1. We claim that we can find n− 2 integer

vectors in Zn−1 spanning unit volume together with k̃o. Indeed, suppose, without loss of generality,

the first two entries k1, k2 of k̃o are nonzero and have common divisor 1. This is always possible after

permutations of entries. Then using the Euclidean algorithm, we find two numbers s1 and s2 such that

k1s2 − k2s1 = 1. Extend s1 and s2 by adding zeros to a vector in Zn−1 as the second row of the matrix

and for the remaining rows, we put 1’s on the diagonal and zeros off the diagonal. This gives the desired

matrix.

By adding 0 as their second entries, we extend these vectors to be n-dimensional and put these vectors

together to get an n×nmatrixMo whose first row is k̃o := ko(M ′)−1, and the second row is (0, 1, 0, . . . , 0),

and it satisfies the properties stated in the lemma.

4.3 Resonance submanifolds and their neighborhoods

Next, we find a number µ as the size of the neighborhood of the single resonance manifold to apply the

KAM normal forms.

Notation 5. We use the notation Bµ(a) to denote a ball of radius µ centered at a and the notation

Bµ(A) :=
∪

a∈ABµ(a) to denote the µ-neighborhood of a set A.

Notation 6. Denote by ωo
i (i = 1, . . . ,m) all the double resonances along ω− for given K above.

Without the subscript i, we use ωo to denote any one of them. It is similar for ko and ko
i .

Lemma 4.5. Let ω−, K, k′ and ko be as above. Let (ko)⊥ be the (n−1)-dimensional space orthogonal

to the vector ko. Then there exists a µ such that

(1) for all ω in the neighborhood D′ := Bµ(ω−) \
∪

iBε1/3(ω
o
i + (ko

i )
⊥) and for sufficiently small ε, we

have

|⟨k, ω⟩| > ε1/3, ∀k ∈ Zn
K \ spanZ{k′};

(2) for all ω in D′′ := Bµ(ω−) ∩Bε1/3(ω
o + (ko)⊥) and for all k ∈ Zn

K \ spanZ{k′,ko}, we have

|⟨k, ω⟩| > nKµ. (4.6)
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Proof. Part 1. We consider two cases depending on whether k in the assumption is one of the double

resonant vectors ko or not.

First we suppose k = ko. Then we get |⟨k, ω⟩| = |⟨k, ωo⟩ + ⟨k, ω − ωo⟩| = |⟨k, ω − ωo⟩|. By the

assumption, the projection of ω − ωo to the vector ko has the length at least ε1/3. This completes the

proof in the case k = ko, since we have |k| > 1.

Next, suppose k ̸= ko. Consider the case where the first entry k1 of k is 0. We have that the vector

kM ′−1 has zero first entry and M ′ωa = (a, 0, 1
qQω

∗
2 , ω̂

∗
n−3) has zero second entry. We have the estimate

|⟨k, ωa⟩| = |⟨kM ′−1,M ′ωa⟩| > 2nKµ (4.7)

using the Diophantine property of (ω∗
2 , ω̂

∗
n−3). We get

|⟨k, ω⟩| > |⟨k, ωa⟩| − |⟨k, ω − ωa⟩| > 2nKµ− nKµ≫ ε1/3. (4.8)

Next, consider the case k1 ̸= 0. We change the first entry a of ωa to ao := a − ⟨k,ωa⟩
k1

to get another

frequency vector ωo = ωao . We have by definition ⟨k, ωo⟩ = 0. This contradicts the assumption that

k ̸= ko.

Part 2. For given ω as assumed, we have |ω − ωo| 6 µ. As k ∈ Zn
K \ spanZ{k′,ko}, we have the

following estimate:

|⟨k, ω⟩| = |⟨k, ωo⟩+ ⟨k, ω − ωo⟩| > |⟨k, ωo⟩| − |⟨k, ω − ωo⟩| > 2nKµ− nKµ > nKµ,

where in the first inequality, we apply Lemma 4.3 and in the second inequality, we apply the definition

of µ.

5 The reduction of orders for single resonances

In this section, we carry out the last step in the normal form package and obtain the NHIC of

codimension 2 in the single resonance regime. Let ω−, k
′ and ko be as in Section 4.

Definition 5.1 (Resonance submanifolds). (1) We define the single resonance submanifold associated

with the vector k′ :

Σ(k′) := {y ∈ h−1(E) | ⟨k′,ω(y)⟩ = 0}.

(2) In the single resonance submanifold, we define the double resonance submanifold for the resonant

vectors k′ and ko :

Σ(k′,ko) := {y ∈ h−1(E) | ⟨k′,ω(y)⟩ = ⟨ko,ω(y)⟩ = 0}.

Consider the µ-neighborhood Bµ(ω−) of the frequency line ω−. In the space of action variables, its

preimage under the frequency map ω is ω−1(Bµ(ω−)). We fix a large constant Λ > 0 and cover the

set ω−1(Bµ(ω−)) by balls of radius Λ
√
ε. We choose the covering to be locally finite and the Lebesgue

number of the covering to be 0.1Λ
√
ε so that any ball of radius 1/20Λ

√
ε lies entirely in the Λ

√
ε-ball

that it intersects.

5.1 The main result

The next result establishes the existence of NHICs.

Proposition 5.2. There exists an open and dense set O1 = O1(k
′) ⊂ Πk′Cr such that for each P ∈ Cr

with Πk′P ∈ O1, there exists a δ1 = δ1(Πk′P ) such that for all 0 < δ < δ1,

(1) the system (5.1) (see Lemma 5.3 below) based at a point y⋆ ∈ Σ(k′) and defined on BΛ(0) × Tn

admits a Cr−1 NHIC C(k′) homeomorphic to T ∗Tn−1 with uniform normal hyperbolicity, independent

of δ or ε;

(2) Mather sets with rotation vectors in {ε−1/2ω(y⋆ +
√
εY ), ∥Y ∥ 6 0.9Λ} and perpendicular to k′ lie

inside C(k′).



Cheng C-Q et al. Sci China Math August 2023 Vol. 66 No. 8 1663

The proposition follows from the normal form for the single resonance and a parametric transversality

theorem.

We apply the normal form Proposition 3.3 to the case (1) of Lemma 4.5.

Lemma 5.3. Let ω− and µ be as in Lemma 4.5, where K = (δ/3)−1/2 for a small δ. Then there exists

an ε1 = ε1(δ,Λ) such that for ε < ε1, the following holds. Let ω⋆ ∈ D′ be as in the case (1) of Lemma 4.5.

Then there exists a symplectic transformation ϕ defined on BΛ(0)× Tn that is oε→0(1) close to identity

in the Cr0 norm, such that

H ◦ ϕ(x, Y ) =
1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+ V (⟨k′, x⟩) + δR(x, Y ), (5.1)

where

(1) V (⟨k′, x⟩) = Πk′V;

(2) δR(x, Y ) = δRI(x) + δRII(x, Y ), where RI consists of Fourier modes of V not in spanZ{k′} ∪ Zn
K ,

and we have |RI |r0−2 6 1 and |RII |r0−5 6 1.

Using Formula (4.3), we introduce a linear symplectic transformation denoted by M′ : T ∗Tn → T ∗Tn,

i.e., M′(x, Y ) = (M ′x, (M ′)−tY ) =: (x′, Y ′).

In (5.1), we choose y⋆ ∈ Σ(k′) such that ω′⋆ = M ′ω⋆ has zero as the second entry. Applying the

symplectic transformation M′ to the normal form (5.1), we get the following system up to an additive

constant:

H′
δ := M′−1∗H ◦ ϕ =

1√
ε
⟨ω′⋆, Y ′⟩+ 1

2
⟨AY ′, Y ′⟩+ V (x′2) + δR(x′, Y ′), (5.2)

where A =M ′AM ′t and R(x′, Y ′) = M′−1∗R(x, Y ).

For the purpose of getting the NHIC in Proposition 5.2, we need V (·) to have a nondegenerate global

maximum. Since V (·) = M′−1∗Πk′P (y⋆, ·), where y⋆ ∈ ω−1(ω−), we need the following result from [20]

in order to find NHICs in the system H′
δ.

Proposition 5.4 (See [20, Theorem 3.1]). Let F (·, ζ) ∈ Cr(T1,R) with r > 4 be Lipschitz in the

parameter ζ ∈ [0, 1]. Then there exists an open and dense set V ⊂ Cr(T1,R) so that for each V ∈ V, it

holds simultaneously for all ζ ∈ [0, 1] that the global maximum of F (·, ζ)+V is nondegenerate. Moreover,

given V ∈ V, there are finitely many ζi ∈ [0, 1] such that F (·, ζ) + V has only one global maximum for

ζ ̸= ζi and has two global maxima if ζ = ζi.

The last result guarantees that V (·) has a nondegenerate global maximum for all y⋆ along the path

ω−1(ω−). Note that when P is independent of y, the desired property for V follows easily from the Morse

lemma.

5.2 The proof of Proposition 5.2

With the above normal form and the parametric transversality result, we are ready to give the proof of

Proposition 5.2.

Proof of Proposition 5.2. We first apply Proposition 5.4 to the function Πk′P along the segment

y ∈ ω−1(ω−) to get an open and dense set O1 in Πk′Cr such that for each y, the function Πk′P (y, ·)
∈ O1 admits a nondegenerate global maximum up to finitely many bifurcations, where there are two

nondegenerate global maxima. Let us now choose a P with Πk′P ∈ O1 and determine V (x′2) from Πk′P

by applying the
√
ε-blowup and Lemma 5.3 so that V has a nondegenerate global maximum.

In (5.2), we neglect the remainder δR to get that the remaining system

H′
0 :=

1√
ε
⟨ω′⋆, Y ′⟩+ 1

2
⟨AY ′, Y ′⟩+ V (x′2)

admits an NHIC given by{
Ẏ ′
2 =

∂V

∂x′2
= 0, ẋ′2 =

1

2

∂⟨AY ′, Y ′⟩
∂Y ′

2

=
n∑

i=1

A2iY
′
i = 0

}
. (5.3)
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The normal hyperbolicity depends only on A and the second-order derivative of V at the global maximum,

and hence does not depend on ε or δ. Restricted to the NHIC, we get a system with one fewer degree of

freedom due to Theorem B.4.

Let us now make preparations for the application of the theorem of the NHIM. The system H (without

the linear transformation) is defined in a Λ-ball in the Y variables since the
√
ε-blowup is done in a Λ

√
ε

ball. We introduce a C∞ bump function χ supported in BΛ(0) satisfying χ(Y ) = 1 if ∥Y ∥ < 0.95Λ

and is zero for ∥Y ∥ > 0.98Λ. To apply the NHIM theorem, we replace the remainder δR in (5.1) by

χ(Y )(δR). The modified perturbation vanishes in the region {∥Y ∥ > 0.98Λ} so that the dynamics therein

is integrable when restricted to the NHIC which is the unperturbed NHIC. We will show below how to

apply the theorem of the NHIM to obtain an NHIC for the modified system. Since the modified system

agrees with the original system on {∥Y ∥ 6 0.95Λ}, the NHIC for the modified system is indeed an NHIC

for the original system in the region {∥Y ∥ 6 0.95Λ}.
We next apply the NHIM Theorems B.2 and B.4. However, there is a subtle point. In the

Hamiltonian equations, the vector field in the center manifold is very fast: ẋ = ω⋆
√
ε
+ O(1). This is a

nonstandard setting where the NHIM theorems are applicable. We present the statement and the proof in

Appendix B.2. The conclusions of the NHIM theorem still hold since the large term ω⋆
√
ε
is constant, which

contributes neither to the variational equation, nor the derivatives of the Hamiltonian flow, and hence

has nothing to do with the normal hyperbolicity. The perturbation δR is δ-small in the Cr0−5 norm, so

its perturbation to the Hamiltonian vector field is δ-small in the Cr0−6 norm. By the assumption r0 > 7

and applying the NHIM theorem (see Theorem B.5), we get an NHIC which is Cr−1 and is δ-close to the

unperturbed one in the C1-topology as the center Lyapunov exponents are zero.

In this case, we apply Theorem B.4 to restrict the system to the NHIC to get a Hamiltonian system

with one fewer degree of freedom. Note that here δ1 is determined by the normal hyperbolicity which

comes from the second-order derivative of V at the global maximum, and hence δ1 is determined by Πk′P.

Finally, we study the oscillation of the action variables of orbits in the Mather set. First, we know

that for the modified system, all the Mather sets with cohomology classes ∥c∥ 6 Λ and rotation vectors

perpendicular to k′ lie inside the NHIC, since these Mather sets necessarily lie in a small neighborhood

of the NHIC if δ is small and a Mather set does not lie on the NHIC, the normal hyperbolicity will push

it away from the NHIC violating the invariance of Mather sets. We next show that within the NHIC, the

action variables of orbits in the Mather sets have the O(
√
δ) oscillation. Write the Lagrangian as

Lc(x, ẋ) =
1

2
⟨A−1(ẋ− ε−1/2ω⋆ − c), (ẋ− ε−1/2ω⋆ − c)⟩ − V (x2)− δχR− 1

2
⟨Ac, c⟩+ α(c),

where Lc(x, ẋ) := L(x, ẋ)− ⟨c, ẋ⟩+ α(c) and

L(x, ẋ) :=
1

2
⟨A−1(ẋ− ε−1/2ω⋆), (ẋ− ε−1/2ω⋆)⟩ − V (x2)− δχR.

Let µ be a measure in the Mather set of the cohomology class c. Fix a large number C and decompose

µ = µ1 + µ2 such that suppµ1 ⊂ {∥ẋ − ε−1/2ω⋆ − c∥ 6 C
√
δ} × Tn and suppµ2 lies in the complement.

Denote by µ̂i = 1
mi
µi the normalization of µi, where mi =

∫
dµi, i = 1, 2. So we get the action

Ac(µ) :=
∫
Lc dµ = m1

∫
Lcdµ̂1 + m2

∫
Lcdµ̂2. We always have

∫
Lcdµ̂1 > 0. For the second term, we

have
1

2
⟨A−1(ẋ− ε−1/2ω⋆ − c), (ẋ− ε−1/2ω⋆ − c)⟩ > C2∥A∥−1δ/2

by the definition of µ2 and |V (x2)|suppµ2 | 6 ℓδ2 for some constant ℓ, since the Mather set lies on the NHIC

and the NHIC undergoes an O(δ) perturbation from the unperturbed one given by x∗2, a nondegenerate

global maximum of V . We denote by µ0 the Haar measure supported on the torus {ẋ = ε−1/2ω⋆ + c}
× {x2 = x∗2} and we have Ac(µ0) =

∫
Lc dµ0 = −1

2 ⟨Ac, c⟩ + α(c) + O(δ) > 0. We also have sup |R| 6 1,

so we conclude ∫
Lcdµ̂2 −Ac(µ0) >

1

2
C2∥A∥−1δ − ℓδ2 − δ.
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Choosing C large and δ small, we find that Ac(µ) > m2Ac(µ̂2) > 0 violating the definition of minimal

measure. Part (2) of this proposition is proved since Mather sets intersecting the region {∥Y ∥ 6 0.9Λ}
have to stay in {∥Y ∥ 6 0.95Λ}, where the modified system agrees with the original system.

6 Dynamics around strong double resonances: NHICs

The number of double resonances depends on δ. However, most of the double resonances are weak and

can be treated as single resonances. The number of strong double resonances is independent of δ and ε.

In this section, we first give a criterion to distinguish weak and strong double resonances, and next show

that there exist NHICs close to the strong double resonances.

6.1 Distinguishing weak and strong double resonances

We apply the normal form Proposition 3.3 to the case (2) of Lemma 4.5 to obtain the following lemma.

Lemma 6.1. Let ω− and µ be as in Lemma 4.5, where K = (δ/3)−1/2 for a small δ. Then there

exists an ε2 = ε2(δ,Λ) such that for ε < ε2, the following holds. Let ω⋆ ∈ D′′ be as in the case (2) of

Lemma 4.5. Then there exists a symplectic transformation ϕ defined on {|Y | 6 Λ} × Tn that is oε→0(1)

close to identity in the Cr0−1 norm such that

H ◦ ϕ(x, Y ) =
1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+ V (⟨k′, x⟩, ⟨ko, x⟩) + δR(x, Y ), (6.1)

where

(1) V (⟨k′, x⟩, ⟨ko, x⟩) = Πk′,koV;

(2) δR(x, Y ) = δRI(x)+δRII(x, Y ), where RI consists of Fourier modes of V not in spanZ{k′,ko}∪Zn
K ,

and we have |RI |r0−2 6 1 and |RII |r0−5 6 1.

Consider a double resonance associated with the vector ko. We decompose Πk′,koV(x) in (6.1) in

Lemma 6.1 as

Πk′,koV(x) = Z ′(⟨k′, x⟩) + Z ′′(⟨k′, x⟩, ⟨ko, x⟩), (6.2)

where Z ′ includes all the Fourier harmonics in the span{k′} and Z ′′ contains the rest.

Notice that Z ′′ must contain at least one term with ko. Since k′ does not depend on δ, we get

|Z ′′|Cr0−2 6 C
|ko|2 for some constant C independent of δ. We first treat Z ′′ + δR as a perturbation to

the truncated Hamiltonian 1√
ε
⟨ω⋆, Y ⟩ + 1

2 ⟨AY, Y ⟩ + Z ′(⟨k′, x⟩), which has an NHIC homeomorphic to

T ∗Tn−1 following from exactly the same reasoning as in Proposition 5.2. There is a threshold denoted

by δ, independent of δ and ε, i.e., the maximal allowable C1 norm of the perturbation for applying the

NHIM theorem (see Appendix B.2) to the NHIC in the truncated Hamiltonian.

Definition 6.2 (Weak and strong double resonances). Suppose that the frequency vector ω⋆ admits

two resonances k′ and ko. It is called a weak double resonance, if we have δ > 2 C
|ko|2 and the theorem of

the NHIM (see Theorem B.2) can be applied to yielding the NHIC as in Proposition 5.2. Otherwise, it

is called a strong double resonance.

We summarize the above analysis into the following lemma.

Lemma 6.3. The total number of strong double resonance points is bounded by ( 2Cδ )n/r
′
, which is

independent of ε and δ for given P ∈ O1.

In the following, we treat the weak double resonances in the same way as the single resonances in the

last section, and focus on strong double resonances.

6.2 The shear transformation for strong double resonances

In this subsection, we perform the next step of our normal form package, i.e., the linear symplectic

transformation and the shear transformation, to write the double resonance normal form into a decoupled

form. In particular, we separate a mechanical system of two degrees of freedom.
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6.2.1 The linear symplectic transformation

In the
√
ε-blowup and Lemma 6.1, we choose the base point y⋆ ∈ Σ(k′) so that ω⋆ = ω(y⋆) ∈ k′⊥. We

introduce the matrix M ′′ ∈ SL(n,Z) in Lemma 4.4 whose first two rows are ko and k′, respectively, and

introduce the linear symplectic transformation

M′′ : T ∗Tn → T ∗Tn, (x, Y ) 7→ (M ′′x,M ′′−tY ) =: (x′′, Y ′′). (6.3)

We also keep track of the frequency vector ω′′
a =M ′′ωa = (ν(a), 0, ∗, . . . , ∗) where ν(a) satisfies ν(ao) = 0,

where ao is such that ωo = ωao is a strong double resonance. We get a Hamiltonian system

H′′
δ :=(M′′−1)∗H ◦ ϕ =

1√
ε
⟨ω′′

a , Y
′′⟩+ 1

2
⟨A′′Y ′′, Y ′′⟩+ V (x′′1 , x

′′
2) + δR′′ (6.4)

by applying M′′ term by term to (6.1).

6.2.2 The shear transformation

In the next lemma, we are going to introduce a linear symplectic transformation called the shear

transformation, induced by a matrix in SL(2n,R) but not in SL(2n,Z) so that it is not a symplectic

transformation on T ∗Tn. We introduce the following notation.

Notation 7. Given a matrix S ∈ SL(n,R), we denote by Tn
S the torus Rn/(SZn), where

SZn = {Sk | k ∈ Zn}.
Lemma 6.4. There is a linear symplectic transformation from T ∗Tn to T ∗Tn

S defined by

SM′′ : (x, y) 7→ (SM ′′x, (SM ′′)−ty) =: (x, y) ∈ T ∗Tn
S ,

where S ∈ SL(n,R) is in (6.11), such that the Hamiltonian system H ◦ ϕ in Lemma 6.1 is reduced to the

following Hamiltonian defined on (SM ′′)−tBΛ(0)× Tn
S ⊂ T ∗Tn

S, up to an additive constant:

HS,δ := (SM′′)−1∗H ◦ ϕ = G̃(x̃, ỹ) + Ĝ(ŷn−2) + δR(x, y), (6.5)

where

G̃(x̃, ỹ) = ε−1/2ωS,1y1 +
1

2
⟨Ãỹ, ỹ⟩+ V (x̃) : T ∗T2 → R,

Ĝ(ŷn−2) =
1

2
⟨ŷn−2, Bŷn−2⟩+

1√
ε
⟨ω̂S,n−2, ŷn−2⟩,

(6.6)

where

(1) ωS = SM ′′ωo = (ω̃S , ω̂S,n−2) with ωS,2 = 0 since y⋆ ∈ Σ(k′), and ω̃S = (ωS,1, ωS,2) = 0 if

y⋆ ∈ Σ(k′,ko);

(2) the two matrices Ã and B = (Â−ĂtÃ−1Ă) are positive definite, where Ã, Ă and Â in R22 , R2×(n−2)

and R(n−2)2 , respectively, form the matrix

A =

(
Ã Ă

Ăt Â

)
; (6.7)

(3) the remainder R(x, y) = (SM′′)−1∗R satisfies |R|r0−5 < C, where the constant C is determined by

M ′′ and hence S is independent of ε or δ.

Proof. In the proof, for simplicity of notations and without causing confusion, we also remove the ′′

in (6.3). Let

G(Y, x) =
1√
ε
⟨ω′′

ao , Y ⟩+ 1

2
⟨AY, Y ⟩+ V (x1, x2). (6.8)

We write the matrix A in the block form of (6.7). We also denote by ṽ = (v1, v2) the first two entries of

a vector v ∈ Rn. Next, we have the following formal derivation:

G(Y, x) =
1√
ε
⟨ω, Y ⟩+ 1

2
⟨AY, Y ⟩+ V (x̃)
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=
1

2
⟨ÃỸ , Ỹ ⟩+ ⟨Ỹ , ĂŶn−2⟩+ V (x̃) +

1√
ε
⟨ω̃, Ỹ ⟩

+
1

2
⟨ÂŶn−2, Ŷn−2⟩+

1√
ε
⟨ω̂n−2, Ŷn−2⟩

=
1

2
⟨Ã(Ỹ + Ã−1ĂŶn−2), (Ỹ + Ã−1ĂŶn−2)⟩+ V (x̃) +

1√
ε
⟨ω̃, Ỹ ⟩

− 1

2
⟨ĂŶn−2, Ã

−1ĂŶn−2⟩+
1

2
⟨ÂŶn−2, Ŷn−2⟩+

1√
ε
⟨ω̂n−2, Ŷn−2⟩

=
1

2
⟨Ã(Ỹ + Ã−1ĂŶn−2), (Ỹ + Ã−1ĂŶn−2)⟩+ V (x̃) +

1√
ε
⟨ω̃, Ỹ ⟩

+
1

2
⟨Ŷn−2, (Â− ĂtÃ−1Ă)Ŷn−2⟩+ ε−1/2⟨ω̂n−2, Ŷn−2⟩. (6.9)

We perform the following linear shear symplectic transformation denoted by S:[
ỹ

ŷn−2

]
=

[
id2 Ã

−1Ă

0 idn−2

][
Ỹ

Ŷn−2

]
,

[
x̃

x̂n−2

]
=

[
id2 0

−ĂtÃ−t idn−2

][
x̃

x̂n−2

]
(6.10)

so that the blowup system in the new coordinates is written in the form G = G̃+ Ĝ stated in the lemma.

Here, the variables x are local coordinates on Tn
S and can be viewed as global coordinates on the universal

covering space Rn.

We define

S =

[
id2 0

−ĂtÃ−t idn−2

]
, S−t =

[
id2 Ã

−1Ă

0 idn−2

]
(6.11)

so that the above symplectic transformation S is simplified to x = Sx and y = S−tY .

Since A is positive definite and the linear symplectic transformation S does not change the signature,

we see that both Ã and B = (Â− ĂtÃ−1Ă) are positive definite.

Notice that the above matrix S is identity in the x̃ component, and hence the Hamiltonian G̃ depends

on x̃ Z2-periodically. So G̃ is a Hamiltonian defined on T ∗T2.

Remark 6.5. This lemma implies that configuration space dynamics on Tn of the system H′′
δ (δ = 0)

in (6.4) has a skew product structure. The base dynamics is given by the configuration space dynamics

on T2 of G̃ : T ∗T2 → R. Each fiber is a Tn−2. The dynamics on each fiber at the point x̃ depends on the

base point x̃ by (6.10).

For ω⋆ ∈ D′′, we further distinguish two cases depending on if ω⋆ is in Bµ(ω−) ∩ BΛε1/2(ω
o + (ko)⊥)

or not. If ω⋆ lies in the set, then when choosing the covering defining the
√
ε-blowup, we require y⋆ is

such that ω⋆ = ω(y⋆) is at the strong double resonance. In the following, we will focus mainly on this

case. The other case is easy and will be studied in Subsection 6.4.2.

6.3 Hamiltonian systems of two degrees of freedom

Suppose that ω(y⋆) is a strong double resonance. So in (6.6), the frequency ω̃S = 0 and we have obtained

a mechanical system

G̃(x̃, ỹ) =
1

2
⟨Ãỹ, ỹ⟩+ V (x̃), (x̃, ỹ) ∈ T ∗T2. (6.12)

We normalize V such that maxV = 0 and assume that the maximum is attained at 0 and is nondegenerate.

Thus, we see that the point (x̃, ỹ) = (0, 0) is a hyperbolic fixed point of the system.

The system was studied intensively in [13,14,20], whose main results will be recalled next. We divide

the study of the system into the following three regimes:

(1) low energy regime: energy levels E ∈ [0,∆) for some small ∆;

(2) intermediate energy regime: E ∈ [E−, E+] for any 0 < E− < E+ <∞;

(3) high energy regime: E ∈ [E∗,∞) for some E∗ sufficiently large.
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Item (1) will be studied in the next subsection. In this subsection, we study Items (2) and (3), and show

that there exists an NHIC, bifurcating at most finitely many times and foliated into hyperbolic periodic

orbits with the homology class g = ±(1, 0) in each energy level [E−,+∞). Going back to the full system

Hδ, we see that such NHICs would give rise to an NHIC of codimension 2 containing Mather sets whose

rotation vector is perpendicular to k′.

To see why we choose the homology class g = ±(1, 0), we consider the frequency vector ω′′ =

(ν(a), 0, ∗, . . . , ∗) after the transformation (6.3). The double resonance corresponds to ν(a) = 0 and

the crossing double resonance means that we should let ν(0) go from a positive value to a negative value.

Our diffusion orbit, when projected to the subsystem G̃, will move along the NHIC foliated by periodic

orbits with the homology class g = (1, 0), going from high energy to low energy all the way to some small

positive energy, and then by the mechanism in the next section, moving to the NHIC foliated by periodic

orbits with the homology class g = −(1, 0) and going all the way up to very high energy levels.

6.3.1 The NHIC in the low energy region

We cite the following result from [20], which gives the existence of the NHIC for low energy levels for

Tonelli Hamiltonian systems of two degrees of freedom.

Theorem 6.6 (See [20, Theorem 2.1]). Consider a Cr Tonelli Hamiltonian H : T ∗T2 → R normalized

such that minαH = 0 by adding a constant. Given a class g ∈ H1(T2,Z) and a closed interval [E−, E+]

⊂ (0,∞), there exists an open and dense set Õ2(E−, E+) ⊂ Cr(T2)/R such that for each V ∈ Õ2(E−, E+)

normalized by adding a constant such that minαH = minαH+V = 0, it holds simultaneously for all

E ∈ [E−, E+] that the Mather set M̃(E, g) on the energy level E having the homology class g for H + V

consists of hyperbolic periodic orbits. Moreover, except for finitely many Ej ∈ [E−, E+] where the Mather

set consists of two hyperbolic periodic orbits, for all other E ∈ [E−, E+], the Mather set is exactly one

hyperbolic periodic orbit.

We denote by ν±(1, 0) the rotation vectors of the Mather set on the energy levels E± with the homology

class (1, 0) ∈ H1(T2,Z). The next lemma shows that each hyperbolic periodic orbit corresponds to a

one-dimensional flat in H1(T2,R).

Lemma 6.7. Let H(x̃, ỹ) : T ∗T2 → R be a Tonelli Hamiltonian and c∗ ∈ H1(T2,R). We assume

that the Mather set M̃(c∗) is supported on a hyperbolic periodic orbit with the rotation vector νg for

g ∈ H1(T2,Z) and ν ̸= 0. Then the set ∂βH(νg) is an interval {c∗ + scg | s− 6 s 6 s+} ⊂ H1(T2,R)
with s− < s+, s− 6 0 6 s+, cg ⊥ g and ∥cg∥ = 1 such that for each c ∈ {c∗ + scg | s− < s < s+}, we
have Ã(c) = M̃(c∗).

The proof is postponed to the end of this section.

6.3.2 The high energy regime

We first show the high energy level case is the same as the system G̃ in (6.6) with a linear term in y1.

In (6.12), we consider ỹ⋆ and Λ∗ such that Ãỹ⋆ = ν(1, 0) for some large ν with ν∥Ã−1(1, 0)∥ > Λ∗ and
1
2∥Ã

−1∥−1Λ2
∗+minV > E∗, and introduce ỹ−ỹ⋆ = Ỹ. In the coordinates (x̃, Ỹ), the Hamiltonian becomes

G̃(x̃, Ỹ) =
1

2
⟨Ãỹ⋆, ỹ⋆⟩+ νỸ1 +

1

2
⟨ÃỸ, Ỹ⟩+ V (x̃). (6.13)

This is of the form of the Hamiltonian G̃ in (6.6).

We next cite a result from [14] concerning the high energy regime of the system G̃ in (6.12). We define

[V ](x2) =
∫
T1 V (x1, x2) dx1. Suppose that [V ] has a unique nondegenerate global maximum at a point

denoted by x∗2, which is a C2 open and dense condition.

Theorem 6.8 (See [14, Theorem 3.1 and Proposition 3.1]). Suppose that the potential V of the system

G̃ in (6.12) satisfies that [V ] has a unique nondegenerate global maximum at x∗2. Then there exists an

E∗ > 0 such that
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(1) the action minimizing periodic orbits in the homology class g = (1, 0) ∈ H1(T2,Z) on the energy

levels {E > E∗} form a unique Cr NHIC homeomorphic to T ∗T with uniform normal hyperbolicity;

(2) as E → ∞, the periodic orbit {(x̃E(t), ỹE(t))} on the energy level E has the following uniform

convergence: x2,E(t) → x∗2 and ẋ2,E(t) → 0.

By the reversibility of the system G̃, the same conclusion holds for the homology class g = (−1, 0). In

fact, the periodic orbit in the Mather set M̃ν(−1,0) is the time reversal of M̃ν(1,0).

Here, we only sketch the proof and the details can be found in [14, Theorem 3.1 and Proposition 3.1].

Sketch of the proof. The main idea of the proof is that on the high energy level, the fast oscillation in

the x1 component (see the equation (6.13), which implies ẋ1 = ν +O(1) ≫ 1) will effectively average out

the dependence on x1 in V , so the Hamiltonian system is effectively 1
2 ⟨ỹ, Ãỹ⟩ + [V ](x2) as E → ∞. So

we get that the normal hyperbolicity is determined by Ã and the second-order derivative [V ]′′(x∗2) hence

is independent of the energy levels. The genericity assumption on V is to guarantee that [V ](x2) has a

nondegenerate global maximum.

6.4 NHICs in the double resonance regime

In this subsection, we embed the NHICs of the system G̃ into the full system to get NHICs of

codimension 2.

6.4.1 The NHIC in the Λ
√
ε-neighborhood of the double resonance

In this subsection, we give the existence of the NHIC in BΛ
√
ε(y

⋆)×Tn near the strong double resonance

up to a neighborhood of the strong double resonance. This corresponds to Theorem 6.6.

Proposition 6.9. Let y⋆ ∈ Σ(k′,ko) be such that ω⋆ = ω(y⋆) is at the strong double resonance

with integer vectors k′ and ko. Then for any λ > 0, there is an open and dense set O2 =

O2(k
′,ko;λ,Λ) ⊂ Πk′,koCr(Tn)/R such that for each P with Πk′,koP (x, y⋆) ∈ O2 normalized such that

maxΠk′,koP (x, y⋆) = 0, there exists a δ2 = δ2(Πk′,koP (x, y⋆), λ) > 0 such that for all 0 < δ < δ2 and all

0 < ε < ε2(δ,Λ) as in Lemma 6.1, the following hold:

(1) The Hamiltonian system (6.1) admits an NHIC C(k′) homeomorphic to T ∗Tn−1, up to finitely

many bifurcations, entering a λ-neighborhood of Σ(k′,ko)× Tn.

(2) The NHIC has uniform normal hyperbolicity, independent of δ or ε.

(3) Mather sets lying in B0.9Λ(0) × Tn and with rotation vectors perpendicular to k′ and of distance

λ-away from −ε−1/2ω⋆ + (ko)⊥, are contained in C(k′).

Proof. In the system HS,δ (6.5), we first discard the δ-perturbation and consider the system (6.8)

HS,0 = G̃(x̂, ŷ) + Ĝ(ŷn−2) : T
∗Tn

S → R.
First, the system G̃(x̂, ŷ) admits an NHIC by Theorem 6.6 with the homology class (1, 0) ∈ H1(T2,Z) for

V chosen in an open and dense subset O2(E−, E+) of C
r(T2)/R. Here, we choose E− = αG̃(∂βG̃(λ(1, 0)))

and E+ to be the highest possible energy level for ∥Y ∥ 6 Λ. This gives the open and dense set

O2(k
o,k′;λ,Λ), since V is obtained from Πko,k′P (y⋆, x) after a linear transformation. We next show

that the system HS,0 admits an NHIC. Indeed, given a periodic orbit γ̃ = (x̃E(t), ỹE(t)) of the system G̃

in the Mather set M̃(E), it gives rise to an orbit of the system HS,0:

(x̃E(t), x̂(0) + (ε−1/2ω̂⋆ +Bŷ(0))t, ỹE(t), ŷ(0)) ⊂ T ∗Tn
S , t ∈ R.

Taking union over all the periodic orbits and all the initial conditions x̂(0) ∈ (−ĂtÃ−tx̃ + Tn−2) and

∥ŷ(0)∥ 6 Λ, we get an NHIC for the system HS,0 that is homeomorphic to T ∗Tn−1
S̄

, where S̄ is obtained

from S by removing the second row and the second column. Going back to the system (6.1) with δ = 0

by inverting the symplectic transformation SM′′, we get an NHIC homeomorphic to T ∗Tn−1.

Due to the uniform hyperbolicity, when the δ-perturbation in (6.5) is turned on, we get the persistence

of the NHIC as we did in the proof of Proposition 5.2. Here, the modification of the δR should be done as

follows in addition to that used in the proof of Proposition 5.2 in order to smoothen the Hamiltonian in

the region {0 6 G̃(x̂, ŷ) < E−}. We introduce a C∞ monotone cutoff function ρ : [0,∞) → [0, 1] satisfying
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ρ(x) = 0 for x 6 1/3 and ρ(x) = 1 if x > 2/3. We next modify δR to ρ( G̃(x̂,ŷ)
αG̃(∂βG̃(λ(1,0)))

)χ(∥Y ∥/Λ)δR. Now

the proposition follows from the same argument as in Proposition 5.2.

6.4.2 The high energy regime

In this subsection, we give the existence of the NHIC in BΛ
√
ε(y

⋆)× Tn for y⋆ ∈ Σ(k′) and

ω⋆ = ω(y⋆) ∈ D′′ \BΛε1/2(ω
o + (ko)⊥) (6.14)

that is Λε1/2-away from but ε1/3-close to the strong double resonance. This corresponds to Theorem 6.8.

Proposition 6.10. Let P ∈ O1 and δ1 be as in Proposition 5.2. Then there exists a Λ∗ such that for

all Λ > Λ∗ and y⋆ being such that ω⋆ = ω(y⋆) is as in (6.14), all 0 < δ < δ1 and all 0 < ε < ε2(δ,Λ), the

Hamiltonian system (6.1) defined in BΛ(0) × Tn admits a Cr−1 NHIC C(k′) homeomorphic to T ∗Tn−1

with the following properties:

(1) The normal hyperbolicity is uniform, independent of Λ, δ or ε.

(2) Mather sets lying in {∥Y ∥ 6 0.9Λ} × Tn with rotation vectors perpendicular to k′ lie inside C(k′).

Proof. By the previous Theorem 6.8, we get the existence of the NHIC in the system G̃ in (6.6).

By the same argument as the proof of Proposition 6.9, we get the existence of the NHIC in the

original system (6.1). The assumption in Theorem 6.8 on the nondegeneracy of [V ] turns out to be

the nondegeneracy of the global maximum of Πk′P (y⋆, x) which is guaranteed by Πk′P ∈ O1 ⊂ Πk′Cr.

The remaining statements are proved in the same way as in Proposition 5.2.

6.5 Proofs

In this subsection, we give the proof of Lemma 6.7.

Proof of Lemma 6.7. The proof is a variant of [13, Proposition 2.1]. As the system is autonomous with

two degrees of freedom, ∂βH(νg) is either an interval or a point since ∂βH(νg) lies on an energy level

α−1(E), which is a closed curve. In the case of the interval, some cg ∈ H1(T2,R) exists such that ∂βH(νg)

= {c∗+scg | s− 6 s 6 s+}. It follows from [36] that for all the classes in the set {c∗+scg | s− < s < s+},
the Aubry sets Ã(c) are the same. Let us show that s− < s+ and Ã(c) = M̃(c∗) for c ∈ {c∗ + scg | s−
< s < s+}.

Given any absolutely continuous curve γ, its Lagrange action is defined as follows:

Ac(γ) =

∫
(LH(γ̇, γ)− ηc + αH(c))dt, [ηc] = c.

Denote by γ0 the hyperbolic periodic orbit. We consider minimal homoclinic orbits to γ0, which is located

in the intersection of the stable and unstable manifolds of (γ̇0, γ0). A homoclinic orbit (γ̇, γ) is called

minimal if the lift of γ, γ̌: R→ M̌ is semi-static for the class c∗, where M̌ is the largest covering space of

T2 so that π1(M̌) = π1(U) holds for each open neighborhood of M(c∗). Because of the topology of T2,

there are only two types of minimal homoclinic orbits, denoted by (γ̇±, γ±). Given a point x ∈ γ0, there

are four sequences of time t±i,± such that γ−(t±i,−) → x as t±i,− → ±∞ and γ+(t±i,+) → x as t±i,+ → ±∞
and t±i,− → ±∞ as i→ ∞. We define

Ac(γ
−, x) = lim inf

i→∞

∫ t+i,−

t−i,−

(LH(γ̇−, γ−)− ⟨c, γ̇−⟩+ αH(c))dt,

Ac(γ
+, x) = lim inf

i→∞

∫ t+i,+

t−i,+

(LH(γ̇+, γ+)− ⟨c, γ̇+⟩+ αH(c))dt.

We obviously have Ac∗(γ
±, x) > 0. Next, we claim that Ac∗(γ

+, x) + Ac∗(γ
−, x) > 0. Otherwise, we

would have Ac∗(γ
±) = 0 for both ±, which implies that γ± ⊂ Ã(c∗). However, this violates the graph

property of the Aubry set since in the first relative homology group H1(T2, γ0,Z) we have [γ+] ̸= [γ−],
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and when lifted to R2, the two curves γ± lying in the same strip bounded by two neighboring lifts of γ0
and hence the projections of γ± on T2 must intersect. The contradiction proves our claim. Let us assume

Ac∗(γ
+) > 0 without loss of generality.

Pick ∆c small enough and satisfying

⟨∆c, [γ0]⟩ = 0, ⟨∆c, [γ+]⟩ > 0 and Ac∗(γ
+)− ⟨∆c, [γ+]⟩ > 0.

According to the upper semi-continuity of the Mañé set in the cohomology class, any minimal measure µc

is supported by a set lying in a small neighborhood of these homoclinic orbits if c = c∗ +∆c and |∆c| is
very small. By the assumption Ac∗(γ

+) > 0, it can only happen that µc is supported in a neighborhood

of γ− ∪ γ0.
We claim that the minimal measure µc for c = c∗+∆c is still supported on the periodic orbit γ0. First,

we show that ρ(µc) ∥ ρ(µc∗) ⊥ ∆c. Otherwise, since supp(µc) lies in the small neighborhood of γ−, it

follows that −⟨∆c, ρ(µc)⟩ > 0. On the other hand, as the c∗-minimal measure is uniquely supported on the

periodic orbits, the β-function is strictly convex at ρ(µc∗) and hence the α-function is differentiable at c∗

and ρ(µc∗) = ν[γ0] holds for a certain number ν ̸= 0. Therefore, we have αH(c∗+∆c)−αH(c∗) = o(|∆c|).
Consequently, we obtain from the definition that

Ac(µc) =

∫
(LH − ηc∗)dµc + αH(c∗ +∆c)− ⟨∆c, ρ(µc)⟩

=

∫
(LH − ηc∗)dµc + αH(c∗)− ⟨∆c, ρ(µc)⟩+ o(|∆c|),

from which we have Ac(µc) > 0 as Ac∗(µc∗) > 0, −⟨∆c, ρ(µc)⟩ > 0 and o(|∆c|) is a higher-order term of

|∆c|. The contradiction implies that ρ(µc) ⊥ ∆c. Next, by the convexity of α, we have

α(c)− α(c∗) > ⟨∆c, ρ(µc∗)⟩ = 0 and α(c∗)− α(c) > ⟨−∆c, ρ(µc)⟩ = 0,

so we have α(c) = α(c∗). We get that the interval c∗ + s∆c, s ∈ [0, 1] lies entirely on the energy level

α(c∗), on which the Mather set in the homology class g ∈ H1(T2,Z) is known to be the unique hyperbolic

periodic orbit and hence the rotation vector is constant for c in the interval. Finally, from the proof, we

see that the curves γ± appear in the Aubry set only when the cohomology class lies on the endpoints

of the interval. Otherwise, the Aubry set agrees with the Mather set being the periodic orbit. This

completes the proof.

7 Dynamics around strong double resonances: Cohomology equivalence

In the last section, we have written the system at the strong double resonance into a form of a mechanical

system of two degrees of freedom coupled with a fast rotating integrable system. In this section, we first

recall the main result of [13] on the existence of cohomological equivalence for Hamiltonian systems of

two degrees of freedom near the zero energy level. Next, we generalize it to the full system to build a

piece of transition chain.

7.1 Cohomological equivalence for the subsystem of two degrees of freedom

Theorem 7.1 (See [13, Proposition 2.1] and Figure 3). Let H : T ∗Tn → R be a Tonelli Hamiltonian.

Given a class c0 ∈ H1(Tn,R), if the minimal measure is supported on a hyperbolic fixed point, then there

exists an n-dimensional convex flat F0 ⊂ H1(Tn,R) containing c0 such that this fixed point supports a

c-minimal measure for all c ∈ F0.
In the following, we specialize in the case of n = 2. The next theorem is one of the main results in [13].

Theorem 7.2 (See [13, Theorem 3.1]). There is an open and dense set Õ3 ⊂ Cr(T2)/R such that

for each V ∈ Õ3 normalized by maxV = 0, for each c ∈ ∂F̃0, where F̃0 = α−1(minα) is the flat of the

α-function for G̃, the Mañé set N (c) does not cover the whole configuration space T2, i.e., N (c) ( T2.
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Fixed point

ChannelChannel

Figure 3 (Color online) Two ways that the flat F0 connects to the channels

Remark 7.3. [13, Theorem 3.1] gives only a residual set. The openness of the set follows immediately

from the upper-semi-continuity of the Mañé set.

This theorem allows us to construct the orbit connecting two Aubry sets Ã(c) and Ã(c′) for any c and

c′ in ∂F̃0 using the mechanism of cohomological equivalence (Item (H2) of Definition 2.1).

Proposition 7.4 (See [13, Theorems 1.1 and 3.2]). Given V ∈ Õ3 normalized by maxV = 0, there

exists some positive numbers ∆̃0 = ∆̃0(V ) > 0 such that for each E ∈ (0, ∆̃0) and each c ∈ α−1(E),

there exists a circle Σc ⊂ T2 such that all the c-semi-static curves of the system G̃ pass through that circle

transversely and N (c) ∩Σc ⊂
∪
Ic,i, where Ic,i ⊂ Σc are finitely many disjoint open intervals. Therefore

any two cohomology classes c and c′ in α−1(E) are c-equivalent.

7.2 Cohomological equivalence for the full system

We next construct a generalized transition chain using the c-equivalent mechanism in the full system

HS,δ : T ∗Tn
S → R near the strong double resonance. We assume y⋆ ∈ Σ(k′,ko). Such a generalized

transition chain will give rise to one for the original system H after the linear symplectic transformations.

We first study the α-function for HS,δ. Note that the Mather theory is defined for Tonelli systems on

T ∗M for a general closed manifold M . Here, we have H1(Tn
S ,R) isomorphic to H1(Tn,R) with the basis

vectors transformed by S−t in the same way as the y variables in (6.10).

Lemma 7.5. The α-functions of HS,δ satisfy ∥αHS,δ
− αHS,0∥C0 < δ, where

αHS,0(c) = αG̃(c̃) +
1√
ε
⟨ω̂S,n−2, ĉ⟩+

1

2
⟨Bĉ, ĉ⟩, c ∈ H1(Tn

S ,R) = Rn.

Proof. For the δ-estimate of the difference, we denote by Lδ and L0 the Lagrangians corresponding to

HS,δ and HS,0, respectively. Then we have ∥Lδ − L0∥C0 6 δ. Given the cohomology class c, we denote by

µδ and µ0 the c-minimal measures for Lδ and L0, respectively. Choose a closed one-form ηc with [ηc] = c,

and then we get

−αHS,δ
=

∫
(Lδ − ηc)dµδ 6

∫
(Lδ − ηc)dµ0, −αHS,0

=

∫
(L0 − ηc)dµ0 6

∫
(L0 − ηc)dµδ.

The δ-estimate of the difference is obtained by taking difference.

To determine the form of the α-function for HS,0, let us consider an invariant measure µ in the Mather

set with the cohomology class c = (c̃, ĉ) of the system HS,0. Denote by µ̃ the corresponding invariant

measure in the cohomology class of c̃ of the subsystem G̃. By Mather’s graph theorem, we know that

suppµ is a graph from a subset of Tn
S to Rn and suppµ̃ is a graph from a subset of T2 to R2. Next,

we know that µ has a skew product structure: for each x̃ ∈ T2, there is a measure µ̂x̃ supported on the

torus Graphµ̃(x̃) × (−ĂtÃ−tx̃ + Tn−2) × {ĉ} using the transformation S in (6.10) as well as the fact

that ˙̂y = 0. So the integration with respect to dµ disintegrates into dµ(x) = dµ̂x̃(x̂)dµ̃(x̃). When doing

the inner integral with the integrand being the Lagrangian of HS,0, note that the Lagrangian does not

depend on x̂, so the integration with respect to dµ̃x̂(x̃) is effectively the integration with respect to a Haar

measure supported on the above torus containing the support of µ̂x̃. In particular, in the ŷ component,
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the measure is Dirac-δ supported on {ŷ = ĉ}. This gives the term 1√
ε
⟨ω̂S,n−2, ĉ⟩+ 1

2 ⟨Bĉ, ĉ⟩. Finally, the
outer integral with respect to dµ̃ gives the term αG̃(c̃).

The next lemma shows that in the system G̃, the NHIC overlaps the region of c-equivalence.

Lemma 7.6. There exists an open and dense subset Ô3 ⊂ Cr(T2)/R such that for each V ∈ Ô3 with

maxV = 0, there exists a λ > 0 such that the following hold for the system G̃ :

(1) the system G̃ admits an NHIC on the energy interval [αG̃(∂βG̃(λ, 0)),∞), foliated by hyperbolic

periodic orbits in the Mather sets with rotation vectors ν(1, 0) (|ν| > λ), up to finitely many bifurcations;

(2) each curve α−1

G̃
(E) (E/αG̃(∂βG̃(λ, 0)) ∈ [1, 2)) is a curve of c-equivalence.

Proof. By Proposition 7.4, there exists an open and dense subset Õ3 in Cr(T2)/R such that for each

V ∈ Õ3 with maxV = 0, there exists a ∆̃0(V ) > 0 such that each curve α−1

G̃
(E) (E ∈ [0, ∆̃0)) is a

curve of c-equivalence. We introduce a sequence of open sets Õ3,ℓ (ℓ ∈ N) satisfying Õ3,ℓ ⊂ Õ3,ℓ+1 and

Õ3 =
∪

ℓ∈N Õ3,ℓ, where Õ3,ℓ := {V ∈ Õ3 | ∆̃0(V ) > 2/ℓ}. Each set Õ3,ℓ is open due to the upper-semi-

continuity of the Mañé set. Indeed, suppose V∗ ∈ Õ3,ℓ with ∆̃0(V∗) > 2/ℓ. So for all c with αG̃(c) < 2/ℓ,

the Mañé sets N (c) are broken in the sense of the conclusion of Proposition 7.4. By the upper-semi-

continuity of the Mañé set with respect to the Lagrangian, the same is true for any potential V that is

Cr sufficiently close to V∗, so ∆̃0(V ) > ∆̃0(V∗) > 2/ℓ. This means that there is a Cr-ball, centered at V∗
contained in Õ3,ℓ.

Next, we fix large E+ = E∗ (see Theorem 6.8) and choose E− = 1/ℓ, and we introduce an open and

dense set Õ2,ℓ := Õ2(1/ℓ, E+) ⊂ Cr(T2)/R as in Theorem 6.6. Now the intersection Õ3,ℓ ∩ Õ2,ℓ is open

in Cr(T2)/R and the union Ô3 :=
∪

ℓ(Õ3,ℓ ∩ Õ2,ℓ) is open and dense in Cr(T2)/R. To get the statement,

it is enough to set 1/ℓ = αG̃(∂βG̃(λ, 0)) if V ∈ (Õ3,ℓ ∩ Õ2,ℓ).

Going back to the original system, we have the following proposition.

Proposition 7.7. Let y⋆ ∈ Σ(k′,ko) be such that ω⋆ = ω(y⋆) is at the strong double resonance with

integer vectors k′ and ko. Then there exists an open and dense set O3 = O3(k
′,ko) ⊂ Πk′,koCr(Tn)/R

such that for any P with Πk′,koP (y⋆, x) ∈ O3 normalized by maxΠk′,koP (y⋆, x) = 0, there exist λ =

λ(Πk′,koP (y⋆, x)) and δ3 = δ3(Πk′,koP, λ) such that for all 0 < δ < δ3, the following holds. Suppose

c∗ = (c̃∗, ĉ∗) ∈ R2 × Rn−2 = H1(Tn,R) and c∗ := (c̃∗, ĉ∗) = S−tc∗ satisfy αG̃(∂βG̃(λ, 0)) < αG̃(c̃∗)

< 2αG̃(∂βG̃(λ, 0)) and ∥ĉ∗∥ 6 Λ. Then

(1) the path Γδ(c∗) := {(c̃, ĉ∗) | αHS,δ
(c̃, ĉ∗) = αHS,δ

(c∗)} is a path of c-equivalence for the system HS,δ

in (6.5);

(2) the path Γδ(c∗) lies in a δ-neighborhood of the curve Γ0(c∗) := (α−1

G̃
(αG̃(c̃∗)), ĉ∗);

(3) the path (SM ′′)tΓδ(c∗) is a path of c-equivalence for the original system (3.2).

7.3 Center straightening

Let the Tonelli Hamiltonian H : T ∗T2 → R, the homology class g ∈ H1(T2,Z), the energy interval

[E−, E+] and the potential V ∈ Õ2(E−, E+) be as in Theorem 6.6. Then we get at most finitely many

pieces of NHICs foliated by hyperbolic periodic orbits.

Proposition 7.8. Let the Tonelli Hamiltonian H : T ∗T2 → R, the homology class g = (1, 0)

∈ H1(T2,Z), the energy interval [E−, E+] and the potential V ∈ Õ2(E−, E+) be as in Theorem 6.6.

Suppose that on this energy interval, H admits an NHIC N foliated by hyperbolic periodic orbits in the

Mather set with rotation vectors νg (ν ∈ [ν−, ν+] ⊂ (0,∞)). Then the following hold:

(1) Restricted on the cylinder N , there exist two numbers 0 < I− < I+ and a symplectic change of

variables Φ : (I, φ) ∈ [I−, I+] × T → (x, y) |N such that the Hamiltonian H can be written as Φ∗H =

H ◦ Φ = h̃(I), where h̃ is as smooth as H and satisfies

h̃(I±) = E±, h̃′(I±) = ν± and h̃′(I) > 0, h̃′′(I) > 0, ∀ I ∈ [I−, I+].

(2) There is a neighborhood U of the c1 line in H1(T2,R) such that for each c = (c1, c2) ∈ U with

c1 ∈ [I−, I+], we have αH(c) = h̃(c1).
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(3) Assume furthermore that H is reversible, i.e., H(x, y) = H(x,−y). Then the Mather set with

rotation vectors −νg (ν ∈ [ν−, ν+]) is the time reversal of that of νg. On the NHIC foliated by Mather

sets with rotation vectors −νg (ν ∈ [ν−, ν+]), the restricted Hamiltonian system h̄ : [−I+,−I−]× T→ R
of one degree of freedom satisfies h̄(I) = h̃(−I).

7.4 Proofs

In this subsection, we give the proofs of Propositions 7.7 and 7.8.

Proof of Proposition 7.7. The open and dense set O3 is obtained by transforming the open and dense

set Ô3 in Lemma 7.6 by the linear transformation M ′′. Let us now go back to the system G̃ for which

we choose V ∈ Ô3 which determines λ.

We define Γ̃(c̃∗) = α−1

G̃
(αG̃(c̃∗)) for given c̃∗ satisfying αG̃(c̃∗)/αG̃(∂βG̃(λ, 0)) ∈ (1, 2). The coordinate

change S does not change the x̃ components, so for each ĉ, let Γ0(c̃∗, ĉ) = (Γ̃(c̃∗), ĉ), and the Mañé set

ÑG(c(t)) for the system G in (6.8) and the cohomology class c(t) ∈ Γ0(c̃∗, ĉ), when projected to the

first T2 factor, coincides with the Mañé set NG̃(c̃(t)) for the system G̃. So by Proposition 7.4, for each

c(t) ∈ Γ0(c̃∗, ĉ), there exist a circle Σc(t) ⊂ T2 and disjoint open intervals Ic(t),i so that all the c-semi-static

curves of the system G pass through that circle transversely and

NG(c(t)) ∩ S(Σc(t) × Tn−2) ⊂
∪
S(Ic(t),i × Tn−2),

whose homology is in the set {(0, 0)} × Rn−2. For each ĉ with ∥ĉ∥ < Λ, the curve (Γ̃(c̃∗), ĉ) is a

curve of cohomological equivalence for the system HS,0 since for two points c(t) and c(t′) on the curve,

the difference c(t) − c(t′) = (∗, 0̂) is perpendicular to the subspace {(0, 0)} × Rn−2 which contains the

homology of NG(c(t)) ∩ S(Σc(t) × Tn−2).

Next, we show that the level set {(c̃, ĉ∗) | αHS,δ
(c̃, ĉ∗) = αHS,δ

(c∗)} is O(δ)-close to that of the case

δ = 0 which is Γ0(c̃∗, ĉ). This follows from the following fact about convex functions: given two convex

functions αδ and α0 with |αδ − α0|C0 6 δ and ∥Dα0∥ > C > 0 on the level set {α0(c) = E}, then the

level sets {αδ(c) = E} and {α0(c) = E} are O(δ)-close to each other. To prove this fact, it is enough

to measure the distance of the intersection points of the two level sets with each radial line. Since the

subdifferential Dα is bounded away from zero, to maintain constant E, the distance can at most be O(δ).

By the upper semi-continuity of the Mañé set, since the Hamiltonians and the cohomology paths are

O(δ)-close, when we consider the system HS,δ with δ small enough, the same conclusion holds.

Proof of Proposition 7.8. The normal hyperbolicity implies that the symplectic form Ω restricted to

the cylinder is still a symplectic form denoted by ΩN (see [23, Equation (63)]) . Denote by T× [I−, I+] the

standard cylinder where I± are to be determined later, and let Ψ0: T×[I−, I+] → N be a diffeomorphism.

Then the pullback Ψ∗
0ΩN of ΩN is a symplectic form on the standard cylinder T × [I−, I+]. As the

second de Rham cohomology group of cylinder T × [I−, I+] is trivial, Moser’s argument on the isotopy

of symplectic forms shows that a certain diffeomorphism Ψ: T× [I−, I+] → T× [I−, I+] exists such that

Ψ∗Ψ∗
0ΩN = dI ∧ dφ. The Hamiltonian H induces a Hamiltonian defined on T× [I−, I+]: HΨ0Ψ(I, φ).

Restricted to N , the Hamiltonian system has one degree of freedom and hence is integrable. We have

a standard method of introducing action-angle coordinates (see [2, Sections 50B and 50C]). Namely, the

action variable I is defined as integrating the Poincaré-Cartan one form ydx along the periodic orbits,

and an angular variable φ is introduced as symplectic conjugate of I. In the action-angle coordinates, the

Hamiltonian depends only on I, so we denote it by h̃(I). We define I± by h̃(I±) = E± and h̃′(I±) = ν±.

It remains to show the twist. We use a result of Carneiro [12] saying that Mather’s β-function is

differentiable in the radial direction for autonomous systems. Now h̃(I) is actually Mather’s α-function

since the Mather set is exactly the periodic orbit γν . The direction of νg is the radial direction as ν

varies. The α-function is strictly convex d2h̃(I)
dI2 > 0, a.e. in order that β is differentiable. It holds that

dh̃(I)

dI
=
dh̃(I−)

dI
+

∫ I

I−

d2h̃(t)

dI2
dt =

∫ I

I−

d2h̃(t)

dI2
dt > 0.
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Since the symplectic transformation is explicit, we get that h̃ is as smooth as H.

By Lemma 6.7, we get that for each rotation vector ν(1, 0) (ν ∈ [ν−, ν+]), its Legendre transformation

is a line segment perpendicular to the homology class (1, 0). Taking union over all the line segments, we

get a two-dimensional strip in H1(T2,R) as the U in the statement. It remains to locate U . Note that

integrating a closed one-form η with the cohomology class c along a loop of the homology class (1, 0)

will pick out the first entry of c. For the Hamiltonian system of one degree of freedom defined on T ∗T,
the cohomology class of each periodic orbit γ is given by

∮
γ
y dx. In our case, the restricted Hamiltonian

system on the NHIC foliated by periodic orbits has one degree of freedom, so we get the cohomology class

by integrating the Poincaré-Cartan form y1dx1+y2dx2 along the periodic orbit. Restricted to the NHIC,

the Hamiltonian system is integrable whose α-function is known to be the same as the Hamiltonian.

Finally, to see that the system h̃(I) is reversible, we notice that the reversibility of the system H(x, y)

implies that the Mather sets with rotation vectors νg and −νg (ν > 0) are supported on the same periodic

orbit with reversed time. Since the Legendre transformation of an even function is also even, we get the

Lagrangian L(ẋ, x) is even with respect to ẋ, and hence p = ∂L
∂ẋ gets a negative sign when we reverse the

time. The two periodic orbits lie on the same energy level and their corresponding action variables are

opposite to each other from the formula I = 1
2π

∮
γ
y dx. The proof is now completed.

8 Frequency refinement

In this section, we describe the second step of the reduction of orders. We construct NHICs homeomorphic

to T ∗Tn−2 and build generalized transition chains connecting the NHICs crossing the triple resonance.

This section gives the major part of the proof of Theorem 2.4 in the case of n = 4.

We fix k′ and choose a Πk′P ∈ O1 and Πk′,koP ∈ O3 for finitely many strong second resonances ko.

This determines δ1, δ2 and δ3 by Propositions 5.2, 6.9 and 7.7, respectively. We also fix a δ

(< min{δ1, δ2, δ3}) so that Propositions 5.2, 6.9 and 7.7 are applicable.

Definition 8.1 (The direct sum decomposition of the function space). Recall Notation 3 for Cr. The

space Cr/(Πk′Cr) is defined in such a way that each P ∈ Cr admits a decomposition P = Πk′P + (P

−Πk′P ) respecting the L2 orthogonal decomposition Cr = Πk′Cr ⊕Cr/(Πk′Cr). The space Cr/(Πk′Cr)

inherits the norm of Cr. It is similar for Cr/(Πk′,koCr).

8.1 Frequency refinement

We have been working in a µ-neighborhood of the frequency segment ωa = ρa(a,
P
Qω

∗
2 ,

p
qω

∗
2 , ω̂

∗
n−3),

a ∈ [ω∗i
1 − ϱ, ω∗f

1 + ϱ]. Note that µ is determined by δ through K.

We pick a rational number denoted by p̄
q̄ satisfying∣∣∣∣ p̄q̄ ω∗

2 − ω∗
4

∣∣∣∣ < µ, g.c.d.(p̄qQ, q̄) = 1, g.c.d.(q̄p, p̄q) = 1, (8.1)

and obtain a new segment of frequency ω̄a := ρ̄a(a,
P
Qω

∗
2 ,

p
qω

∗
2 ,

p̄
q̄ω

∗
2 , ω̂

∗
n−4).

Besides k′, the frequency ω̄a now admits a new resonant integer vector denoted by k′′ for all a. For µ

sufficiently small, the rational number p̄/q̄ necessarily has a large denominator bounded from below by

O(µ−1). So we get that |k′′| is bounded from below by O(µ−1). Thus |k′′| ≫ |k′| if µ is small enough.

The transformed frequency segment is M ′ω̄a = ρ̄a(a, 0,
P̄
Q̄
ω∗
2 ,

p̄
q̄ω

∗
2 , ω̂

∗
n−4), where

P̄
Q̄

= 1
qQ with P̄ = 1

and Q̄ = qQ.

For the system restricted to the NHIC in Proposition 5.2, we remove the zero entry in M ′ω̄. Now

we are in a situation completely parallel to Section 4. Again we encounter the situation of single and

double resonances. The new resonant integer vector can be determined from the equation k′′(M ′)−1

= (0, 0, Q̄p̄,−q̄P̄ , 0̂n−4), where g.c.d.(q̄P̄ , p̄Q̄) = g.c.d.(p̄qQ, q̄) = 1.

As we vary a in an interval, a third resonance may appear. We fix K = (δ/3)−1/2 as in Lemma 4.5 by

fixing δ. Parallel to Lemma 4.5, we have the following lemma.
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Lemma 8.2. Let ω−, µ, ω̄−, K, k′ and k′′ be as above. For any K̄ > max{K, |k′′|}, let ko
i

(i = 1, . . . ,m) be the collection of all the irreducible integer vectors in Zn
K̄

\ span{k′,k′′} satisfying

⟨ko
i , ω̄

o⟩ = 0, and (ko
i )

⊥ be the (n − 1)-dimensional space orthogonal to the vector ko
i , where ao ∈

[ω∗i
1 − ϱ, ω∗f

1 + ϱ], i = 1, . . . ,m. Then there exists a µ̄ = µ̄(K̄) such that Bµ̄(ω̄−) ⊂ Bµ(ω−) and

(1) for any small ε and all ω in the neighborhood D̄′′ = Bµ̄(ω̄−) \
∪

iBε1/3(ω̄
o
i + (ko

i )
⊥), we have

|⟨k, ω⟩| > ε1/3, ∀k ∈ Zn
K̄
\ spanZ{k′,k′′};

(2) for all ω in D̄′′′ := Bµ̄(ω̄−) ∩Bε1/3(ω̄
o + (ko

i )
⊥), for each i and for all k ∈ Zn

K̄
\ spanZ{k′,ko

i ,k
′′},

we have

|⟨k, ω⟩| > nK̄µ̄. (8.2)

Proof. We first perform a reduction and then invoke Lemma 4.5. The transformed frequency segment

M ′ω̄a = ρ̄a

(
a, 0,

P̄

Q̄
ω∗
2 ,
p̄

q̄
ω∗
2 , ω̂

∗
n−4

)
admits resonant integer vectors k′(M ′)−1 = (0, 1, 0, . . . , 0) and k′′(M ′)−1 = (0, 0, Q̄p̄,−q̄P̄ , 0̂n−4). If

a = aoi , it also admits the integer vector ko
i (M

′)−1. Now, remove the zero entry in M ′ω̄a, and then the

resulting vector has the form of ωa but with one fewer dimension. The integer vectors π−2(k
′′(M ′)−1)

and π−2(k
o
i (M

′)−1) play the role of k′ and ko in Lemma 4.5, respectively, where π−2 : Rn → Rn−1 means

removing the second entry. Now this lemma follows from Lemma 4.5 up to a linear transformation.

8.2 The nondegeneracy condition

Similar to Proposition 5.2, we have the following result.

Proposition 8.3. Given Πk′P ∈ O1(k
′) ⊂ Πk′Cr, we choose δ, µ, k′′ and ω̄a as above. Then

there exists an open and dense subset O1,2 = O1,2(k
′,k′′) in the unit ball of Πk′,k′′Cr/Πk′Cr such

that each Πk′,k′′P with Πk′Πk′,k′′P = Πk′P and Πk′,k′′P − Πk′P ∈ O1,2 has a unique nondegenerate

global maximum along the segment y ∈ ω−1(ω̄−), up to finitely many bifurcations, where there are two

nondegenerate global maxima. Moreover, the curves {ArgmaxΠk′,k′′P (y, ·), y ∈ ω−1(ω̄−)}, when projected

to the set {⟨k′, x⟩, x ∈ Tn} × Rn, are within O(µ) Hausdorff distance of the curves {ArgmaxΠk′P (y, ·),
y ∈ ω−1(ω−)}.
Proof. The statement (without the “Moreover” part) can be obtained directly by applying the main

theorem of [19] which is a higher-dimensional generalization of Proposition 5.4. Here, we give an argument

using only Proposition 5.4. Since we have Πk′P ∈ O1, Πk′P has a nondegenerate global maximum

up to finitely many bifurcations, where there are two nondegenerate global maxima. Moreover, Πk′P

determines δ, µ, ω̄a and k′′. We next decompose Πk′,k′′P (y, x) = Πk′P (y, x) + P̄ (y, ⟨k′, x⟩, ⟨k′′, x⟩)
induced by the decomposition Πk′,k′′Cr = Πk′Cr ⊕ Πk′,k′′Cr/Πk′Cr. So we get |P̄ |C2 6 C 1

|k′′|2 6 Cµ2

since |k′′| > Cµ−1. We next make a linear coordinate change in x so that Z2(y, x1, x2) = Z(y, x1)

+ P̄ (y, x1, x2), where ⟨k′, x⟩ =: x1, ⟨k′′, x⟩ =: x2, Z(y, x1) = Πk′P (y, x) and Z2(y, x1, x2) = Πk′,k′′P (y, x).

By the choice of Πk′P ∈ O1, for each y, we have that maxx Z(y, x1) is nondegenerate and attained at

x∗1(y). Then by the implicit function theorem, for small enough µ, the global maximum of Z2 is attained

at a point (x̄∗1, x̄
∗
2)(y) with |x̄∗1(y)−x∗1(y)| 6 Cµ2. To see the nondegeneracy of the global maximum for Z2,

we consider that for each y and x2, the function Z2(y, ·, x2) attains the global maximum at a point ¯̄x∗1(y, x2)

that is within µ2-distance from x∗1 by the implicit function theorem. Now the function Z2(y, ¯̄x
∗
1(y, x2), x2)

becomes a function of y and x2. We then apply Proposition 5.4 to Z2 to get an open and dense set

Õ1,2(Πk′P ) such that Z2 has a nondegenerate global maximum along ω−1(ω−). The nondegeneracy can

be achieved by adding a function f ∈ Cr(T) of x2 only. This induces an open and dense set O1,2(Πk′P )

in the unit ball of Πk′,k′′Cr/Πk′Cr.

In the proposition, each O1,2 depends on Πk′P ∈ O1, so we define O1,2 = O1,2(Πk′P ).

Lemma 8.4. The union
∪

Πk′P∈O1
(O1,2(Πk′P )⊕ (Cr/Πk′,k′′Cr)) intersects the unit ball of Cr in an

open and dense subset of the latter.
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Proof. We first decompose Cr = Πk′Cr ⊕ (Cr/Πk′Cr) for each irreducible k′ ∈ Zn. Applying the

following Kuratowski-Ulam Theorem 8.5, we get that the union
∪

Πk′P∈O1
O1,2(Πk′P ) is a set of the

second category in Cr. Indeed, we first divide O1 = O1(k
′) into the union of the form O1 =

∪
k′′ O1,k′′

such that each Πk′P ∈ O1,k′′ admits the frequency segment ω̄− having a second resonance k′′ (see

Subsection 8.1, and note that Πk′P determines δ and hence µ). Each O1,k′′ is open (may be empty). We

use the notation B1(E) to denote the unit ball of a Banach space E.

Now each Πk′P ∈ O1,k′′ determines an open and dense subset O1,2(Πk′P ) in B1(Πk′,k′′Cr/Πk′Cr) by

Proposition 8.3. So by the following Kuratowski-Ulam Theorem 8.5, the union
∪

Πk′P∈O1,k′′ O1,2(Πk′P ) is

of the second category in the product space O1,k′′×B1(Πk′,k′′Cr/Πk′Cr). Next, since each O1,2(Πk′P ) is

open in Πk′,k′′Cr/Πk′Cr, we get that the union
∪

Πk′P∈O1,k′′ O1,2(Πk′P ) is also open in Πk′,k′′Cr/Πk′Cr.

So we get that
∪

Πk′P∈O1,k′′ (O1,2(Πk′P )×B1(C
r/Πk′,k′′Cr)) is open and dense inO1,k′′×B1(C

r/Πk′Cr).

Taking union over all the k′′, we get the statement in the lemma.

Theorem 8.5 (Kuratowski-Ulam [41, Theorem 15.1]). Let X and Y be two topological spaces, where

Y has a countable bases. If E ⊂ X×Y is a set of the first category, then E∩{x}×Y is the first category

in Y for all x except a set of the first category.

8.3 The KAM normal forms

Lemma 8.2 allows us to apply Proposition 3.3 in its two cases to obtain the following normal forms.

Lemma 8.6. Let δ̄ be a small number satisfying δ̄ < min{3(|k′′|)−2, δ} and K̄ = (δ̄/3)−1/2. Then

there exists an ε̄1 = ε̄1(δ̄,Λ) such that for all ε < ε̄1, the following holds. Suppose ω⋆ ∈ D̄′′ as in the

case (1) of Lemma 8.2. Then there exists a symplectic transformation ϕ̄ defined on BΛ(0) × Tn that is

oε→0(1) close to identity in the Cr0−1 norm such that

H ◦ ϕ̄(x, Y ) =
1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+Πk′,k′′V + δ̄R̄(x, Y ), (8.3)

where

(1) Πk′,k′′V = V (⟨k′, x⟩) + δV̄ (⟨k′, x⟩, ⟨k′′, x⟩) with A and V the same as those in Lemma 5.3, and

|V̄ (⟨k′, x⟩, ⟨k′′, x⟩)|r0−2 6 1;

(2) R̄(x, Y ) = R̄I(x)+ R̄II(x, Y ), where R̄I consists of Fourier modes of V not in the set spanZ{k′,k′′}
∪ Zn

K̄
, and we have |R̄I |r0−2 6 1 and |R̄II |r0−5 6 1.

Lemma 8.7. Let δ̄ and K̄ be as in the previous lemma. Then there exists an ε̄2 = ε̄2(δ̄,Λ) such that

for all ε < ε̄2, the following holds. Suppose ω⋆ ∈ D̄′′′ as in the case (2) of Lemma 8.2. Then there exists

a symplectic transformation ϕ̄ defined on BΛ(0)×Tn that is oε→0(1) close to identity in the Cr0−1 norm

such that

H ◦ ϕ̄(x, Y ) =
1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+Πk′,k′′,koV + δ̄R̄(x, Y ), (8.4)

where

(1) (a) if |ko| < K, we have Πk′,k′′,koV = V (⟨k′, x⟩, ⟨ko, x⟩) + δV̄ (⟨k′, x⟩, ⟨k′′, x⟩, ⟨ko, x⟩) with A and

V the same as those in Lemma 6.1 or

(b) if |ko| > K, we have Πk′,k′′,koV = V (⟨k′, x⟩) + δV̄ (⟨k′, x⟩, ⟨k′′, x⟩, ⟨ko, x⟩) with A and V the same

as those in Lemma 5.3;

in both cases, we have |V̄ (⟨k′, x⟩, ⟨k′′, x⟩, ⟨ko, x⟩) |r0−2 6 1;

(2) R̄(x, Y ) = R̄I(x) + R̄II(x, Y ), where R̄I consists of Fourier modes of V not in the set

spanZ{ko,k′,k′′} ∪ Zn
K̄
, and we have |R̄I |r0−2 6 1 and |R̄II |r0−5 6 1.

Now there are several subcases. We assume that ⟨ω⋆,k′⟩ = ⟨ω⋆,k′′⟩ = 0.

(1) ω⋆ is as in Lemma 8.6. The same argument as Proposition 5.2 gives that there is a Cr−1 NHIC

homeomorphic to T ∗Tn−2 if δ̄ is sufficiently small. The normal hyperbolicity is independent of ε or δ̄,

but may depend on δ. This NHIC is a subset of the NHIC in Proposition 5.2.

(2) ω⋆ is as in Item (1)(b) of Lemma 8.7. This case occurs when |ko| > K. We first apply Proposition 5.2

to reduce the Hamiltonian system to a system defined on T ∗Tn−1. The restricted system to the NHIC
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would depend on x through ⟨ko, x⟩ and ⟨k′′, x⟩ up to a δ̄ perturbation. That means that the restricted

system is at the double resonance. If the double resonance is weak, then it is treated as a single resonance

given by k′′. Otherwise, we apply Proposition 6.9 to find an NHIC homeomorphic to T ∗Tn−2 and a

Proposition 7.7 to find a generalized transition chain connecting two neighboring NHICs.

(3) ω⋆ is as in Item (1)(a) of Lemma 8.7. This case occurs when |ko| < K, i.e., the vectors k′ and ko

give rise to a strong double resonance for the first step of the reduction of orders. We call this case a

strong triple resonance.

In the following, without loss of generality, we focus on the third case to explain how to introduce the

extra resonance k′′. The other two cases can be reduced to Propositions 5.2, 6.9 and 7.7.

9 Dynamics around the triple resonance: NHICs

In this section, we perform the reduction of orders around the triple resonance. We find NHICs getting

close to the triple resonance.

Definition 9.1 (The triple resonance submanifold). Given three irreducible integer vectors ko, k′

and k′′, we define the triple resonance submanifold as

Σ(ko,k′,k′′) := {y | ⟨k′,ω(y)⟩ = ⟨k′′,ω(y)⟩ = ⟨ko,ω(y)⟩ = 0}.

We assume ω⋆ ∈ Σ(k′,k′′) and is within ε1/3 distance of Σ(ko,k′,k′′). Again there are two subcases

depending on whether ω⋆ is within Λε1/2 distance of Σ(ko,k′,k′′) or not. The case of dist(ω⋆,Σ(ko,k′,

k′′)) > Λε1/2 can be treated in the same way as Theorem 6.8 and Proposition 6.10, which is essentially

reduced to the case of Lemma 8.6, so we skip this case and focus on the case of dist(ω⋆,Σ(ko,k′,k′′))

6 Λε1/2. Without loss of generality, we assume y⋆ ∈ Σ(ko,k′,k′′) so that ω⋆ = ω(y⋆) is perpendicular

to k′, ko and k′′.

9.1 The shear transformation

Similar to Lemma 4.4, there exists a matrix M ′′′ ∈ SL(n,Z) whose first three rows are ko, k′ and k′′,

respectively. The matrix M ′′′ induces a symplectic transformation

M′′′ : T ∗Tn → T ∗Tn, (x, Y ) 7→ (M ′′′x,M ′′′−tY ), A =M ′′′AM ′′′t.

We define ω = M ′′′ω⋆, which has 0 as the first three entries since y⋆ ∈ Σ(ko,k′,k′′). By the symplectic

transformation M′′′, one obtains the Hamiltonian

H := M′′′−1∗
(Hϕ̄) =

1

2
⟨AY, Y ⟩+ V (x1, x2) + δV̄ (x1, x2, x3) +

1√
ε
⟨ω̂n−3, Ŷn−3⟩+ δ̄R̄(x, Y ), (9.1)

where R̄ = M′′′−1∗
R̄. The matrix M ′′′ depends on δ through k′′ but is independent of δ̄.

We next introduce the shear transformation as we did in Lemma 6.4 to block diagonalize A. Let

A,S′′′ ∈ SL(n,R) be defined as follows:

A =

[
Ã3 Ă3

Ăt
3 Â3

]
, S′′′ =

[
id3 0

−Ăt
3Ã

−t
3 idn−3

]
, (9.2)

where Ã3, Ă3 and Â3 are 3× 3, 3× (n− 3) and (n− 3)× (n− 3), respectively. With the shear matrix,

we introduce a symplectic transformation

S′′′ : T ∗Tn → T ∗Tn
S′′′ , (x, Y ) 7→ (S′′′x, S′′′−tY ) =: (x, y), ωS′′′ := S′′′ω,

which transforms the Hamiltonian into the following form defined on T ∗Tn
S′′′ :

HS′′′ := (S′′′M′′′)−1∗(H ◦ ϕ) =
[
1

2
⟨Ã3ỹ3, ỹ3⟩+ V (x̃) + δV̄ (x̃3)

]
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+
1√
ε
⟨ω̂S′′′,n−3, ŷn−3⟩+

1

2
⟨B3ŷn−3, ŷn−3⟩+S′′′−1∗(δ̄R̄(x, y)), (9.3)

where we define B3 = (Â3 − Ăt
3Ã

−1
3 Ă3), x̃3 = (x1, x2, x3), ỹ3 = (y1, y2, y3) and x̃ = (x1, x2). The norms of

the matrices B3 and S′′′ depend on δ but not on δ̄.

9.2 The existence of NHICs

To understand the full system HS′′′ , we first need to understand its bracketed subsystem in (9.3). The

next lemma shows the existence of the NHIC of dimension 2 in the subsystem.

Lemma 9.2. For any λ > 0, there exists an open and dense subset Õ2 ⊂ Cr(T2)/R such that for each

V ∈ Õ2 normalized by maxV = 0, there exist a δ̃2 = δ̃2(V ) and an open and dense subset Õ2,∗ in the

δ̃2-ball of C
r(T3)/Cr(T2) such that for each δV̄ ∈ Õ2,∗,

(1) the subsystem

G3,δ :=
1

2
⟨Ã3ỹ3, ỹ3⟩+ V (x̃) + δV̄ (x̃3), T ∗T3 → R (9.4)

admits a Cr−1 NHIC homeomorphic to T ∗T, up to finitely many bifurcations;

(2) the NHIC is foliated by hyperbolic periodic orbits as Mather sets with rotation vectors ν(1, 0, 0) and

|ν| > λ;

(3) the absolute values of the normal Lyapunov exponents are bounded away from zero by C
√
δ for

some constant C > 0.

The next proposition establishes the existence of NHICs in the full system.

Proposition 9.3. (1) Given irreducible k′,ko ∈ Zn
K , let y′⋆ ∈ Σ(ko,k′).

(2) Let λ, Πk′,koP (y′⋆, x) ∈ O2 and δ be as in the assumption of Proposition 6.9.

(3) Let k′′ be the third resonance given in Subsection 8.1 and consider y′′⋆ ∈ Σ(ko,k′,k′′) that is

µ-close to y′⋆.

Then there exists an open and dense set O2,∗ = O2,∗(Πk′,koP (y′⋆, ·),k′′) in the unit ball of Πko,k′,k′′

Cr(Tn)/Πk′,koCr(Tn) such that for each Πko,k′,k′′P (y′′⋆, ·) with

Πko,k′Πko,k′,k′′P (y′′⋆, ·) = Πk′,koP (y′′⋆, ·), Πko,k′,k′′P (y′′⋆, ·)−Πk′,koP (y′′⋆, ·) ∈ O2,∗,

there exists a δ̄1 = δ̄1(Πko,k′,k′′P (y′′⋆, ·), λ, δ) > 0 such that for all 0 < δ̄ 6 δ̄1 and all 0 < ε < ε̄2,

(1) the Hamiltonian system (8.4) admits a Cr−1 NHIC C(k′,k′′) homeomorphic to T ∗Tn−2 up to

finitely many bifurcations; the normal hyperbolicity is independent of ε or δ̄, but may depend on δ;

(2) Mather sets in the region BΛ(0) × Tn with rotation vectors orthogonal to both k′ and k′′ and of

distance λ-away from ε−1/2ω(y′′⋆) + (ko)⊥ lie inside C(k′,k′′).

Proof. The proof is similar to those of Propositions 5.2 and 6.9. After the linear transformation

induced by S′′′M ′′′, the problem of finding the NHIC is reduced to Lemma 9.2. The NHIC persists if the

δ̄ perturbation is sufficiently small. Here, we only explain two points. First, here we choose O2,∗ to be

in the unit ball of Πko,k′,k′′Cr(Tn)/Πk′,koCr(Tn) rather than in a δ̃2-ball as in Lemma 9.2. The reason

is that δ̃2 is determined by the persistence of the NHIC in the subsystem G̃ of G3,δ. The theorem of the

NHIC requires only C1 smallness of the perturbation to the Hamiltonian flow and we have that every

function in the unit ball of Πko,k′,k′′Cr(Tn)/Πk′,koCr(Tn) has the Cr−2 norm less than |k′′|−2 < δ2 in

Proposition 6.9.

Next, we explain the difference of y′⋆ and y′′⋆. For each Πk′,koP (y′⋆, x) ∈ O2, there exists an NHIC

C(k′) that is λ-away from the double resonance by Proposition 6.9. If we perform the
√
ε-blowup based

at the point y′′⋆ that is µ-close to y′⋆ the resulting G̃’s differ by O(µ) in the C2 topology. Since the

normal hyperbolicity of the NHIC C(k′) is independent of δ and µ = o(δ), we see that for small enough δ,

Proposition 6.9 that is stated for any y⋆ = y′⋆ ∈ Σ(k′,ko) remains to hold for another y′′⋆ ∈ Σ(ko,k′,k′′)

that is µ-close to y′⋆.
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9.3 The proof of Lemma 9.2

The remaining part of this subsection is devoted to the proof of Lemma 9.2.

Proof of Lemma 9.2. Applying Theorem 6.6, we get an open and dense subset Õ2 ⊂ Cr(T2)/R such

that for each V ∈ Õ2, the system G̃ : T ∗T2 → R admits an NHIC foliated by periodic orbits with rotation

vectors ν(1, 0) (|ν| > λ). Let us now fix such a V ∈ Õ2.

We next block diagonalize the quadratic form ⟨Ã3ỹ3, ỹ3⟩ by introducing one more shear transformation

S3 =

[
id2 0

−a3Ã
−1 1

]
:=


1 0 0

0 1 0

s1 s2 1

,
where a3 = (a31, a32) ∈ R2 is the vector formed by the entries of A on the third row to the left of the

diagonal. We can verify that

S3Ã3S
t
3 =

[
Ã 0

0 b3

]
, (9.5)

where b3 = a33 − a3Ã
−1at3. This linear transformation induces a linear transformation S3 : (x̃3, ỹ3) 7→

(S3x̃3, S
−t
3 ỹ3) =: (x̃3, ỹ3) and transforms the Hamiltonian G3,δ to the following system S∗

3G3,δ := G3,δ of

the form:

G3,δ =
1

2
⟨Ãỹ, ỹ⟩+ V (x̃) +

b3
2
y23 + δV̄ (S−1

3 x̃3), T ∗T3
S3

→ R. (9.6)

In the above system G3,δ, we apply Theorem 6.6 with the homology class g = (1, 0) and find the

NHIC in the subsystem G̃ := 1
2 ⟨Ãỹ, ỹ⟩+ V (x̃). Restricted to the NHIC, the subsystem G̃ is reduced to a

system of one degree of freedom denoted by h̃(I) in action-angle coordinates (see Proposition 7.8). We

restrict to the region |h′(I)| > λ. In the case of δ = 0, restricted to the NHIC, the system G3,0 becomes

G3,0 := h̃(I) + b3
2 y

2
3 defined on T ∗T2

S̄
, where

S̄ =

[
1 0

s1 1

]
∈ SL(2,R) and T2

S̄ = T3
S3
/T1.

When the δ-perturbation in G3,δ is turned on, we apply the theorem of the NHIM to get that G3,δ

admits an NHIC homeomorphic to T ∗T2
S̄

for sufficiently small δ and for any λ > 0, the bound δ̃2 is

determined in the same way as the proof of Proposition 6.9(2). The restriction of G3,δ to the NHIC has

the form

Ḡ3,δ := h̃(I) +
b3
2
y23 + δZ̄(I, φ, x3, y3), T ∗T2

S̄ → R, (9.7)

where we have Z̄ = V̄ (x̃(I, φ), x3 − (s1, s2) · x̃(I, φ)) + O(δ). Indeed, the leading term in Z̄ is obtained

by evaluating V̄ (S−1
3 x̃3) restricted to the unperturbed NHIC with x̃ = x̃(I, φ). The O(δ) error is created

by the deformation of the NHIC under the perturbation.

Finally, going back to the original system G3,δ, we obtain an expression for the restricted system to

the NHIC which is homeomorphic to T ∗T2. We introduce the following undo-shear transformation:

S̄ : (φ, x3; I, y3) 7→ (S̄(φ, x3); S̄
−t(I, y3)) = (φ, s1φ+ x3; I − s1y3, y3) =: (φ, x3; J, y3), (9.8)

under which, we get the restriction of G3,δ to the NHIC

Ḡ3,δ :=

[
h̃(J + s1y3) +

1

2
b3y

2
3 + δU(J, y3, φ, x3)

]
: T ∗T2 → R, (9.9)

where U(J, y3, φ, x3) = V̄ (x̃(I, φ), x3 + (s1, s2) · x̃(I, φ) − s1φ) + O(δ) with I = J + s1y3. Moreover, the

O(δ) part depends on the angular variables x3 and φ in the same way as the leading term. To see that x3
is defined on T1, we lift a periodic orbit x̃ with the homology class g = (1, 0) to the universal cover. As
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φ 7→ φ+1 we get x̃ 7→ x̃+(1, 0) and after the shear and undo-shear transformations (s1, s2) · x̃(I, φ)−s1φ
7→ (s1, s2) · x̃(I, φ)− s1φ.

We apply the procedure of the order reduction to the system Ḡ3,δ : T ∗T2 → R. Namely, we want to

apply Theorem 6.6 with the homology class g = (1, 0) to get an NHIC and restrict the system to the

NHIC to get a system of one degree of freedom. It is known that all its Mather sets with rotation vectors

ν(1, 0) (|ν| > λ) are supported on periodic orbits due to the two-dimensionality. Going back to the system

G3,δ of three degrees of freedom, we obtain that all its Mather sets with rotation vectors ν(1, 0, 0) (|ν| > λ)

are supported on periodic orbits. It remains to show the nondegeneracy and hyperbolicity of the periodic

orbits if δV̄ is chosen in an open and dense subset Õ2,∗ of the δ̃2-ball of the quotient C
r(T3)/Cr(T2). The

proof is essentially the same as the proof of [20, Theorem 6.6], but there is a subtle point: here we are

only allowed to perturb the potential of the system G3,δ of three degrees of freedom but cannot perturb

Ḡ3,δ of two degrees of freedom directly.

We next show how to adapt the proof of [20] to our setting. Let us briefly recall the perturbation

argument of [20]. For a Tonelli Lagrangian system L(x, ẋ) : TT2 → R,
(1) we first pick a section {x1 = 0} and reduce it to a nonautonomous system defined on TT×T→ R,

and then introduce the action functional F (E, x2) : I × T → R where E is the energy level and I is the

energy interval, by evaluating the action along the orbit on the energy level E starting and ending at the

same point x2 ∈ T;
(2) we then choose the perturbation of the form Aℓ cos ℓx2 + Bℓ sin ℓx2, Aℓ, Bℓ ∈ [ϵ, 2ϵ], ℓ = 1, 2; by

the construction in [20, Section 3], such a perturbation to the Lagrangian becomes a perturbation of the

same form to the action functional F ;

(3) an open and dense subset of the perturbation can make the global minimum of F nondegenerate

uniformly for E ∈ I (see Proposition 5.4 here and [20, Theorem 3.1]);

(4) nondegenerate periodic orbits are hyperbolic.

Now we show that the above argument applies to the subsystem Ḡ3,δ of two degrees of freedom by

perturbing the system G3,δ of three degrees of freedom. In place of the above step (1), we pick the section

{φ = 0} in the subsystem Ḡ3,δ. Next, consider a perturbation to the system G3,δ depending only on x3 of

the form Aℓ cos ℓx3+Bℓ sin ℓx3, Aℓ, Bℓ ∈ [ϵδ, 2ϵδ], ℓ = 1, 2 as the above Item (2). Restricted to the section

{φ = 0} in the subsystem Ḡ3,δ, we get a perturbation of the same form up to a horizontal translation

by a constant (see the expression of U above). Then Items (3) and (4) go through without any change.

Since the system Ḡ3,δ is already restricted to an NHIC, its hyperbolic periodic orbit is also hyperbolic in

the system G3,δ.

Lemma 9.4. We have the following estimates for the constants b3 and s1 appearing in Equation (9.9):

b3 = constb3 |k′′|2, s1 = consts1 |k′′|,

where the constants are independent of δ, constb3 > 0 and consts1 ∈ R.
Proof. Recall the definition of b3 (see (9.5)) b3 = a33 − a3Ã

−1at3 and s is the first entry of a3Ã
−1.

The (i, j)-th entry of A = M ′′′AM ′′′t is miAm
t
j , where mi and mj are the i-th and j-th rows of M ′′′,

respectively. Since the first three rows of M ′′′ are ko, k′ and k′′, respectively, we get

b3 = k′′A(k′′)t − (k′′AKt)(KAKt)−1(KA(k′′)t),

and s is the first entry of k′′AKt(KAKt)−1, where we denote by K the matrix of 2 × n whose two

rows are ko and k′, respectively. Now s1 is estimated easily as const|k′′| since AKt(KAKt)−1 does not

depend on δ.

We focus on b3 in the following. Since A is positive definite, we decompose A = CCt for some

C ∈ GL(n,R) and let k′′C =: k and KC =: K. This gives us b3 = k(kt − Kt(KKt)−1Kkt). Now, we recall

the Gauss least-squares method. Though the equation Ktx =: kt, in general is not solvable for x ∈ R2, we

can seek for a least-squares solution given by xls = (KKt)−1Kkt, which has a geometric interpretation as

follows. The vector Kxls = K(KKt)−1Kkt is the projection of k to the linear space spanned by the column
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vectors of Kt. Hence, (kt − Kt(KKt)−1Kkt) is the projection of k to the orthogonal complement of the

linear space spanned by the column vectors of Kt. We see from the construction of the vectors ko, k′

and k′′ that k′′ forms a nonzero angle with the plane span{k′,ko} independent of δ, since as µ→ 0 one

has

k̄′ = (0, Q̄p̄,−q̄P̄ , 0̂n−4)

∥∥∥∥(0, 1,− q̄P̄Q̄p̄ , 0̂n−3

)
→
(
0, 1,−ω

∗
2 P̄

ω∗
4Q̄

, 0̂n−3

)
,

which is obtained from k′′ by removing the second entry of k′′M ′, and the matrices K, M ′ and A do not

depend on δ. This linear independence relation is preserved by the linear transformation C. Hence, we

get b3 = c|k′′|2 for some constant c > 0 independent of δ.

10 Dynamics around the triple resonance: The ladder

In this section, we show how to find the orbit going around the triple resonance. For this purpose, we

first describe the special structure of the α-function, whose flat looks like a pizza. We next show that

after applying the c-equivalence path of Theorem 7.2, there is a further misalignment, which is the new

difficulty caused by the high dimensionality. We next show how to overcome this difficulty by introducing

a ladder, and thus prove the existence of the diffusion orbit moving along ω− for the n = 4 case.

10.1 The description of the α-function

Applying Theorem 7.1 to the system G3,δ, we get a three-dimensional flat on the energy level minαG3,δ
.

Next, applying Lemma 6.7 twice (since we have applied Theorem 6.6 twice in the proof of Lemma 9.2)

we see that the NHICs in Lemma 9.2 correspond to two channels

C± = {∂βG3,δ
(ν(1, 0, 0)) | ±ν > λ} ⊂ H1(T3,R).

For each c ∈ C±, the corresponding Mather set M̃(c) lies in the NHIC with ±ν > λ > 0. Lemma 6.7

implies that the Mather set M̃(c) remains the same for c in a two-dimensional rectangle. Taking union

over all the energy levels, we see that each C± is a three-dimensional rectangular prism. Moreover, the

channels C+ and C− are centrally symmetric to each other since G3,δ is reversible.

In the following, since the rationality and irrationality of the rotation vectors do not play a role, for

simplicity of notations, we work with the system G3,δ := S∗
3G3,δ : T ∗T3

S3
→ R (see (9.6)), which is related

to the system G3,δ : T ∗T3 → R (see (9.4)) by the symplectic transformation induced by S3. Similarly, we

work with Ḡ3,δ : T ∗T2
S̄
→ R (see (9.7)) instead of the system Ḡ3,δ : T ∗T2 → R (see (9.9)) for the system

restricted to the NHICs. We first have the following description of the α-functions.

Lemma 10.1. (1) We have the estimate for the α-function of G3,δ : ∥αG3,δ
− αG3,0∥C0 6 δ with

αG3,0(c) = αG̃(c̃) +
b3
2 c

2
3.

(2) For the α-functions of the Hamiltonian Ḡ3,δ restricted to the NHIC, we have the estimate

∥αḠ3,δ
− αḠ3,0

∥C0 6 δ with αḠ3,0
(c1, c3) = h̃(c1) +

b3
2 c

2
3.

The proof of this lemma is the same as that of Lemma 7.5, so we skip it.

Proposition 10.2. Under the assumption of Lemma 9.2, the flat F0 = {c | αG3,δ
(c) = minαG3,δ

}
is a three-dimensional convex set lying in a O(

√
δ/b3)-neighborhood of the disk F̃0 × {c3 = 0̂}, where

F̃0 = ArgminαG̃.

Proof. The fact that the flat is three-dimensional is given by Theorem 7.1. Since we have

|G3,δ − G3,0|C0 < δ, we obtain |αG3,δ
(c) − αG3,0(c)| 6 δ, ∀ c ∈ H1(T3,R) (see Lemma 7.5). After the

same linear transformation St
3, this gives

|αG3,δ
− αG3,0 |C0 6 δ. (10.1)

Since we have αG3,0(c) = αG̃(c̃) +
b3
2 c

2
3, we get αG3,0(c) > 2δ, if |c3| > 2

√
δ/b3 and c̃ ∈ F̃0. As αG̃ is non-

negative, it follows from (10.1) that αG3,δ
(c) > δ. Also due to (10.1), we have minαG3,0 6 δ. Therefore,

αG3,δ
(c) > minαG3,δ

, if |c3| > 2
√
δ/b3. This completes the proof for the O(

√
δ/b3) estimate.
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Therefore, the flat looks like a pizza, horizontal in the direction of c̃ with small thickness of order

O(
√
δ/b3) (see Figure 2).

10.2 Construction of the ladder

The generalized transition chain built by the application of the c-equivalence mechanism (see Proposi-

tion 7.4) does not connect the channels C± mainly due to the misalignment in the c3 component. In this

subsection, we show how the misalignment appears and how to overcome it to build a transition chain

connecting C±, which is called a ladder (see Figure 2).

The next result gives the existence of the generalized transition chain in the subsystem G3,δ.

Proposition 10.3. Let V ∈ Ô3 ∩ Õ2 ⊂ Cr(T2)/R, normalized by maxV = 0 (see Lemma 7.6 for Ô3

and Lemma 9.2 for Õ2), and λ be as in Lemma 7.6. Then there exist δ̃3 (6 δ̃2) and an open and dense

subset Ô3,∗ (⊂ Õ2,∗) in the δ̃3-ball of C
r(T3)/Cr(T2) such that for each δV̄ ∈ Ô3,∗, the following holds.

For any point c∗ = (c̃∗, c∗3) ∈ C+ satisfying αG̃(∂βG̃(λ(1, 0))) < αG̃(c̃
∗ + (s1, s2)c

∗
3) < 2αG̃(∂βG̃(λ(1, 0)))

on the energy level of αG3,δ
(c∗), there exists a generalized transition chain connecting c∗ ∈ C+ to

−c∗ ∈ C−.

Similar to Proposition 7.7, we have the following result extending the generalized transition chain of

the system G3,δ to the full system.

Proposition 10.4. For each Πk′,koP ∈ O3 ⊂ Πko,k′Cr(Tn)/R, as in Proposition 7.7, let δ3 be as in

Proposition 7.7. For any δ < δ3 and |k′′| > K = (δ/3)−1/2, there exists an open and dense subset O3,∗
in the unit ball of Πko,k′,k′′Cr(Tn)/Πk′,koCr(Tn) such that for each Πko,k′,k′′P (y⋆, ·) satisfying

Πk′,ko(Πko,k′,k′′P ) = Πk′,koP and Πko,k′,k′′P −Πk′,koP ∈ O3,∗,

there exists a δ̄2 = δ̄2(Πko,k′,k′′P ) > 0 such that for all 0 < δ̄ 6 δ̄2 and each ĉ∗ ∈ Rn−3 satisfying

∥ĉ∗∥ < Λ, there exists a generalized transition chain of the Hamiltonian system (8.4) connecting the two

channels corresponding to the NHICs C(k′,k′′).

We next prove Proposition 10.3, which is reduced to the following two lemmas.

Lemma 10.5. For each V ∈ Ô3 ⊂ Cr(T2)/R normalized by maxV = 0 as in Lemma 7.6, let λ be

as in Lemma 7.6. Then there exists a δ̃3 (< δ̃2 in Lemma 9.2) such that for any δV̄ in the δ̃3-ball of

Cr(T3)/Cr(T2) and any c∗ as in Proposition 10.3, there is a generalized transition chain of the system

G3,δ connecting the point c∗ = St
3c

∗ = St
3(c̃

∗, c∗3) to a point St
3(c̃

♯, c∗3), where c̃♯ is δ-close to −c̃∗ and

satisfies αG3,δ
(c̃♯, c∗3) = αG3,δ

(c∗) = αG3,δ
(c∗).

Proof. Given c∗, we fix c3 = c∗3 and define the path Γδ(c
∗
3) = {c̃ ∈ R2 | αG3,δ

(c̃, c∗3) = αG3,δ
(c∗)}. In the

case of δ = 0, this path lies on the constant energy level of αG̃ and in the small positive δ case, the path

undergoes a δ-perturbation as proved in Proposition 7.7.

On Γδ(c
∗
3), we find a point that is closest to (−c̃∗, c∗3) and denote it by (c̃♯, c∗3) where |c̃♯ + c̃∗| 6 Cδ.

The fact that the path Γδ(c
∗
3) is a generalized transition chain follows from Proposition 7.4 (see also

Proposition 7.7) and the upper-semi-continuity of the Mañé set.

Lemma 10.6. Let λ, Õ2 ⊂ Cr(T2)/R, δ̃2 be as in Lemma 9.2, Ô3 be as in Lemma 7.6, and V ∈ Õ2∩Ô3.

Then there exists an open and dense subset Ô3,∗ in the δ̃3-ball of C
r(T3)/Cr(T2) such that for each

δV̄ ∈ Ô3,∗, let c
∗ and c̃♯ be as in Lemma 10.5, and there is a generalized transition chain of the system

of G3,δ lying on the energy level αG3,δ
(c∗) connecting St

3(c̃
♯, c∗3) to −c∗ ∈ C−.

Proof. We fix the energy level E = αG3,δ
(c∗) in the system G3,δ, on which there exists an NHIM

restricted to which the Hamiltonian system is Ḡ3,δ. We define (see Figure 4)

L̄δ := {(c1, c3) | αḠ3,δ
(c1, c3) = E, |h̃′(c1)| > λ}.

The variable c2 does not appear due to Proposition 7.8(2).
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Figure 4 (Color online) The ladder for αḠ3,δ

To see the path L̄δ clearly, we introduce the following coordinate change R : (c1, c3) 7→ (c1,
1
s1
c3). In

the new coordinates, the α-function for the restricted system has the form

R∗αḠ3,0
(c1, c3) := h̃(c1) +

b3
2s21

c23.

From Lemma 9.4, we see that b3/s
2
1 is of order one as δ → 0. The frequency ν(1, 0) for the system Ḡ3,0

is transformed to ν(1, 1) under the linear transformation S̄ followed by R. Its Legendre transformation

of ν(1, 1) is solved from the equation (
h̃′(c1),

b3
s21
c3

)
= ν(1, 1)

for R∗αḠ3,0
. For the α-function R∗αḠ3,δ

, we get that the projection of C± to the (c1, c3) plane is δ-close

to the set {(h̃′(c1), b3s21 c3) = ν(1, 1)}.
The path L̄δ is δ-close to L̄0 which is the path on the level set αḠ3,0

(c1, c3) = E connecting the point

(−c∗1, c∗3) to (−c∗1,−c∗3) symmetric around the c1-axis. If we choose c3 = c∗3, we get a unique point on

L̄δ near −c∗1. In the full system G3,δ, adding back the c2 variable by Proposition 7.8(2), we obtain a

two-dimensional channel Lδ in α−1
G3,δ

(E). By the definition of the point c̃♯ in the proof of the previous

lemma, we get the point (c̃♯, c∗3) ∈ Γδ(c
∗
3) ∩ Lδ. This shows that Lδ ∩ Γδ(c

∗
3) ̸= ∅ and Lδ ∩ C− ̸= ∅.

We claim that for δV̄ chosen in an open and dense subset Ô3,∗ of the δ̃3-ball of C
r(T3)/Cr(T2), any

continuous curve in the interior of Lδ is a generalized transition chain.

We introduce a subset ∆ ⊂ Lδ in the following way: σ ∈ ∆ if and only if the weak KAM uσ of

the restricted system Ḡ3,δ on the NHIM is C1 (must also be C1,1 due to [5]), i.e., the Mañé set is an

invariant 2-torus. For σ /∈ ∆, a certain section Σσ of 2-torus exists such that Nσ ∩ Σσ is shrinkable so

that Definition 2.1(H2) can be verified. To prove that Lδ is a generalized transition chain, it remains to

prove the following in order to verify Definition 2.1(H1):

For δV̄ in Õ2,⋆ and for all σ ∈ ∆, each connected component of Argmin{Bσ,Σ0,σ\
∪

mNm} is contained

in a certain disk Om ⊂ Σ0,σ,

where Bσ is the barrier function of the system G3,δ, Σ0,σ is a 2-dimensional section of T3 which is

transversal to σ-semi-static curves,
∪

mNm denotes a neighborhood of the Aubry set in the finite covering

space, and Argmin{Bσ,Σ0\
∪

mNm} denotes the set of minimal points of Bσ which fall into the set

Σ0,σ\
∪

mNm.

This is given by Theorem E.2 in Appendix E (the autonomous case and the Mañé perturbation case).

The argument is similar to the case of a priori unstable systems (see [17, 18]).

In the next remark, we explain our mechanism of ladder climbing.

Remark 10.7 (The mechanism for the ladder climbing). Here, we have employed a variant of Arnold’s

example (1.2). Consider an autonomous Hamiltonian system of three degrees of freedom of the form

H =
y21
2

+
y22
2

+
y23
2

+ (cosx3 − 1)(1 + ε(cosx1 + sinx2)).
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In this system, there exists a diffusion orbit for each E > 0 such that (y1, y2) stays close to the circle

{y21 + y22 = 2E} and arctan y1

y2
achieves any value in [0, 2π), which can be proved by computing the

Melnikov integral as in the Arnold’s example. In our case, the system G3,δ plays the role of H here and

the system Ḡ3,δ plays the role of y21 + y22 .

11 The proof of Theorem 2.4 for n = 4

We are now ready to give the proof of Theorem 2.4 in the case of n = 4 along one frequency segment, i.e.,

ω(t) in Theorem 2.4 lies within Bµ(ω−). To prove Theorem 2.4 in full generality, we need the following:

(1) transition from one frequency segment to the next;

(2) the n > 4 case.

(1) will be addressed in Section 13 and (2) will be addressed in Appendix C. Both are algorithmic but

not dynamical, based on the proof in this section.

The general case is very similar and we postpone the induction argument to Appendix C, where the

proof of Theorem 2.4 for general n > 3 is completed in Appendix C.6.

Proof of Theorem 2.4 for n = 4 along one frequency segment. Let us first review the results that we

have obtained up to now. We start from the frequency line segment ω− of the form (4.2), along which we

treat two different regimes separately (the way of distinguishing the two cases was given in Subsection 6.1):

(a) single or weak double resonances;

(b) strong double resonances.

In the case (a), we apply Proposition 5.2 to yield an NHIC homeomorphic to T ∗Tn−1 restricted to which

the Hamiltonian system has one fewer degree of freedom. In the case (b), we obtain the same result in

Propositions 6.9 and 6.10 up to a λ
√
ε-neighborhood of the strong double resonance.

We next modify slightly the frequency line segment to ω̄− in (8.1), along which we perform the second

step of the order reduction. For the reduced system after the previous step, we again distinguish the above

two cases. For the case (a), similar to Proposition 5.2, we obtain the NHIC homeomorphic to T ∗Tn−2

and for the case (b), which is now the triple resonance case, we obtain the same result in Proposition 9.3.

This completes the proof of the parts (1), (2) and (3)(a) of Theorem 2.4 for n = 4.

We next prove the statements (3)(b) and (3)(c) on the generalized transition chain. The generalized

transition chain of type Definition 2.1(H2) connecting nearby NHICs crossing the triple resonance is

proved in Proposition 10.4, and hence (3)(c) is proved. Item (3)(b) can be reduced to the a priori unstable

systems studied in [17, 18] due to the presence of NHICs. Indeed, we perform the standard energetic

reduction procedure to reduce the autonomous system of n degrees of freedom to a nonautonomous one

with n− 1/2 degrees of freedom as follows. We consider the Hamiltonian (9.1) in the region that is the

Λ
√
ε-near triple resonance noting that the first three entries of the frequency vector ω vanish due to the

triple resonance. We fix the energy level E and solve the equation H(x, Y ) = E for Y := ω4Y4/
√
ε (let

ω4 = ω̂n−3) and treat Y as the new Hamiltonian and x4
√
ε/ω4 =: τ as the new time to yield a system

of the following form:

Y =
1

2
⟨A3Ỹ3, Ỹ3⟩+ V (x̃2) + δV̄ (x̃3) + δ̄R̂

(
x̃3, Ỹ3,

ω4τ√
ε

)
.

Outside the Λ
√
ε-neighborhood of the triple resonance, we obtain

Y =
ω1Y1√
ε

+
1

2
⟨A3Ỹ3, Ỹ3⟩+ V (x̃2) + δV̄ (x̃3) + δ̄R̂

(
x̃3, Ỹ3,

ω4τ√
ε

)
.

The system admits NHICs restricted to which the time-1 map of the system is a twist map (this follows

from Lemma 9.2 for the former and in addition Proposition 6.8 for the latter). Thus, they can be

considered as a priori unstable systems studied in [17, 18]. The generalized transition chain satisfying

Definition 2.1(H1) can be constructed for generic perturbations P (see Theorem E.2 in the appendix, and

note that Theorem E.2 is applied to the original system (1.1) without applying the normal form). This
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gives Theorem 2.4(3)(b) for n = 4. We have considered only one frequency segment. The switch from

one frequency segment to the next is the same as crossing a complete resonance and hence is the same

as (3)(c) (see Appendix C.5).

Finally, we consider the genericity condition. We need a genericity assumption in the proof which can be

classified into two classes: (HT) hyperbolicity type and (TT) transversality type. The conditions (HT) are

used to guarantee the existence of NHICs and (TT) are used to guarantee that the transverse intersection

of stable and unstable manifolds of Aubry sets (or destruction of Mañé sets), i.e., Definition 2.1(H1)(ii)

as well as (H2). In Definition 1.1 of the cusp-residual set, (HT) is responsible for the “cusp” part,

i.e., existence of R ⊂ Sr and aP for each P ∈ R, and (TT) is responsible for the residual part (see

Theorem E.2). More explicitly, we have

(HT) construction of the NHICs (see Propositions 5.2, 6.9 and 6.10), whose genericity comes from

Proposition 5.4 and Theorem 6.6;

(TT) (a) the c-equivalence path around the strong double resonances (see Proposition 7.7), whose

genericity comes from Proposition 7.4;

(b) verification of Definition 2.1(H1)(ii), which is needed in the ladder construction of Proposition 10.4,

as well as in the proof of Theorem 2.4(3)(b); the genericity is given by Theorem E.2.

With these, we verify the cusp-residual condition (see Definition 1.1).

First, we have finitely many open and dense conditions from the propositions in the above (HT).

Denote by O ⊂ Br the open and dense set obtained by taking the intersection of the finitely many open

and dense sets. This P determines εP such that for ε < εP , (HT) holds. The fact that εP is continuous

in P with the Cr0 norm follows from that a Cr0 small perturbation of P gives rise to a Cr0−5 small error

term δR in the normal form, which does not destroy the NHICs.

Second, for this purpose of Item (TT), we fix an ε < εP and apply Theorem E.2, which gives us an

ε′ = ε′(εP ) and a residual set Rε′(εP ) ⊂ ε′Br such that Definition 2.1(H1)(ii) is satisfied for εP + ε′P ′

for any ε′P ′ ∈ Rε′(εP ). Finally, apply Kuratowski-Ulam Theorem 8.5 to the set
∪

P∈O
∪

ε<εP
Rε′(εP ),

which gives the stated form of the cusp-residual set in Definition 1.1. This completes the proof.

12 The Riemannian metric perturbation of the flat torus

In this section, we show how to reduce Theorems 1.3 and 1.4 to Theorems 2.4 and 1.2.

For convenience, we apply the linear map S : TN → TN
S to converting the torus TN

S to the standard

torus TN , which pulls back the metric ds2 =
∑
dx2i on TN

S to ds2 =
∑
cijdxidxj on TN , where the

matrix C = (cij) = STS.

Proof of Theorem 1.4. This follows from Maupertuis’s principle (see [2, Subsection 45.D]), which

identifies the Hamiltonian flow of a mechanical Hamiltonian system H(x, y) = ⟨C−1y, y⟩+V (x) restricted

to energy level 1 with the geodesic flow of the Riemannian metric (1 − V (x))
∑

ij cijdxidxj . Thus,

Theorem 1.4 follows immediately from Theorem 1.2.

We next work on the proof of Theorem 1.3.

Proof of Theorem 1.3. We consider the Riemannian metric on TN of the form

ds2ε =
∑
i,j

(cij + εdij(x))dxidxj .

We treat ds2ε as twice of the Lagrangian and perform a Legendre transformation to get the Hamiltonian

of the form

Hε(x, y) =
1

2

∑
i,j

(aij + εbij(x))yiyj =
1

2
⟨Ay, y⟩+ ε

2
⟨B(x)y, y⟩ =: h(y) + εP (x, y), (12.1)

where we define A = (aij) = C−1 and B(x) = (bij(x)), and the matrix A + εB(x) is the inverse of

C + ε∆(x). Thus solving the equation

(A+ εB)(C + ε∆(x)) = Id,
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we get B(x) = −C−1∆(x)C−1 +O(ε).

Thus Hε has the form of the nearly integrable system with h(y) = 1
2 ⟨Ay, y⟩ and P (x, y) =

1
2 ⟨B(x)y, y⟩.

The frequency map ω(y) = ∂yh(y) = Ay.

We next pick y⋆ and perform a
√
ε-blowup in BΛ

√
ε(y

⋆) for some Λ large, as we did in Subsection 3.1.

Corresponding to (3.2),

H(x, Y ) = ε−1/2⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+ V(x) + P(x,

√
εY ), (12.2)

where ω⋆ = Ay⋆, V(x) = 1
2 ⟨B(x)y⋆, y⋆⟩ and P(x,

√
εY ) =

√
ε⟨B(x)y⋆, Y ⟩+ 1

2ε⟨B(x)Y, Y ⟩, and the system

is defined on B1(0)× TN .

The system (12.2) is formally the same as (3.2), and thus we can repeat the proof of Theorem 2.4

formally.

We next consider the genericity conditions. As we have analyzed in the last section, there are two types

of such conditions: (HT) used to guarantee the existence of NHICs and (TT) used to destroy the Mañé

sets (guarantee Definition 2.1(H1)). One way to verify the cusp-residual condition in the Riemannian

metric perturbation setting is to adapt Proposition 5.4 and Theorem E.2 to the present setting, which can

be done by modifying the proofs of Proposition 5.4 and [13, Theorem 4.2]. However, there is a simpler

argument as follows.

We first note that both conditions are open conditions. Indeed, we first consider (TT), which is used to

guarantee Definition 2.1(H1). Note that Definition 2.1(H1) is an open condition, since we cover Mañé sets

by finitely many open balls. Once it is satisfied, by the upper-semi-continuity of Mañé sets, it remains

to hold for Cr any small perturbation of ε∆. Thus, it is enough to get the denseness part, i.e., there is

an arbitrarily small ε′∆′ ∈ Symr(Tn) such that ε∆+ ε′∆′ satisfies Definition 2.1(H1). This follows from

Theorem E.2 with the Mañé perturbation, since a Mañé perturbation ε′V ∈ Cr(Tn) to the Hamiltonian

Hε can be turned into a perturbation to the Riemannian metric by Maupertuis’s principle. Next, (HT)

is also open by the persistence of NHICs, and thus we first add an arbitrarily small Mañé perturbation to

Hε to guarantee the existence of NHICs as in Theorem 2.4, and then apply the same Maupertuis trick.

This completes the proof.

13 Construction of the global frequency path

In the previous sections, we have shown how to find a frequency path along which only the first entry

can be arbitrarily moved along an orbit. In this section, we show how to repeat the strategy to move the

second, third, . . . , entries. In the frequency space, the picture is similar to moving along edges of a cube

to connect different vertices.

13.1 The choice of the Diophantine path

To find the frequency path {ω(t)} as described above, we first find a guiding frequency path with certain

Diophantine properties, which will be shadowed by {ω(t)}.
Lemma 13.1. Given any ϱ > 0, τ > n and any finitely many frequency vectors ω1, . . . ,ωM

∈ ∂h(h−1(E)), E > minh and M > 1, there exist a constant α > 0 and vectors

ω∗
i = (ω∗

i,1, . . . , ω
∗
i,n) ∈ ∂h(h−1(E))

satisfying |ωi − ω∗
i | < ϱ, i = 1, . . . ,M and

ω∗
i,[j] := (ω∗

i+1,1, . . . , ω
∗
i+1,j , ω

∗
i,j+1, . . . , ω

∗
i,n) ∈ DC(n, α, τ)

for all i = 1, . . . ,M − 1 and j = 0, 1, 2, . . . , n.
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The proof of this lemma is postponed to the end of this section. From the Diophantine vectors ω∗
i,[j],

we construct n(M − 1) frequency segments

Ωi,[j](t) = ρi,[j](t)(ω
∗
i+1,1, . . . , ω

∗
i+1,j−1, t, ω

∗
i,j+1, . . . , ω

∗
i,n), t ∈ [ω∗

i,j , ω
∗
i+1,j ] ∪ [ω∗

i+1,j , ω
∗
i,j ],

j = 1, . . . , n, i = 1, . . . ,M − 1, where the scalar multiple ρi,[j](t) is determined by requiring that the

segment Ωi,[j] lie on ∂h(h−1(E)). By the construction, the end point of Ωi,[j] agrees with the starting

point of Ωi,[j+1] (for j < n) and the end point of Ωi,[n] agrees with the starting point of Ωi+1,[1] for all

i = 1, . . . ,M − 1. So the segments are concatenated into a connected curve in ∂h(h−1(E)) connecting ω∗
1

to ω∗
M and passing by the points ω∗

i , i = 1, . . . ,M .

13.2 Construction of the frequency segments

In the previous sections, we have been considering Ω1,[1] and found in its ϱ-neighborhood a frequency

vector of the form

ω(2)(a) = ρ(2)a

(
a,
p2
q2
ω∗i
2 ,

p3
q3
ω∗i
2 ,

p4
q4
ω∗i
2 , ω

∗i
5 , . . . , ω

∗i
n

)
, ω∗i

k = ω∗i
1,k

that admits two resonant integer vectors k′ and k′′ for all a, and found NHICs C(k′,k′′) homeomorphic

to T ∗Tn−2 away from triple resonances (see Proposition 9.3).

We next formulate the induction rule to perform the procedure inductively. Suppose that we have

done ℓ steps with ℓ = 1, . . . , n − 3 and found in the ϱ-neighborhood of Ω1,[1] a frequency vector of the

form

ω(ℓ)
a =

(
a,
p2
q2
ω∗
2 ,
p3
q3
ω∗
2 , . . . ,

pℓ+1

qℓ+1
ω∗
2 ,
pℓ+2

qℓ+2
ω∗
2 , ω

∗
ℓ+3, . . . , ω

∗
n

)
with resonant integer vectors k′,k′′, . . . ,k(ℓ) whose span is denoted by K(ℓ) and the Hamiltonian system

admits NHICs C(K(ℓ)) homeomorphic to T ∗Tn−ℓ up to a λ
√
ε-neighborhood of strong (ℓ+1) resonances.

We define the induction rule.

Definition 13.2 (The induction rule). Suppose that ΠK(ℓ)P (·, y) has a nondegenerate global maximum

for all y ∈ ω
(ℓ)
− . We modify ω∗

ℓ+3 into pℓ+3

qℓ+3
ω∗
2 such that |qℓ+3| is so large and the new resonant integer

vector k(ℓ+1) has a so large norm that the term ΠK(ℓ+1)P (·, y) − ΠK(ℓ)P (·, y) with the Cr0−2 norm less

than C/|k(ℓ+1)|2 does not spoil the NHICs C(K(ℓ)).

Proposition 13.3. For generic P ⊂ Br, there exists an εP > 0 such that for all 0 < ε < εP , the

Hamiltonian system (1.1) admits a frequency path ω♯
1,[1] lying in a ϱ-neighborhood of Ω1,[1] such that the

induction rule is satisfied for all n− 2 steps.

The proposition can be proved by applying the refinement procedure in Section 8 repeatedly. More

details will be provided in Appendix C.

Thus we get a frequency segment of the form

ω♯
1,[1](a) = ω(n−2)(a) = ρ(n−2)

a ω∗i
2

(
a

ω∗i
2

,
p2
q2
,
p3
q3
, . . . ,

pn
qn

)
,

along which we have n− 2 resonant integer vectors k′,k′′, . . . ,k(n−2) for all a and n− 1 for some a. We

get NHICs C(k′,k′′, . . . ,k(n−2)) homeomorphic to T ∗T2 λ
√
ε-away from complete resonances.

13.3 The resonant frequency path shadowing all Ωi,[j]

We next find the resonant frequency path ω(t) in Theorem 2.4 shadowing all the segments
∪

i,j Ωi,[j].

Applying the last proposition, we have constructed a frequency path ω♯
1,[1] shadowing Ω1,[1] satisfying

the induction rules. We next do the same thing to shadow Ω2,[1]. Note that Ω1,[1] has the same entries

as Ω2,[1] except the first two, so should ω♯
1,[1] and ω♯

2,[1] do. Thus, we cannot do the induction procedures

of Ω1,[1] and Ω2,[1] independently. Let us introduce the following definition.
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Definition 13.4 (The connection rule). The frequency paths ω♯
i,[j] and ω♯

i+1,[j] obtained from

Proposition 13.3 shadowing Ωi,[j] and Ωi+1,[j], respectively, are said to satisfy the connection rule if

their all except the i-th and (i + 1)-th entries are identical, and it is similar for (i, [j]) and (i + 1, [j])

replaced by (n, [j]) and (1, [j + 1]), respectively.

Proposition 13.5. For generic P ∈ Br, there exists an εP > 0 such that for all 0 < ε < εP , the

Hamiltonian system (1.1) admits a continuous frequency path lying in a ϱ-neighborhood of all the segments∪
i,j Ωi,[j] and satisfying the induction rule and the connection rule for all i and j.

Proof. Let ω∗
i (i = 1, . . . ,M) be the frequencies and Ωi,[j] (j = 1, . . . , n and i = 1, . . . ,M − 1) be the

frequency segments defined in Subsection 13.1. In order to apply the last proposition, we always perform

a permutation such that the varying entry becomes the first one. Up to permutations of entries and a

scalar multiple, we can list the frequency segments as follows:

Ω1,[1](a) =

Ω1,[2](a) =
...

Ω1,[n](a) =

Ω2,[1](a) =
...

a ω∗
1,2 ω

∗
1,3 . . . ω

∗
1,n

a ω∗
1,3 . . . ω

∗
1,n ω∗

2,1

...
...

...

a ω∗
2,1 ω

∗
2,2 . . . ω

∗
2,n−1

a ω∗
2,2 . . . ω

∗
2,n−1 ω

∗
2,n

...
...

(13.1)

The rules are as follows:

(1) In Ωi,[j](a), the j-th entry is a ∈ [ω∗
i,[j] − ϱ, ω∗

i+1,[j] + ϱ]. The entries with subscripts less than j

coincide with those of ω∗
i+1 and the entries with subscripts greater than j coincide with those of ω∗

i .

(2) We permute entries of Ωi,[j] in such a way that a is the leading entry and the entries with subscripts

less than j are placed after its last entry.

(3) The vectors Ωi,[j] (i = 1, . . . ,M −1 and j = 1, . . . , n) are arrayed in a parallelogram such that Ωi,[j]

is placed on the ((i− 1)n+ j)-th row with the leading entry a placed at the ((i− 1)n+ j)-th column.

We inductively refine the frequency segment such that after Mn − 3 steps, all the above ω∗
i,j become a

rational multiple of ω∗
1,2. Denoting the resulting vector by ω♯

i,[j](a), we have |ω♯
i,[j](a)− Ωi,[j](a)| < ϱ. It

holds that

ω♯
1,[1](a) =

ω♯
1,[2](a) =

...

ω♯
1,[n](a) =

ω♯
2,[1](a) =

...

a
ω∗

1,2

p2

q2

p3

q3
. . . pn

qn

a
ω∗

1,2

p3

q3
. . . pn

qn

pn+1

qn+1

...
...

...
a

ω∗
1,2

pn+1

qn+1

pn+2

qn+2
. . . p2n−1

q2n−1

a
ω∗

1,2

pn+2

qn+2
. . . p2n−1

q2n−1

p2n

q2n

...
...

The frequency refinements are done inductively as follows. We introduce the superscript (ℓ) with

1 6 ℓ 6 Mn − 3 counting the step of refinements. During the ℓ-th step of the order reduction, we

modify the Diophantine number in the (ℓ + 2)-th column into pℓ+1

qℓ+1
ω∗
1,2, where the number pℓ+1

qℓ+1
is to be

determined.

Notation 8. (1) For each 1 6 ℓ 6Mn− 3, there is an index set I(ℓ) such that for each (i, [j]) ∈ I(ℓ),
Ωi,[j] intersects the (ℓ + 2)-th column of the table (13.1) not at the a entry. If (i, [j]) ∈ I(ℓ), we denote

the frequency vector by ω
(ℓ)
i,[j].

(2) If the frequency vector with the subscript (i, [j]) lies entirely to the left of the (ℓ + 2)-th column

without intersecting it at the step (ℓ), this vector has completed its refinement and has all the entries

being rational multiples of ω∗
1,2 except the leading a, so we denote it by ω♯

i,[j].

(3) The frequency vector Ωi,[j] lying to the right of the (ℓ + 2)-th column without intersecting it will

maintain its notation Ωi,[j].
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For example, in the case of ℓ 6 n − 2, we have that ω
(ℓ)
1,[1](a), ω

(ℓ)
1,[2](a), . . . , ω

(ℓ)
1,[ℓ](a) are the following,

respectively:

a
p1,2

q1,2
ω∗
1,2

p1,3

q1,3
ω∗
1,2 . . .

p1,ℓ+1

q1,ℓ+1
ω∗
1,2

p1,ℓ+2

q1,ℓ+2
ω∗
1,2 ω

∗
1,ℓ+3 . . . ω

∗
1,n

a
p1,3

q1,3
ω∗
1,2 . . .

p1,ℓ+1

q1,ℓ+1
ω∗
1,2

p1,ℓ+2

q1,ℓ+2
ω∗
1,2 ω

∗
1,ℓ+3 . . . ω

∗
1,n ω∗

2,1

...
...

...

a
p1,ℓ+2

q1,ℓ+2
ω∗
1,2 ω

∗
1,ℓ+3 . . . ω

∗
1,n ω∗

2,1 . . . ω
∗
2,ℓ−3.

The proposition is then proved by repeating this procedure.

Notation 9. To simplify the notations and for clarity, instead of using the double subscripts (i, [j])

∈ I(ℓ), we introduce a single subscript κ = 0, 1, . . . , ♯I(ℓ) − 1 (κ 6 n − 2) counting the number of

independent irreducible resonant integer vectors for each ω
(ℓ)
κ (a) for all a.

13.4 The proof of Lemma 13.1

In this subsection, we give the proof of the number-theoretic Lemma 13.1.

Proof of Lemma 13.1. Fix ϱ > 0 and τ > n. We prove the lemma by induction from j + 1 to j. First,

for j = n, it is easy to find two Diophantine numbers ωi
n and ωf

n. Suppose that we already have

(ω∗i
j+1, . . . , ω

∗i
n ) ∈ DC(n− j, α, τ).

We claim that given ωi
j and ωf

j , there are numbers ω∗i
j and ω∗f

j satisfying

|ω∗i
j − ωi

j | < ϱ, |ω∗f
j − ωf

j | < ϱ and (ω∗i,f
j , ω∗i

j+1, . . . , ω
∗i
n ) ∈ DC(n− j + 1, α, τ)

for sufficiently small α > 0.

Indeed, by the assumption, we already have

|⟨ω̂∗i
n−j , k̂n−j⟩| >

α

|k̂n−j |τ
, ∀ k̂n−j ∈ Zn−j \ {0}.

We want to show that all those ωj ∈ R which satisfy the condition

|⟨(ωj , ω̂
∗i
n−j), k̂n−j+1⟩| >

α

|k̂n−j+1|τ
, ∀ k̂n−j+1 ∈ Zn−j+1 \ {0} (13.2)

form a ϱ-dense set provided that α is small enough. Given k̂n−j , we consider all kj and ω†
j satisfying

kjω
†
j + ⟨ω̂∗i

n−j , k̂n−j⟩ = 0.

Formula (13.2) is satisfied automatically for k̂n−j+1 = (kj , k̂n−j) when kj = 0, so we assume kj ̸= 0. In

order to guarantee (13.2), we need to remove an interval of measure 2α
kj(|k̂n−j |+|kj |)τ

centered at ω†
j so that

(13.2) is satisfied for all ωj in the complement for this kj . The total measure of these intervals when kj
ranges over Z \ {0} is ∑

kj

2α

|kj |(|k̂n−j |+ |kj |)τ
6 2

∫ ∞

1

2α

x(|k̂n−j |+ x)τ
dx.

Next, the total measure of these intervals when k̂n−j ranges over Zn−j \ {0} is∑
k̂n−j

∑
kj

4α

|kj |(|k̂n−j |+ |kj |)τ
6
∑
k̂n−j

∫ ∞

1

4α

x(|k̂n−j |+ x)τ
dx

6
∫
Sn−j−1

∫ ∞

1

∫ ∞

1

4α

x(r + x)τ
dxrn−j−1drdSn−j−1

y=x/r
====== 4αC

∫ ∞

1

rn−j−τ−1

∫ ∞

1/r

1

y(1 + y)τ
dydr,
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where the constant C = 2π(n−j−1)/2

Γ((n−j−1)/2) is the area of the sphere Sn−j−1. The inner integral converges for

large y and has the asymptote log r for r large and y close to 1/r. Hence the iterated integral can be

estimated as ∫ ∞

1

rn−j−τ−1

∫ ∞

1/r

1

y(1 + y)τ
dydr 6 2

∫ ∞

1

rn−j−τ−1(log r + const)dr,

where the right-hand side is convergent since τ > n. The assertion above is proven if α > 0 is chosen

small enough.
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Appendix A A brief introduction to the variational theory

In this appendix, we give a brief introduction to the Mather theory and the weak KAM theory.

Appendix A.1 Minimizing measures and α- and β-functions

The theory is established for the Tonelli Lagrangian (see [38]).

Definition A.1 (Tonelli Lagrangian). Let M be a closed manifold. A C2-function L: TM × T → R
is called Tonelli Lagrangian if it satisfies the following conditions:

(1) Positive definiteness. For each (x, t) ∈M×T, the Lagrangian function is strictly convex in velocity:

the Hessian ∂2ẋẋL is positive definite.

(2) Superlinear growth. We assume that L has fiber-wise superlinear growth: for each (x, t) ∈M × T,
we have L/∥ẋ∥ → ∞ as ∥ẋ∥ → ∞.

(3) Completeness. All the solutions of the Lagrangian equations are well defined for the whole t ∈ R.
For autonomous systems, the completeness is automatically satisfied, as each orbit entirely stays in a

certain compact energy level set.

Given a closed 1-form ⟨ηc(x), dx⟩ with the first cohomology class [⟨ηc(x), dx⟩] = c, we introduce a

Lagrange multiplier ηc = ⟨ηc(x), ẋ⟩. Without danger of confusion, we also call it a closed 1-form.

For each C1 curve γ: R→ M with period k, there is a unique probability measure µγ on TM × T so

that the following holds: ∫
TM×T

fdµγ =
1

k

∫ k

0

f(dγ(s), s)ds

for each f ∈ C0(TM × T,R), where we use the notation dγ = (γ, γ̇). Let

H∗ = {µγ | γ ∈ C1(R,M) is periodic with the period k ∈ N}.

The set H of holonomic probability measures is the closure of H∗ in the vector space of continuous linear

functionals. One sees that H is convex.



Cheng C-Q et al. Sci China Math August 2023 Vol. 66 No. 8 1693

For each ν ∈ H, the action Ac(ν) is defined as Ac(ν) =
∫
(L − ηc)dν. It is proved in [35, 37] that for

each cohomology class c, there exists at least one invariant probability measure µc minimizing the action

over H:

Ac(µc) = inf
ν∈H

∫
(L− ηc)dν,

which is called a c-minimal measure.

Definition A.2 (The Mather set). (1) Let Hc ⊂ H be the set of c-minimal measures. The Mather set

M̃(c) is defined as M̃(c) =
∪

µc∈Hc
suppµc.

(2) The α-function is defined as α(c) = −Ac(µc) : H
1(M,R) → R. It is convex and finite everywhere

with superlinear growth.

(3) Its Legendre transformation β : H1(M,R) → R is called a β-function

β(ω) = max
c

(⟨ω, c⟩ − α(c)).

It is also convex and finite everywhere with superlinear growth (see [37]).

Note that
∫
λdµγ = 0 holds for each exact 1-form λ and each µγ ∈ H∗.

Definition A.3 (The rotation vector). For each measure µ ∈ H, one can define its rotation vector

ω(µ) ∈ H1(M,R) such that ⟨[λ], ω(µ)⟩ =
∫
λdµ holds for every closed 1-form λ on M .

We have the relation c ∈ ∂β(ρ) ⇔ α(c) + β(ρ) = ⟨c, ρ⟩.

Appendix A.2 (Semi)-static curves, the Aubry set and the Mañé set

The concept of semi-static curves is introduced by Mather [38] and Mañé [35].

Definition A.4 (The c-semi-static curve). A curve γ: R→M is called c-semi-static if

(1) in the time-1-periodic case, we have

[Ac(γ) |[t,t′]] = Fc((γ(t), t), (γ(t
′), t′)),

where

[Ac(γ) |[t,t′]] =
∫ t′

t

(L(dγ(t), t)− ηc(dγ(t)))dt+ α(c)(t′ − t),

Fc((x, t), (x
′, t′)) = inf

τ=tmod 1
τ ′=t′ mod 1

hc((x, τ), (x
′, τ ′)),

hc((x, τ), (x
′, τ ′)) = inf

ξ∈C1

ξ(τ)=x
ξ(τ ′)=x′

[Ac(ξ) |[τ,τ ′]];

(2) in the autonomous case, the semi-static curve is defined as

[Ac(γ) |(t,t′)] = Fc(γ(t), γ(t
′)), where Fc(x, x

′) = inf
τ>0

hc((x, 0), (x
′, τ)).

Definition A.5 (The c-static curve). A semi-static curve γ ∈ C1(R,M) is called c-static if, in addition,

the relation [Ac(γ) |(t,t′)] = −Fc((γ(t
′), τ ′), (γ(t), τ)) holds in the time-1-periodic case and [Ac(γ) |(t,t′)]

= −Fc(γ(t
′), γ(t)) holds in the autonomous case.

Definition A.6 (The Mañé set and the Aubry set). We call the Mañé set Ñ (c) the union of c-semi-

static orbits

Ñ (c) =
∪

{dγ : γ is c-semi-static}

and call the Aubry set Ã(c) the union of c-static orbits

Ã(c) =
∪

{dγ : γ is c-static}.
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Notation 10. We use M(c), A(c) and N (c) to denote the standard projections of M̃(c), Ã(c) and

Ñ (c) from TM × T to M × T, respectively.
They satisfy the inclusion relations M̃(c) ⊆ Ã(c) ⊆ Ñ (c). It is showed in [37, 38] that the inverse of

the projection is Lipschitz when it is restricted to A(c) as well as to M(c). By adding the subscript s to

N , i.e., Ns, we define its time-s-section. This principle also applies to Ñ (c), Ã(c), M̃(c), A(c) and M(c)

to denote their time-s-sections, respectively. For autonomous systems, these sets are defined without the

time component.

On the time-1-section of the Aubry set, a pseudo-metric dc was introduced by Mather [38], whose

definition relies on the quantity h∞c . Define

h∞c ((x, s), (x′, s′)) = lim inf
s=tmod 1
t′=s′ mod 1
t′−t→∞

hc((x, t), (x
′, t′)).

For the autonomous system,

h∞c (x, x′) = lim inf
τ→∞

hc((x, 0), (x
′, τ)).

The pseudo-metric dc on the Aubry set is defined as

dc((x, t), (x
′, t′)) = h∞c ((x, t), (x′, t′)) + h∞c ((x′, t′), (x, t)).

With the pseudo-metric dc, one defines equivalence classes in an Aubry set. The equivalence (x, t)

∼ (x′, t′) implies dc((x, t), (x
′, t′)) = 0, with which one can define the quotient Aubry set A(c)/ ∼. Its

element is called the Aubry class, denoted by Ai(c) or Ac,i, whose lift to TM × T is denoted by Ãi(c).

Thus,

A(c) =
∪
i∈Λ

Ai(c), Ã(c) =
∪
i∈Λ

Ãi(c).

Although Mather constructed an example with a quotient Aubry set homeomorphic to an interval, it is

generic that each c-minimal measure contains not more than n+1 ergodic components if the system has

n degrees of freedom (see [9]). In this case, each Aubry set contains at most n+1 classes. It is also known

that the Mather set, the Aubry set and the Mañé set are invariant under symplectic transformations,

which allows us to use the normal form (see [6]).

Appendix A.3 Elementary weak KAM theory

The concept of c-semi-static curves can be extended to the curves only defined on R±, which are called

forward (backward) c-semi-static curves, denoted by γ±c , respectively. A curve γ−c (resp. γ+c ) produces a

backward (resp. forward) semi-static orbit (γ−c , γ̇
−
c ) (resp. (γ+c , γ̇

+
c )).

Proposition A.7. If the Lagrangian L is of Tonelli type, for each point (x, τ) ∈ M × T, there is at

least one γ±c (t, x, τ) which is a forward (backward) semi-static curve.

Since both the ω-limit set of dγ+c and the α-limit set of dγ−c are in the Aubry set, one defines

W±
c =

∪
(x,τ)∈M×T

{
x, τ,

dγ±c (τ, x, τ)

dt

}
,

and calls W+
c the stable set, and W−

c the unstable set of the c-minimal measures, respectively. If

γ̇−(τ, x, τ) = γ̇+(τ, x, τ) holds for some (x, τ) ∈ M × T, passing through the point (x, τ, γ̇−c (τ, x, τ)), the

orbit is either in the Aubry set or homoclinic to this Aubry set.

If the Aubry set consists of one class, the stable as well as the unstable set has its own generating

function u±c such that W±
c = Graph(du±c ) holds almost everywhere [26]. These functions are weak KAM

solutions. We use u±c to denote the weak KAM solution for the Lagrangian L− ηc, where ηc is a closed

form with [ηc] = c. These functions are Lipschitz, and thus differentiable almost everywhere. At each

differentiable point (x, τ), (x, τ, ∂xu
−(x, τ)) uniquely determines the backward c-semi-static curve γ−x :
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(−∞, τ ] → M such that γ−x (τ) = x and γ̇−x (τ) = ∂yH(x, τ, ∂xu
−(x, τ)). Similarly, (x, τ, ∂xu

+(x, τ))

uniquely determines the forward c-semi-static curve γ−x : [τ,∞) → M such that γ+x (τ) = x and γ̇+x (τ)

= ∂yH(x, τ, ∂xu
+(x, τ)).

If two or more Aubry classes exist, there are infinitely many weak KAM solutions, among which we

are interested in the so-called elementary weak KAM solution, obtained from the function h∞c . Indeed,

treated as the function of (x, t), the function h∞c ((x, t), (x′, t′)) is a weak KAM solution that determines

orbits approaching the Aubry set as the time approaches infinity, and treated as the function of (x′, t′),

the function h∞c ((x, t), (x′, t′)) is a weak KAM solution that determines orbits approaching the Aubry

set as the time approaches minus infinity. Letting (x, t) range over an Aubry class, denoted by Ac,i, one

has a decomposition

h∞c ((x, t), (x′, t′)) = u−c,i(x
′, t′)− u+c,i(x, t), ∀ (x′, t′) ∈ Tn × T,

where u+c,i is a constant, and u−c,i is called the elementary weak KAM solution with respect to Ac,i.

Similarly, letting (x′, t′) range over an Aubry class, one obtains an elementary weak KAM solution u−c,i.

Again, for the autonomous system, one skips the time component.

Appendix B The theory of normally hyperbolic invariant manifolds

In this appendix, we introduce the theory of the normally hyperbolic invariant manifold (NHIM).

Appendix B.1 Normally hyperbolic invariant manifolds for Hamiltonian systems

Definition B.1. Let f : M → M be a Cr-diffeomorphism on a smooth manifold M with r > 1. Let

N ⊂ M be a submanifold invariant under f , i.e., f(N) = N . We say that N is a normally hyperbolic

invariant manifold (NHIM) if there exist a constant C > 0, rates 0 < λ < µ−1 < 1 and a splitting

TxM = Es
x ⊕ Eu

x ⊕ TxN for every x ∈ N in such a way that

v ∈ Es
x ⇔ |Dfk(x)v| 6 Cλk|v|, k > 0,

v ∈ Eu
x ⇔ |Dfk(x)v| 6 Cλ|k||v|, k 6 0,

v ∈ TxN ⇔ |Dfk(x)v| 6 Cµk|v|, k ∈ Z.

Notation 11. In the paper, we use the phrase “with uniform normal hyperbolicity independent of ε”,

which means that neither the normal Lyapunov exponents nor the splitting angle between Es and Eu

depends on ε.

Theorem B.2 (See [21, Theorem A.14]). Let NX ⊂ M—not necessarily compact—be normally

hyperbolic invariant for the map fX generated by the vector field X, which is uniformly Cr in a

neighborhood U of NX such that dist(M \ U,NX) > 0. Let fY be the Cr-map generated by another

vector field Y which is sufficiently close to X in the C1-topology. Then we can find a manifold NY

which is normally hyperbolic for Y and close to NX in the Cmin{r,| lnλ
lnµ |−ε} topology for any small ε. The

Lyapunov exponents for NY are arbitrarily close to those of NX if Y is sufficiently close to X in the C1

topology. The manifold NY is the only C1 manifold close to NX in the C0 topology, and invariant under

the flow of Y .

We give a proof of the result in Appendix B.2 in a special setting adapted to the need of the paper.

Remark B.3. The NHICs constructed in the paper are not invariant under the original Hamiltonian

flow, but invariant under a modified Hamiltonian by a cutoff function χ (see the proof of Proposition 5.2).

These NHICs vary as χ does but on Aubry sets lying entirely in the region where χ = 1, and they all

coincide. The role played by the NHICs is auxiliary. They are used to localize Aubry sets and run the

Cheng-Yan genericity argument. Once the generalized transition chains are known to exist, they are no

longer needed. Thus the NHICs obtained by choosing one cutoff function χ are sufficient for our purpose.
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When the normally hyperbolic flow is Hamiltonian, we have the following theorem saying that the

restriction of the Hamiltonian system to the central manifold is also Hamiltonian with fewer degrees of

freedom.

Theorem B.4 (See [23, Theorems 23 and 26]). Suppose thatM is endowed with a (an exact) symplectic

form ω. Let fε :M →M be a Cr family of Hamiltomorphisms, r > 2 preserving ω. Assume that N ⊂M

is an NHIM for f0 with rates λ and µ.

(1) Then for sufficiently small ε, there exist Cℓ-families of diffeomorphisms kε and rε with ℓ 6
min{r, | lnλ

lnµ |} satisfying fε ◦ kε = kε ◦ rε, where kε is the map such that kε(N) = Nε and rε : N → N is

the restricted map on N .

(2) We denote by Rε the generating vector field corresponding to rε defined by d
dεrε = Rε ◦ rε. Then

we have

• k∗εω = ωN is a (an exact) symplectic form on N ; it is independent of ε;

• the vector field Rε is the (exactly) Hamiltonian vector field with respect to ωN ; moreover, its (global)

Hamiltonian is Rε = Fε ◦ kε, where Fε is the Hamiltonian for fε.

Appendix B.2 A special normally hyperbolic invariant manifold theorem

In this paper, we need a special version of the theorem of the NHIM. Here, we present its detailed proof

using the graph transformation method. The statement given below is adapted to the setting needed in

the paper and we do not pursue generality.

Theorem B.5. Let N = (Rm/SZm) × Rm′
, S ∈ SL(m,R) be a submanifold of a (non compact)

manifold Mm+m′+k. Given Λ > 0, we define NΛ = (Rm/SZm)×BΛ(0) and choose a small neighborhood

U(⊂ M) of NΛ. Let V = (q̇, ṗ, ṅ) be a C2 vector field compactly supported in U satisfying the following

properties:

(1) {
q̇ = ε−1/2ω⋆ + a(p),

ṗ = 0,

where (q, p) ∈ NΛ, ω
⋆ ∈ Rm is constant, a(p) ∈ C2 and ε > 0.

(2) Restricted on the normal bundle
∪

x∈NΛ
Es

x ⊕ Eu
x , we have ṅ = An, where A ∈ Rk×k is a constant

matrix all of whose eigenvalues lie off the imaginary axis.

Then there exists a γ0 such that any vector field Vγ,ε compactly supported in U and satisfying that

∥Vγ,ε − V ∥C1 6 γ0, admits an NHIC that is a graph over NΛ.

Remark B.6. We see in the following proof that ε does not play any role, since the large term ε−1/2ω⋆

is constant and does not appear in the derivative of the time-1 map of the flow; on the other hand, only

derivative information matters in the proof (see (B.2)). The vector field Vγ,ε is also allowed to depend

on t periodically, and even with fast oscillations for example it depends on t/εα ∈ T, for any α > 0, in

which case the ∥ · ∥C1 norm does not include the derivative with respect to t.

Proof of Theorem B.5. We follow the proof of Fenichel [27] (see [30] for another approach). In the

proof, for clarity of the ideas, we consider first the contracting case, namely, Eu = 0 in the splitting of

TxM (see Definition B.1), i.e., all the eigenvalues of A have negative real parts.

We denote by f (resp. fγ) the time-1 map generated by the vector field V (resp. Vγ,ε). We now

introduce coordinates. We cover a neighborhood Ud (d > 0) of the center manifold NΛ by balls of the

form B2d(pi) with pi ∈ NΛ using any preferred Riemannian metric. In each of the ball B2d(pi), we choose

local coordinates given by exppi
: TpiNΛ ⊕ Es

pi
→ B2d(pi) with

exppi
(x, 0) ∈ B2d(pi) ∩NΛ and exppi

(0, 0) = pi. (B.1)

In coordinates, the map fn can be written as

Fj,i := exp−1
pj

◦fn ◦ exppi
: TpiN ⊕ Es

pi
→ TpjN ⊕ Es

pj
,
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if p = f−n(p′) for p ∈ B2d(pi) and p′ ∈ B2d(pj), where the number of iterations n will be determined

later. We suppress the subscripts i and j for simplicity and define F (x, y) = (X(x, y), Y (x, y)), where

Y (x, 0) = 0. We set

dF =

(
∂xX ∂yX

∂xY ∂yY

)
=:

(
A B

C D

)
.

We have by definition that
C(x, 0) = ∂xY (x, 0) = 0,

D(x, 0) = ∂yY (x, 0) = dF |Es ,

A(x, 0) = ∂xX(x, 0) = dF |Ec .

Now the normal hyperbolicity assumption implies the following important bounds:

∥D∥C0∥A−1∥C0 < 1/2, ∥D∥C0 < 1/2, ∥C∥C0 < η ≪ 1 (B.2)

by choosing n large and the neighborhood Ud small enough. The derivative dF is obtained by integrating

the variational equation derived from the ODE of Vγ,ε. Note that the term ε−1/2ω⋆ does not appear in

the variational equation since ω⋆ is a constant. Moreover, if Vγ,ε depends on t explicitly, the variational

equation does not involve derivatives with respect to t. Since the map fγ is γ-close to f in the C1

norm, we define Fγ from fnγ in the same way as F from fn. For fixed n and small enough γ, the above

bounds (B.2) also hold for Fγ in the domain Ud. In the following, we suppress the subscript γ and work

exclusively with Fγ instead of F .

Define first the set S of Lipschitz sections S : TpiNΛ → TpiNΛ ⊕ Es
pi
. Next, we define

Sδ := {S ∈ S | Lip(S) 6 δ}.

The graph transformation is defined to be

G : Sδ → S, (G(S))(X(x, S(x))) = Y (x, S(x)). (B.3)

Lemma B.7. For sufficiently small η and δ, the image of the graph transformation G lies in Sδ, i.e.,

G : Sδ → Sδ.

Proof. Suppose that ξ = X(x, S(x)) and ξ′ = X(x′, S(x′)) are sufficiently close. The injectivity of

X(·, S(·)) will be shown below. Then we have

∥(G(S))(ξ)− (G(S))(ξ′)∥ = ∥Y (x, S(x))− Y (x′, S(x′))∥
6 ∥C∥C0∥x− x′∥+ δ∥D∥C0∥x− x′∥. (B.4)

Next, we bound ∥x− x′∥ using ∥ξ − ξ′∥. It holds that

∥ξ − ξ′∥ = ∥X(x, S(x))−X(x′, S(x′))∥
> ∥X(x, S(x))−X(x′, S(x))∥ − ∥X(x′, S(x))−X(x′, S(x′))∥
> ∥A−1∥−1

C0∥x− x′∥ − ∥B∥C0∥S(x)− S(x′)∥
> (∥A−1∥−1

C0 − δ∥B∥C0)∥x− x′∥.

Let c =
∥C∥C0+δ∥D∥C0

∥A−1∥−1

C0−δ∥B∥C0
. Combining (B.4), we get

∥(G(S))(ξ)− (G(S))(ξ′)∥ 6 c∥ξ − ξ′∥.

We can make ∥C∥C0 as small as we wish by choosing η small, and hence for small δ, the leading term in

c is given by δ∥D∥C0∥A−1∥C0 6 δ/2.

Lemma B.8. The graph transformation G : Sδ → Sδ is a contraction in the C0 norm, i.e., ∥G(S)
−G(S′)∥C0 6 λ∥S − S′∥C0 for some 0 < λ < 1.
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Proof. For S, S′ ∈ Sδ, choosing x and x′ with ξ = X(x, S(x)) = X(x′, S′(x′)), we get

∥(G(S))(ξ)− (G(S′))(ξ)∥ = ∥Y (x, S(x))− Y (x′, S′(x′))∥
6 ∥C∥C0∥x− x′∥+ ∥D∥C0(∥S(x)− S′(x)∥+ ∥S′(x)− S′(x′)∥)
6 (∥C∥C0 + δ∥D∥C0)∥x− x′∥+ ∥D∥C0∥S − S′∥C0 .

Since ∥C∥C0 < η can be as small as we wish, ∥D∥C0 < 1/2 due to the contraction. The proof will be

completed if we can show ∥x− x′∥ 6 c∥S − S′∥C0 for some constant c. We have

∥X(x, S(x))−X(x′, S(x))∥ > ∥A∥C0∥x− x′∥

and

∥X(x′, S′(x′))−X(x′, S(x))∥ 6 ∥B∥C0(δ∥x− x′∥+ ∥S − S′∥C0).

Since we have ξ = X(x, S(x)) = X(x′, S′(x′)), combining the two estimates, we get ∥x−x′∥ 6 c∥S−S′∥C0

for some constant c. This completes the proof.

By the contracting mapping theorem, there exists a unique δ-Lipschitz solution S to the graph

transformation, S = G(S). By the uniqueness of the fixed point of G, we get that expS is invariant

under fγ .

For the hyperbolic splitting, i.e., the matrix A has both positive and negative eigenvalues, we introduce

coordinates respecting the splitting and write the map fnγ in coordinates as before, i.e.,

F (x, y, z) = (X(x, y, z), Y (x, y, z), Z(x, y, z)) ∈ Ec
p′ ⊕ Eu

p′ ⊕ Es
p′ , (B.5)

where (x, y, z) ∈ Ec
p ⊕ Eu

p ⊕ Es
p and f−n

γ (p′) = p with the derivative control for sufficiently small η, and

in a sufficiently small neighborhood Ud,

∥∂xX−1∥kC0∥∂zZ∥C0 < 1/2, ∥∂xX∥kC0∥(∂zY )−1∥C0 < 1/2,

∥∂xZ∥C0 , ∥∂xY ∥C0 , ∥∂yZ∥C0 , ∥∂zY ∥C0 < η.

The graph transformation is defined as follows: for S(x) = (Su(x), Ss(x)), a section in Ec
p′ → Ec

p′ ⊕
Eu

p′ ⊕ Es
p′ , we assign S′ = (S′u(x), S′s(x)) = G(S), where S′s(X(x, Su(x), Ss(x))) = Z(x, Su(x), Ss(x))

and S′u(x) is solved implicitly from

Su(X(x, S′u(x), Ss(x))) = Y (x, S′u(x), Ss(x)).

The solution exists since Y (x, 0, 0) = 0 and ∂yY ̸= 0. One can verify that the graph transformation G is

a contraction from Sδ → Sδ, and hence there is a unique solution (Su, Sv) satisfying

Ss(X(x, Su(x), Ss(x))) = Z(x, Su(x), Ss(x)),

Su(X(x, Su(x), Ss(x))) = Y (x, Su(x), Ss(x)).

Here, we only show how to prove the existence of the NHIC. We see from the above proof that the

ε−1/2ω⋆ term does not play a role since it disappears in the derivative of the map. It turns out that

the conclusion of the standard normally hyperbolic invariant manifold theorem holds in our setting. For

more information such as the regularity of the center manifold and the existence and regularity of stable

and unstable manifolds, we refer the readers to [27].

Appendix C Induction and dynamics around complete resonances

The main construction in this paper was done in the previous section for the n = 4 case. In this appendix,

we perform induction for the general n > 4 case. Theorem 2.4 will be proved in this appendix in full

generality.
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Appendix C.1 Two types of resonances and normal forms

In this appendix, we provide more details of the proof of Proposition 13.3. Suppose that we have

completed step ℓ and are about to work on the (ℓ+1)-th step of the induction. At step ℓ, we are handed

with the following data (we use the same notations as in Section 13):

(1) for each κ = 0, . . . , ♯I(ℓ)− 1, we have a frequency segment ω
(ℓ)
κ (a);

(2) a number µ(ℓ): the size of the neighborhood of ω
(ℓ)
κ (a) for all κ;

(3) associated with each ω
(ℓ)
κ (a) for all a, a collection of irreducible resonant integer vectors K

(ℓ)
κ =

{k′(ℓ)
κ , . . . ,k

(κ),(ℓ)
κ }. For some a, there is one more denoted by k

o,(ℓ)
κ . We define K

o,(ℓ)
κ = K

(ℓ)
κ

∪ {ko,(ℓ)
κ }. By definition, we have ♯K

(ℓ)
κ = κ and ♯K

o,(ℓ)
κ = κ+ 1.

We next pick a rational number pℓ+1

qℓ+1
such that pℓ+1

qℓ+1
ω∗
1,2 is within µ(ℓ)-distance of the irrational number

on the (ℓ+ 3)-th column of the table (13.1).

When we update ℓ to (ℓ+ 1), the subscript (i, [j]) remains unchanged, but the subscript κ associated

with each (i, [j]) will also be updated to κ+ 1. The κ = 0 case was handled in Sections 3, 5 and 6, and

the κ = 1 case was done in Section 9. The κ = n − 2 case means that the frequency segment ω
(ℓ)
i,[j](a)

has completed the reduction of orders so it becomes ω♯
i,[j] and it will be treated in Appendix C.4. So in

the remaining part of this appendix till Appendix C.4, we will consider the range ℓ = 0, . . . ,Mn− 3 and

κ = 0, 1, . . . ,min{♯I(ℓ)− 1, n− 3}.

Appendix C.1.1 Two types of resonances

The following lemma is an analogue of Lemmas 4.5 and 8.2.

Lemma C.1. Let ω
(ℓ)
κ (a), µ(ℓ) and ω

(ℓ+1)
κ+1 (a), K

(ℓ+1)
κ+1 (κ = 0, 1, . . . ,min{♯I(ℓ)− 1, n− 3}) be as above.

For any K(ℓ+1) > maxκ |K(ℓ)
κ |, let ko

κ+1,i (i = 1, . . . ,mκ) be the collection of all the integer vectors

in Zn
K(ℓ+1) \ spanK

(ℓ+1)
κ+1 satisfying ⟨ko

κ+1,i, ω
(ℓ+1)
κ+1 (aoi )⟩ = 0 for some aoi , and (ko

κ+1,i)
⊥ be the (n − 1)-

dimensional space orthogonal to the vector ko
κ+1,i. Then there exists a µ(ℓ+1) with Bµ(ℓ+1)(ω

(ℓ+1)
κ+1 (a))

⊂ Bµ(ℓ)(ω
(ℓ)
κ (a)) and

(1) for all ω ∈ Bµ(ℓ+1)(ω
(ℓ+1)
κ+1 (a)) \

∪
iBε1/3(ω

(ℓ+1)
κ+1 (aoi ) + (ko

κ+1,i)
⊥) and for sufficiently small ε, we

have

|⟨k, ω⟩| > ε1/3, ∀k ∈ Zn
K(ℓ+1) \ spanZK

(ℓ+1)
κ+1 ;

(2) for all ω ∈ Bµ(ℓ+1)(ω
(ℓ+1)
κ+1 (a)) ∩ Bε1/3(ω

(ℓ+1)
κ+1 (aoi ) + (ko

κ+1,i)
⊥), for each i and for all k ∈ Zn

K(ℓ+1) \
spanZK

o,(ℓ+1)
κ+1 , we have

|⟨k, ω⟩| > nK(ℓ+1)µ(ℓ+1). (C.1)

Note that in the lemma, our choices of µ(ℓ+1) and K(ℓ+1) are independent of the subscript κ. We will

next introduce a small parameter δ(ℓ+1), independent of κ, to determine K(ℓ+1) and hence µ(ℓ+1).

Appendix C.1.2 The KAM normal forms

Now we determine the resonance submanifold as

Σ(Ko,(ℓ)
κ ) := {y | ⟨ko,(ℓ)

κ ,ω(y)⟩ = ⟨k′(ℓ)
κ ,ω(y)⟩ = · · · = ⟨k(κ),(ℓ)

κ ,ω(y)⟩ = 0}.

Lemma C.1 allows us to apply Proposition 3.3 in the two cases in Lemma C.1 to obtain the following

normal forms.

Lemma C.2. Let δ(ℓ+1) be a small number satisfying δ(ℓ+1) < minκ{3(|K(ℓ)
κ |)−2} and define K(ℓ+1)

= (δ(ℓ+1)/3)−1/2. Then there exists an ε
(ℓ+1)
1 = ε

(ℓ+1)
1 (δ(ℓ+1),Λ) such that for all ε < ε

(ℓ+1)
1 , the following

holds. Suppose that ω⋆ is as in the case (1) in Lemma C.1. Then there exists a symplectic transformation

ϕ
(ℓ+1)
κ+1 defined on BΛ(0)× Tn that is oε→0(1) close to identity in the Cr0−1 norm such that

H
(ℓ+1)

κ+1,δ(ℓ+1) := H ◦ ϕ(ℓ+1)
κ+1 (x, Y )
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=
1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+Π

K
(ℓ+1)
κ+1

V + δ(ℓ+1)R
(ℓ+1)
κ+1 (x, Y ), (C.2)

where

(1) A and V are the same as those in Lemma 5.3;

(2) R
(ℓ+1)
κ+1 (x, Y ) = R

(ℓ+1)
κ+1,I(x) + R

(ℓ+1)
κ+1,II(x, Y ), where R

(ℓ+1)
κ+1,I consists of Fourier modes of V not in

Zn
K(ℓ+1) ∪ spanZK

(ℓ+1)
κ+1 , and we have |R(ℓ+1)

κ+1,I |r0−2 6 1 and |R(ℓ+1)
κ+1,II |r0−5 6 1.

Lemma C.3. Let δ(ℓ+1) and K(ℓ+1) be as in the previous lemma. Then there exists an ε
(ℓ+1)
2

= ε
(ℓ+1)
2 (δ(ℓ+1),Λ) such that for all ε < ε

(ℓ+1)
2 and any y⋆ such that ω⋆ = ω(y⋆) is as in the case (2) in

Lemma C.1, there exists a symplectic transformation ϕ
(ℓ+1)
κ+1 defined on BΛ(0)× Tn that is oε→0(1) close

to identity in the Cr0−1 norm such that

H
(ℓ+1)

κ+1,δ(ℓ+1) := H ◦ ϕ(ℓ+1)
κ+1 (x, Y )

=
1√
ε
⟨ω⋆, Y ⟩+ 1

2
⟨AY, Y ⟩+Π

K
o,(ℓ+1)
κ+1

V + δ(ℓ+1)R
(ℓ+1)
κ+1 (x, Y ), (C.3)

where

(1) A and V are the same as those in Lemma 5.3;

(2) R
(ℓ+1)
κ+1 (x, Y ) = R

(ℓ+1)
κ+1,I(x) + R

(ℓ+1)
κ+1,II(x, Y ), where R

(ℓ+1)
κ+1,I consists of Fourier modes of V not in

Zn
K(ℓ+1) ∪ spanZK

o,(ℓ+1)
κ+1 , and we have |R(ℓ+1)

κ+1,I |r0−2 6 1 and |R(ℓ+1)
κ+1,II |r0−5 6 1.

Appendix C.2 NHICs away from strong resonances

The following result is an analogue of Proposition 8.3, which will be used to establish the existence of

the NHIC.

Proposition C.4. Suppose that there exists an open and dense set O(ℓ)
κ ⊂ Π

K
(ℓ)
κ
Cr such that each

Π
K

(ℓ)
κ
P (y, ·) ∈ O(ℓ)

κ has a unique nondegenerate global maximum along the segment y ∈ ω−1(ω
(ℓ)
κ (a)), up

to finitely many bifurcations, where there are two nondegenerate global maxima.

Then for each Π
K

(ℓ)
κ
P ∈ O(ℓ)

κ there exists a δ
(ℓ)
0,κ = δ

(ℓ)
0,κ(ΠK

(ℓ)
κ
P ) such that defining δ

(ℓ)
0 = minκ δ

(ℓ)
0,κ

for any δ(ℓ) < δ
(ℓ)
0 , K(ℓ) = (δ(ℓ)/3)1/2 and µ(ℓ) = µ(ℓ)(K(ℓ)) as in Lemma C.1, and choosing ω

(ℓ+1)
κ+1 (a)

⊂ Bµ(ℓ)(ω
(ℓ)
κ (a)) associated with irreducible K

(ℓ+1)
κ+1 , we have an open and dense set O(ℓ+1)

κ+1

= O(ℓ+1)
κ+1 (Π

K
(ℓ)
κ
P ) in the unit ball of Π

K
(ℓ+1)
κ+1

Cr/Π
K

(ℓ)
κ
Cr such that for each Π

K
(ℓ+1)
κ+1

P with

Π
K

(ℓ)
κ
(Π

K
(ℓ+1)
κ+1

P ) = Π
K

(ℓ)
κ
P and Π

K
(ℓ+1)
κ+1

P −Π
K

(ℓ)
κ
P ∈ O(ℓ+1)

κ+1 ,

we have that Π
K

(ℓ+1)
κ+1

P (y, ·) has a unique nondegenerate global maximum along the segment

y ∈ ω−1(ω
(ℓ+1)
κ+1 (a)), up to finitely many bifurcations, where there are two nondegenerate global maxima.

In the cases of Lemmas C.1(1) and C.2, we can repeat the argument of Proposition 5.2 to find NHICs

C(K(ℓ+1)
κ+1 ) homeomorphic to T ∗Tn−κ−1 along the frequency ω

(ℓ+1)
κ+1 (a) with the help of Proposition C.4.

In the cases of Lemmas C.1(2) and C.3 in the presence of an extra resonance k
o,(ℓ+1)
κ+1 , the NHICs may or

may not exist. When the NHICs do not exist, we denote the corresponding resonance submanifolds by

Σ(K
o,(ℓ+1)
κ+1 ). We have the following result.

Proposition C.5. Let Π
K

(ℓ+1)
κ+1

P be as in the conclusion of Proposition C.4. Then for any λ > 0, there

exists a δ
(ℓ+1)
1 such that in the system H

(ℓ+1)

κ+1,δ(ℓ+1) , for all 0 < δ(ℓ+1) < δ
(ℓ+1)
1 , we have the following:

(1) there exists a Cr−1 NHIC C(K(ℓ+1)
κ+1 ) homeomorphic to T ∗Tn−κ−1 up to finitely many bifurcations;

(2) the Mather set lying in BΛ(0) × Tn and with the rotation vector orthogonal to K
(ℓ+1)
κ+1 lies inside

C(K(ℓ+1)
κ+1 ), provided that the rotation vector does not intersect the λ

√
ε-neighborhood of ∂h(Σ(K

o,(ℓ+1)
κ+1 ));

(3) the normal hyperbolicity is independent of ε or δ(ℓ+1).
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Appendix C.3 NHICs around strong resonances

We next focus on the case (2) of Lemma C.1, i.e., a generalization of that in Sections 9 and 10. In this

appendix, we perform the reduction of orders in the presence of an extra resonance k
o,(ℓ+1)
κ+1 . For given

(i, [j]), the extra resonance may appear during the κ-th step of the reduction of orders. Without loss of

generality, we assume that we encounter the extra resonance point during the κ = 0 step of the reduction

of orders. In this case, k
′(ℓ+1)
κ+1 and k

o,(ℓ+1)
κ+1 have comparable lengths and are much shorter than other

vectors in K
o,(ℓ+1)
κ+1 .

Appendix C.3.1 The linear symplectic transformation and the Hamiltonian normal form

We construct a matrixM
(ℓ+1)
κ+1 ∈ SL(n,Z), κ = 0, . . . ,min{♯I(ℓ), n−3}, whose first κ+2 rows are exactly

the vectors in K
o,(ℓ+1)
κ+1 ordered as k

o,(ℓ+1)
κ+1 ,k

′(ℓ+1)
κ+1 , . . . ,k

(κ+1),(ℓ+1)
κ+1 . This is always possible by applying

Lemma 4.4 repeatedly. The matrix M
(ℓ+1)
κ+1 induces a symplectic transformation

M
(ℓ+1)
κ+1 : (x, Y ) 7→ (M

(ℓ+1)
κ+1 x, (M

(ℓ+1)
κ+1 )−tY ).

We define A
(ℓ+1)
κ+1 = M

(ℓ+1)
κ+1 A(M

(ℓ+1)
κ+1 )t. Then the (i, j)-th entry of A

(ℓ+1)
κ+1 is given by k

(i−1),(ℓ+1)
κ+1

A(k
(j−1),(ℓ+1)
κ+1 )t, i, j = 1, . . . , κ+ 2, and we count o as 0.

We choose the base point y⋆ such that the frequency vector ω⋆ = ω(y⋆) ∈ Σ(K
o,(ℓ+1)
κ+1 ), and then we

get the transformed frequency vector M
(ℓ+1)
κ+1 ω⋆ has zero as the first κ + 2 entries. We define M

(ℓ+1)
κ+1 ω⋆

= (0, ω̂
(ℓ+1)
κ+1 ) ∈ Rn for some vector ω̂

(ℓ+1)
κ+1 ∈ Rn−κ−2.

The Hamiltonian (C.3) under the transformation becomes

(M
(ℓ+1)
κ+1 )−1∗H

(ℓ+1)

κ+1,δ(ℓ+1)

=
1√
ε
⟨ω̂(ℓ+1)

κ+1 , Ŷ ⟩+ 1

2
⟨A(ℓ+1)

κ+1 Y, Y ⟩+ V
(ℓ+1)
κ+1 (x1, . . . , xκ+2) + δ(ℓ+1)R

(ℓ+1)
κ+1 (x, Y ), (C.4)

where V
(ℓ+1)
κ+1 = (M

(ℓ+1)
κ+1 )−1Π

K
o,(ℓ+1)
κ+1

V and R
(ℓ+1)
κ+1 = (M

(ℓ+1)
κ+1 )−1∗R

(ℓ+1)
κ+1 .

We denote by A
(ℓ+1)
κ+1 the first (κ+ 2)× (κ+ 2) block of A

(ℓ+1)
κ+1 and by A

(ℓ)
κ the first (κ+ 1)× (κ+ 1)

block of A
(ℓ+1)
κ+1 . Note that A

(ℓ)
κ depends only on A and K

o,(ℓ)
κ but does not depend on k

(κ+1),(ℓ+1)
κ+1 .

Next, we introduce two subsystems

G(ℓ)
κ =

1

2
⟨A(ℓ)

κ Y (ℓ)
κ , Y (ℓ)

κ ⟩+ V (ℓ)
κ (x(ℓ)κ ), T ∗Tκ+1 → R,

G
(ℓ+1)
κ+1 =

1

2
⟨A(ℓ+1)

κ+1 Y
(ℓ+1)
κ+1 , Y

(ℓ+1)
κ+1 ⟩+ V

(ℓ+1)
κ+1 (x

(ℓ+1)
κ+1 ), T ∗Tκ+2 → R.

(C.5)

Defining δ(ℓ)V̄
(ℓ+1)
κ+1 (x

(ℓ+1)
κ+1 ) := V

(ℓ+1)
κ+1 − V

(ℓ)
κ , we have

∥δ(ℓ)V̄ (ℓ+1)
κ+1 ∥Cr0−2 6 1

|k(κ+1),(ℓ+1)
κ+1 |2

6 δ(ℓ)/3,

since the difference comes from the Fourier modes in V containing k
(κ+1),(ℓ+1)
κ+1 whose length is greater

than K(ℓ) = (δ(ℓ)/3)1/2.

Appendix C.3.2 NHICs around strong double resonances

In the following, without loss of generality, we fix λ such that αG̃(∂βG̃(λ(1, 0))) < ∆̃0, where ∆̃0 and G̃

(see (6.12)) depend only on Πk′,koV but not on other resonant integer vectors (see Proposition 7.4). This

is assumed in Propositions 7.7 and 10.3.

Proposition C.6. There exists an open and dense set O(ℓ)
κ in the unit ball of Π

K
o,(ℓ)
κ

Cr(Tn) such that

for each V with Π
K

o,(ℓ)
κ

V ∈ O(ℓ)
κ , there exists a δ

(ℓ)
2 = δ

(ℓ)
2 (Π

K
o,(ℓ)
κ

V) such that for all 0 < δ(ℓ) 6 δ
(ℓ)
2 ,
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K(ℓ) = (δ(ℓ)/3)1/2 and any k
(κ+1),(ℓ+1)
κ+1 with |k(κ+1),(ℓ+1)

κ+1 | > K(ℓ), there exists an open and dense

set O(ℓ+1)
κ+1 = O(ℓ+1)

κ+1 (Π
K

o,(ℓ)
κ

V) in the unit ball of Π
K

o,(ℓ+1)
κ+1

Cr(Tn)/Π
K

o,(ℓ)
κ

Cr(Tn) such that for each

Π
K

o,(ℓ+1)
κ+1

V ∈ O(ℓ+1)
κ+1 with Π

K
o,(ℓ)
κ

(Π
K

o,(ℓ+1)
κ+1

V) = Π
K

o,(ℓ)
κ

V and Π
K

o,(ℓ+1)
κ+1

V−Π
K

o,(ℓ)
κ

V ∈ O(ℓ+1)
κ+1 , the system

G
(ℓ+1)
κ+1 , κ = 0, 1, . . . ,min{♯I(ℓ)− 1, n− 3} satisfies the following:

(1) up to finitely many bifurcations, there exists an NHIC homeomorphic to T ∗T1 foliated by Mather

sets of the rotation vector ν(1, 0, . . . , 0) ∈ H1(Tκ+2,R), |ν| > λ; each Mather set is a periodic orbit, and

at each bifurcation point, the Mather set consists of two periodic orbits;

(2) the normal hyperbolicity is independent of δ(ℓ+1);

(3) there is a generalized transition chain connecting the channels

C(ℓ+1)
κ+1,± := {∂β

G
(ℓ+1)
κ+1

(ν(1, 0, . . . , 0)) | ±ν > λ} ⊂ H1(Tκ+2,R).

Appendix C.4 Dynamics around complete resonances

Suppose for the frequency segment with the subscript (i, [j]) that we have completed all the reductions of

orders, and hence it becomes the frequency ω♯
i,[j](a), for which there are (n− 2) resonant integer vectors

k′
i,[j], . . . ,k

(n−2)
i,[j] for all a, and for finitely many a’s, there is one more resonant integer vector ko

i,[j]. We

assume that each vector is irreducible. In the above Proposition C.6, we take κ+ 1 = n− 2.

The complete resonance on the energy level E > minh

Σ(Ko
i,[j]) = {y ∈ h−1(E) | ⟨ko

i,[j],ω(y)⟩ = ⟨k1
i,[j],ω(y)⟩ = · · · = ⟨k(n−2)

i,[j] ,ω(y)⟩ = 0}

is a point. We choose y⋆ ∈ Σ(Ko
i,[j]) so that ω⋆ = ω(y⋆) is such a complete resonance point. In the

remaining part of this appendix, we omit the subscript (i, [j]) for simplicity.

We introduce a matrix M ♯ ∈ SL(n,Z) whose first n − 1 rows are ko,k, . . . ,k(n−2). We first apply

Lemma C.3 to get a Hamiltonian normal form. We next introduce a linear symplectic transformation

M♯ : (x, Y ) 7→ (M ♯x, (M ♯)−tY ).

We set A♯ = M ♯A(M ♯)t. The transformed frequency has the form M ♯ω⋆ = (0, . . . , 0, ωn), ωn ̸= 0.

Applying the symplectic transformation M♯ to the normal form, one obtains a Hamiltonian of the

following form:

H(x, Y ) =
1√
ε
ωnYn +

1

2
⟨A♯Y, Y ⟩+ V (x1, x2, . . . , xn−1) + δ♯R(x, Y ) (C.6)

defined on T ∗Tn, where the remainder R(x, Y ) is bounded in C2 and V = (M♯)−1∗ΠKo
i,[j]

V,

V(·) = P (y⋆, ·).
Next, we perform a standard energetic reduction to reduce it to a system of n−1/2 degrees of freedom.

We update the notations x = (x1, . . . , xn−1) and y = (Y1, . . . , Yn−1). Removing the last row and the

column of A♯, we get a matrix A♯ ∈ GL(n−1,R). As ωn ̸= 0 and ε > 0 is very small, one has the function

Yn(x, xn, y) as the solution of the equation

H(x, xn, y, Yn(x, xn, y)) = E > minαH ,

which takes the form Yn = −Yδ♯
√
ε

ωn
, where

Yδ♯ =
1

2
⟨A♯y, y⟩+ V (x1, . . . , xn−1) + δ♯R̂

(
x,−xnωn√

ε
, y

)
(C.7)

is defined on T ∗Tn−1 × T and the remainder R̂ (x, τ, y) is bounded in C2.

Applying Propositions C.5 and C.6 inductively, we get the following result.
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Proposition C.7. There exists an open and dense set O in the unit ball of Cr(Tn) such that for each

V(·) = P (y⋆, ·) ∈ O, there exists a δ♯0 such that for all 0 < δ♯ < δ♯0, there exists an ε♯0 = ε♯0(δ
♯) such that

for all 0 < ε < ε♯0, we have the following for the Hamiltonian system Yδ♯ :

(1) There exists a collection of NHICs homeomorphic to T ∗T1, restricted to which the time-1 map of

the system Yδ♯ is a twist map. Any Mather set with rotation vectors ω♯ lies on the NHICs, if the rotation

vector does not lie in the λ
√
ε-neighborhood of Σ(Ko

i,[j]).

(2) The normal hyperbolicity is independent of ε or δ♯.

(3) There exists a generalized transition chain connecting the two channels

C♯
± := {∂βY

δ♯
(ν(1, 0, . . . , 0)) | ±ν > λ} ⊂ H1(Tn−1,R),

corresponding to two neighboring NHICs.

Appendix C.5 Switching from one frequency line to another

In this appendix, we explain how to move from one frequency segment to the next.

We set up the problem as follows. From the construction, our frequency segments have a hierarchy

structure. We consider the switch from ω♯
1,[1] to ω♯

1,[2]. For simplicity, we use the subscript [i] instead of

(1, [i]) for i = 1, 2. We need to switch from

ω♯
[1](a) = ρ♯[1],aω

∗i
1,2

(
a

ω∗
1,2

,
p2
q2
, . . . ,

pn
qn

)
to ω♯

[2](b) = ρ♯[2],bω
∗
1,2

(
pn+1

qn+1
,
b

ω∗
1,2

,
p3
q3
, . . . ,

pn
qn

)
.

The switch occurs near the complete resonances ω♯
[1] ∩ω♯

[2] = (pn+1

qn+1
, p2

q2
, . . . , pn

qn
) up to a positive multiple.

When a is moved to pn+1

qn+1
ω∗
1,2, since

pn+1

qn+1
is much closer to a Diophantine number than other rational

numbers, the new resonance introduced by pn+1

qn+1
is a weak resonance and the NHIC C(k′

[1], . . . ,k
(n−2)
[1] )

(homeomorphic to T ∗T2) exists. So moving a to pn+1

qn+1
ω∗
1,2 along ω♯

[1] is standard as in a priori unstable

systems. However, it is not clear if it is possible to move b to p2

q2
ω∗
1,2 along ω♯

[2], since
p2

q2
introduces a new

strong resonance ko
[2], so the NHIC C(k′

[2], . . . ,k
(n−2)
[2] ) does not exist near ω♯

[1] ∩ ω♯
[2].

In the next proposition, we solve the problem by combining and applying repeatedly the c-equivalence

mechanism (see Proposition 7.4) and the ladder mechanism (see Lemma 10.6).

Proposition C.8. Under the assumption of Proposition C.7, there exists a generalized transition chain

connecting the two channels C♯
i,[j](a) := ∂βH(ω♯

i,[j](a)) and C
♯
i′,[j′](b) := ∂βH(ω♯

i′,[j′](b)) near the complete

resonance ω♯
i,[j] ∩ ω♯

i′,[j′], (i
′, [j′]) = (i, [j + 1]) for j = 1, . . . , n − 1, or (i′, [j′]) = (i + 1, [0]), j = n and

i = 1, . . . ,M − 1.

Proof. Without loss of generality, we study only the case of switching from ω♯
[1](a) to ω♯

[2](b) as above.

All other cases are similar. By the construction in the previous subsection, there exists an NHIC C(K[1])

with K[1] = {k′
[1], . . . ,k

(n−2)
[1] } along the frequency segment ω♯

[1](a), since by the choice of pn+1/qn+1, the

point ω♯
[1](a) with a = pn+1/qn+1ω

∗
1,2 is always a point of weak resonance during each reduction of orders

along the segment ω♯
[1](a).

When viewed along the frequency segment ω♯
[2](b), the complete resonance point ω† := ω♯

[1] ∩ ω♯
[2]

admits an extra resonance ko
[2] which is shorter than any of k

(i)
[2] . So the NHIC C(K[2]) with K[2] =

{k′
[2], . . . ,k

(n−2)
[2] } may not exist near the complete resonance Σ(ko

[2],K[2]), and the Mather set with the

rotation vector ω† does not lie on C(K[2]).

We want to move a point on ω♯
[2] to ω♯

[1]. The argument goes as follows. We first move along C(K[2])

to arrive at a point ωi ∈ ω♯
[2] with dist(ωi,ω(Σ(ko

[2],k
′
[2]))) < λ. By Proposition 7.7, we get a convex

loop ω† + ℓ(ko
[2],k

′
[2]) enclosing 0 on the plane ω† + (SM ′′

[2])
−1span{e1, e2} whose Legendre transform

is a generalized transition chain of Proposition 7.7 (essentially due to Proposition 7.4). We first find a

point ω′ on ω† + ℓ(ko
[2],k

′
[2]) ∈ (k′

[1])
⊥ ∩ (∂α(α−1(E))).
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Complementing K[1] = {k′
[1], . . . ,k

(n−2)
[1] }, the rational number pn+1/qn+1 introduces one more

resonant integer vector denoted by ko
[1] who is much longer than any one in K[1]. We introduce

a normal form (C.6) at this complete resonance ω† as in Appendix C.4. Here, the n − 1 rows

of the matrix M ♯ ∈ SL(n,Z) are ordered as k′
[1], . . . ,k

(n−2)
[1] ,ko

[1]. We permute the variables to

x = (x2, x3, . . . , xn, x1) and y = (y2, y3, . . . , yn, y1). In this new coordinate system, the frequency ω′

has the form (0, O(λ), . . . , O(λ), O(ε−1/2)) since ω′ ∈ (k′
[1])

⊥ ∩ (∂α(α−1(E))). As in Subsection 9.1 after

a shear transformation S′′′ in (9.2), we separate a subsystem G3,δ (see (9.4)) of three degrees of freedom

(corresponding to the first three coordinates) from the full system. We want to kill the second entry

O(λ). Note that the system G3,δ admits an NHIC which is due to the NHIC C(k′
[1]) in the original

system. Restricted to the NHIC, we get a system Ḡ3,δ (see (9.9)) of two degrees of freedom. We remark

that the NHIC here is not near the strong double resonance. By Lemma 10.6 and Remark 10.7, under

the generic perturbation, all the cohomology classes on a level set of αḠ3,δ
lie in a generalized transition

chain, along which the frequency vector moves on a convex curve enclosing 0 on the plane span{e2, e3}.
In this way, we kill the second entry O(λ) of ω′. Define the resulting frequency ω′′. Now ω′′ lies on

(k′
[1])

⊥ ∩ (k′′
[1])

⊥ ∩ (∂α(α−1(E))). We next perform a shear transformation to separate a subsystem of

four degrees of freedom and restricted to its NHIC C(k′
[1],k

′′
[1]), we again get a subsystem of two degrees of

freedom of the form Ḡ above. We then kill the next O(λ) entry using again Lemma 10.6 and Remark 10.7.

This procedure can be done repeatedly to obtain a resulting frequency vector having the first n−2 entries

vanished. In the original coordinates, this means that the frequency is orthogonal to K[1] so it lies on

ω♯
[1]. The proof is now completed.

Appendix C.6 Completing the proof of Theorem 2.4

In this appendix, we complete the proof of Theorem 2.4 for general N > 3. The N = 4 case was already

given in Section 11.

Proof of Theorem 2.4. When the induction in Appendix C is completed, we obtain a collection of

frequency segments ω♯
i,[j] (i = 1, . . . ,M−1 and j = 1, . . . , n), which is concatenated into a connected curve

ω(t) : [0,M ] → (∂αH)(α−1
H (E)) lying in the ϱ-neighborhood of the union of Ωi,[j]. Next, the existence

of the NHIC (see the parts (2) and (3)(a) of Theorem 2.4) is given by Proposition C.7(1). Neighboring

NHICs near a complete resonance are connected by a generalized transition chain by Proposition C.7(2),

which proves the part (3)(c) of Theorem 2.4. Next, the existence of the transition chain switching from

one frequency line segment to the next is done by Proposition C.8. Propositions C.5–C.7 give the existence

of NHICs along which the generalized transition chain can be constructed by a similar proof as in the

n = 4 case (see Section 11 and Appendix E). This gives the part (3)(b). The cusp-residual genericity

follows from the same argument as the n = 4 case (see Section 11). This completes the proof.

Appendix D Variational construction of global connecting orbits

Global connecting orbits are constructed by shadowing a sequence of local connecting orbits. There

are two types of local connecting orbits, one is called type-h as it looks like a “heteroclinic” orbit, and

another one is called type-c as it is constructed by using “cohomology equivalence”, corresponding to the

assumptions (H1) and (H2) in Definition 2.1, respectively.

Appendix D.1 Local connecting orbits of type-h with incomplete intersections

For an Aubry set, if its stable set “intersects” its unstable set transversely, this Aubry set is connected

to any other Aubry set nearby by local minimal orbits. It can be thought of as a variational

version of Arnold’s mechanism, and the condition of geometric transversality is replaced by the total

disconnectedness of minimal points of the barrier function. However, in our case it may happen that the

stable set coincides with the unstable set on a subset with nontrivial first homology, which we call an



Cheng C-Q et al. Sci China Math August 2023 Vol. 66 No. 8 1705

incomplete intersection. In this appendix, we design a new method to handle this problem. Let us first

formulate a version for the time-periodic dependent Lagrangian.

Recall the definition of the function h∞c introduced in [38]:

h∞c (x, x′) = lim inf
k→∞

inf
γ(−k)=x
γ(k)=x′

∫ k

−k

(L(γ(t), γ̇(t), t)− ⟨c, γ̇⟩+ α(c))dt.

This function is closely related to the weak KAM. Indeed, for x ∈ Ac,i |t=0 (the time-1-section of the

Aubry class Ac,i ⊂ A(c)), we have

h∞c (x, x′) = u−c,i(x
′)− u+c,i(x),

where both u−c,i and u+c,i are the time-1-sections of the backward and forward elementary weak KAM,

respectively (see Appendix A.3 for details). It inspires us to introduce a barrier function for two Aubry

classes Ac,i and Ac,j :

Bc,i,j(x) = u−c,j(x)− u+c,i(x).

Passing through its minimal point, we see that there is a semi-static curve connecting these two classes,

provided that this point does not lie in the Aubry set.

If the Aubry set contains only one class, we work in a certain finite covering space so that there are

two classes. For example, if the configuration space is Tj+k+ℓ and the time-1-section of the Aubry set

stays in a neighborhood of a certain lower-dimensional torus, A0(c) ⊂ Tj+ℓ + δ, we introduce a covering

space Tj+ℓ × Tk−1 × 2T. With respect to this covering space the Aubry set contains two classes.

We introduce some notations and conventions.

Notation 12. (1) For the product space Tj+k+ℓ, we use Tj+ℓ = {x ∈ Tj+k+ℓ : xi = 0, ∀ i = j

+ 1, . . . , j + k}.
(2) Given a set S, a point x and a number δ, S + x denotes the translation of S by x, i.e., S + x

= {x′ + x : x′ ∈ S} and S + δ denotes the δ-neighborhood of S, i.e., S + δ = {x : d(x, S) 6 δ}.
(3) A set N is called a neighborhood of (j, ℓ)-torus if it is homeomorphic to an open neighborhood

of a (j + ℓ)-dimensional torus whose first homology group is generated by {ei : i = 1, . . . , j, j + k + 1,

. . . , j + k + ℓ}.
(4) Given a function B, we use Argmin{B,S} = {x ∈ S : B(x) = minB} to denote the set of those

minimal points of B which are contained in the set S.

Theorem D.1. For a time-periodic C2-Lagrangian L : TTj+k+ℓ×T→ R and a first cohomology class

c ∈ H1(Tj+k+ℓ,R), we assume the conditions as follows:

(1) the Aubry set A(c) contains two classes {Ac,i,Ac,i′}, which lie in a neighborhood of (j, ℓ)-torus,

i.e., Ac,i |t=0 ⊂ Ni and Ac,i′ |t=0 ⊂ Ni′ ; these neighborhoods are separated, i.e., N̄i ∩ N̄i′ = ∅;
(2) there exist topological balls {Om ⊂ Tj+k} with Ōm ∩ Ōm′ = ∅ for m ̸= m′, and each connected

component of Argmin{Bc,i,i′ ,Tj+k+ℓ\Ni ∪Ni′} is contained in certain Om × Tℓ.

Then for c′ ∈ H1(Tj+k+ℓ,R) satisfying the following conditions:

(1) ⟨c′ − c, g⟩ = 0 holds, ∀ g ∈ H1(Tj+k+ℓ,Tj+k,Z) and |c′ − c| ≪ 1;

(2) the Aubry set A(c′) ⊂ Ni ∪Ni′ ,

there exists an orbit (γ, γ̇) connecting Ã(c) to Ã(c′).

Remark D.2. The assumption of this theorem is the nonautonomous version in Definition 2.1(H1). If

ℓ = 0, the set Argmin{Bc,i,i′ ,Tj+k+ℓ\Ni ∪Ni′} is topologically trivial, and it implies that the stable set

intersects the unstable set topologically transversely. Therefore, it turns out to be a variational version of

Arnold’s mechanism. The case of ℓ > 0 is a generalization of Arnold’s mechanism allowing the separatrix

to remain non-splitting on the Tℓ component.

Proof of Theorem D.1. It is proved by exploiting the upper semi-continuity of the Mañé set with respect

to the perturbation on the Lagrangian. As A(c′) ⊂ Ni ∪ Ni′ , without loss of generality we assume

A(c′) ∩Ni′ ̸= ∅.
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Given a ball Om, there exists a small ϵ such that Om + ϵ does not touch other balls. Let τ1: R→ [0, ε]

be a smooth function such that τ1(t) = 0 for t ∈ (−∞, 0] ∪ [1,∞), τ1(t) > 0 for t ∈ [0, 1] and max τ1 = 1.

Let τ2 : R → [0, 1] be a smooth function such that τ2(t) = 0 for t 6 0 and τ2(t) = 1 for t > 1. Let

v : Tj+k+ℓ → [0, ε] so that v(x) = 0 if x /∈ (Om + ϵ)× Tℓ and v(x) = ε if x ∈ Om × Tℓ. As ⟨c′ − c, g⟩ = 0

for each g ∈ H1(Tj+k+ℓ,Tj+k,Z), there exists a smooth function u ∈ Tj+k+ℓ → R so that ∂u = c′ − c,

when it is restricted in (Om + ϵ)× Tℓ and ∂u = 0 if x /∈ (Om + 2ϵ)× Tℓ.

We introduce a modified Lagrangian

Lc,v,u(ẋ, x, t) = L(ẋ, x, t)− ⟨c, ẋ⟩ − τ1(t)v(x)− τ2(t)⟨c′ − c− ∂u, ẋ⟩

and consider the minimizer γk−,k+ : [−k−, k+] → M̄ of the action

hk
−,k+

c,v,u (x−, x+) = inf
γ(−k−)=x−

γ(k+)=x+

∫ k+

−k−
Lc,v,u(γ(t), γ̇(t), t)dt+ k−α(c) + k+α(c′),

where x ∈ Ac,i |t=0 and x′ ∈ Ac′,i′ |t=0. As the Lagrangian is Tonelli, for any large T , the set of the curves

{γk |[−T,T ] : k
−, k+ > T} is C2-bounded; therefore it is C1-compact. Letting T → ∞, by the diagonal

extraction argument, we can find a subsequence of γki , which converges C1-uniformly on each compact

interval to a C1-curve γ: R→ M̄ which is a minimizer of Lc,v,u on any compact interval of R.
Let C (Lc,v,u) denote the set of minimal curves of Lc,v,u. It follows from the above argument that the

set C (Lc,v,u) is non-empty. Restricted on (−∞, 0] as well as on [1,∞), each curve in C (Lc,v,u) satisfies

the Euler-Lagrange equation for L since τ1 = 0 and ⟨c′ − c− ∂u, ẋ⟩ is closed. We are going to show that

it also satisfies the equation for t ∈ [0, 1].

If both τ1 and τ2 vanish, each curve in the set C (Lc,v,u) is nothing else but a c-semi-static curve of

L. These curves produce orbits which connect Ac,i to Ac,i′ . Consider all the semi-static curves which

intersect Om × Tℓ at t = 0. As Om × Tℓ is open, the set of semi-static curves is closed, and there

exists a small tδ > 0 such that these curves intersect Om × Tℓ also for t ∈ [0, tδ]. If we set τ1 = 0

for t ∈ (−∞, 0] ∪ [tδ,∞) and set τ2 ≡ 0, these semi-static curves satisfy the Euler-Lagrange equation

produced by Lc,v,u. As a matter of fact, along these curves the function v keeps constant when τ1 ̸= 0,

and the term τ1v does not contribute to the equation. Clearly, the action of Lc,v,u along these curves is

smaller than that along those semi-static curves which do not pass through Om ×Tℓ around t = 0. Since

Lc,v,u is no longer time-periodic, a time-1-translation of its minimal curve is not necessarily minimal, i.e.,

γ ∈ C (Lc,v,u) does not guarantee k∗γ ∈ C (Lc,v,u) for k ∈ Z, where k∗ denotes a translation operator

such that k∗τ(t) = τ(t+ k).

Next, let us recover the term τ2. Because of upper semi-continuity, the minimal curve of Lc,v,u must

pass through Om × Tℓ if c′ is sufficiently close to c. Again, along these curves, the term τ2∂u does not

contribute to the Euler-Lagrange equation, and along these curves ∂u = c′ − c when τ2 ∈ (0, 1).

Obviously, the orbit produced by each curve in the set C (Lc,v,u) takes Ã(c) as its α-limit set and takes

Ã(c′) as its ω-limit set.

The orbit (γ, γ̇) obtained in this theorem is locally minimal in the following sense.

Local minimum. There are open balls V −
i and V +

i′ and positive integers t− and t+ such that

V̄ −
i ⊂ Ni\A0(c), V̄

+
i′ ⊂ Ni′\A0(c

′), γ(−k−) ∈ V −
i , γ(k+) ∈ V +

i′ and

h∞c (x−,m0) + hk
−,k+

c,v,u (m0,m1) + h∞c′ (m1, x
+)

− lim inf
k−
i →∞

k+
i →∞

∫ k+
i

−k−
i

Lc,v,u(dγ(t), t)dt− k−i α(c)− k+i α(c
′) > 0 (D.1)

holds, ∀ (m0,m1) ∈ ∂(V −
i × V +

i′ ), x
− ∈ Ni ∩ πx(α(dγ))t=0 and x+ ∈ Ni′ ∩ πx(ω(dγ)) |t=0, where k

−
i , k

+
i

∈ Z+ are the sequences such that γ(−k−i ) → x− and γ(k+i ) → x+.

The set of curves starting from V −
i and reaching V +

i′ with time k− + k+ makes up a neighborhood of

the curve γ in the space of curves. If it touches the boundary of this neighborhood, the action of Lc,v,u
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along a curve ξ will be larger than the action along γ. The local minimality is crucial in the variational

construction of global connecting orbits.

Next, we formulate the theorem for the autonomous Lagrangian. The idea is to treat one of the

angular variables as the time and repeat the proof in the time dependent case. Given a first cohomology

class, some coordinate system G−1
c x exists such that ω1(µ) > 0 for each ergodic c-minimal measure µ

if α(c) > minα, where we use ω(µ) = (ω1(µ), . . . , ωn(µ)) to denote the rotation vector of the invariant

measure. For this purpose, we work in a covering space π̄ : M̄ = R × π−1M̌ , where π−1 denotes the

operation to eliminate the first entry, π−1(x1, x2, . . . , xm) = (x2, . . . , xm), the dimension R is for the

coordinate x1, M̌ = Tj+ℓ × Tk−1 × 2T if the Aubry set consists of only one class which stays in a

neighborhood of (j, ℓ)-torus and M̌ = Tj+k+ℓ if the Aubry set contains two classes.

Theorem D.3. For the autonomous C2-Lagrangian L : TTj+k+ℓ → R and the first cohomology class

c ∈ H1(Tj+k+ℓ,R), we assume the conditions as follows:

(1) ω1(µ) > 0 holds for each ergodic c-minimal measure;

(2) the Aubry set A(c, M̌) contains two classes {Ac,i,Ac,i′}, and both stay in a neighborhood of (j, ℓ)-

torus, i.e., Ac,i ⊂ Ni and Ac,i′ ⊂ Ni′ ; these neighborhoods are separated, i.e., N̄i ∩ N̄i′ = ∅; the lifts of

both Ni and Ni′ to M̄ are still connected and extend to x1 = ±∞;

(3) there exist topological disks {Om ⊂ π−1(Tj × Tk)} with Ōm ∩ Ōm′ = ∅ for m ̸= m′ such that each

connected component of Argmin{Bc,i,i′ ,Σ0\Ni ∪Ni′} is contained in certain {x1 = 0} ×Om × Tℓ, where

Σ0 = {x1 = 0} × π−1M̌ is a section of M̄.

Then for c′ ∈ H1(Tj+k+ℓ,R) satisfying the following conditions:

(1) α(c′) = α(c);

(2) ⟨c′ − c, g⟩ = 0 holds, ∀ g ∈ H1(Tj+k+ℓ,Tj+k,Z) and |c′ − c| ≪ 1;

(3) the Aubry set A(c′) ⊂ Ni ∪Ni′ ,

there exists an orbit (γ, γ̇) connecting Ã(c) to Ã(c′).

The proof is similar to the autonomous case and we skip it. Details can be found in [33]. There is an

analogous local minimality statement to (D.1) that we also skip.

Remark D.4. For the autonomous system, the barrier function keeps constant along the minimal

curve. The intersection of minimal curves of the autonomous system with a codimension-1 section is an

analogy of A0(c) and N0(c) for the time-periodic system.

Appendix D.2 Local connecting orbits of type-c

Theorem D.5 (Connecting orbits of type-c). Assume that the cohomology class c∗ is c-equivalent to

the class c′ through the path Γ: [0, 1] → H1(Tn,R). For each s ∈ [0, 1], the following are assumed:

(1) there exists a coordinate system G−1
s x, where the first component of the rotation vector is positive,

and ω1(µΓ(s)) > 0 for each ergodic Γ(s)-minimal measure µΓ(s);

(2) for the covering space M̄s = R × Tn−1 in the coordinate system, the lift of the nondegenerately

embedded codimension-one torus ΣΓ(s) has infinitely many connected and compact components, each of

which is also a codimension-one torus.

Then there exist some classes c∗ = c0, c1, . . . , ck = c′ on this path such that there exists an orbit (γ, γ̇)

connecting Ã(ci) to Ã(ci+1).

Appendix D.3 Global connecting orbits

In this appendix, we explain how to construct globally connecting orbits from local ones, i.e., Theorem 2.3.

Sketch of the proof of Theorem 2.3. The proof of this theorem is the same as that in [34]. We only

sketch the idea of the proof here, and the readers can refer to [34], [17, Section 5] and [18, Section 5]

for the details. Because of the condition of the generalized transition chain, there is a sequence 0 =

s0 < s1 < · · · < sk = 1 such that for each 0 6 j < k, Ã(Γ(sj)) is connected to Ã(Γ(sj+1)) by the local

minimal orbit either of type-h with incomplete intersections or of type-c. The global connecting orbits

are constructed by shadowing such a sequence of orbits.
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Recall the construction of the local connecting orbit as above. For each i ∈ {0, 1, . . . , k}, let

ηi(x, ẋ) = ⟨ci, ẋ⟩ and

µi(x, ẋ) = wi⟨∂(τi ◦ s′i), ẋ⟩, ψi(x, ẋ) = χi⟨ci+1 − ci − ∂ui, ẋ⟩

in a certain coordinate system G−1
i x such that the first component of the rotation vector of M̃(Γ(si))

is positive. If it is for type-c, we set µi = 0. For each integer k, we introduce a translation operator on

functions k∗f(x1, x2, . . . , xn) = f(x1 − k, x2, . . . , xn).

Let π̃: Rn → M be the universal covering space. For a curve γ̃ : [−K,K ′] → Rn, let γ = π̃γ̃:

[−K,K ′] → M . Let t⃗ = (t−0 , t
±
1 , . . . , t

±
k−1, t

+
k ) and x⃗ = (x̃−0 , x̃

±
1 , . . . , x̃

±
k−1, x̃

+
k ) with t+i < t−i < t+i+1,

t−0 = −K and t+k = K ′. We consider the minimal action

hK,K′

L (m,m′, x⃗, t⃗) = inf
k∑

i=0

∫ t−i

t+i

(L− ηi)(dγ̃
−
i (t))dt

+
k−1∑
i=0

∫ t+i+1

t−i

(L− ηi − (kiGi)
∗(µi + ψi))(dγ̃

+
i (t))dt,

where the infimum is taken over all the absolutely continuous curves γ̃ : [−K,K ′] → Rn satisfying the

boundary conditions γ̃−(t−i ) = γ̃+i (t−i ) = x̃−i and γ̃+i (t+i+1) = x̃+i+1 for i = 0, 1, . . . , ik−1, γ(−K) = m and

γ(K ′) = m′. By the carefully set boundary condition, we find that the minimizer is smooth everywhere,

along which the term (kiGi)
∗(µi+ψi) does not contribute to the Euler-Lagrange equation. It is guaranteed

by the local minimality of (D.1) and setting the translation ki+1 − ki sufficiently large. Therefore, the

minimizer produces an orbit (γ̃, ˙̃γ) which has the properties stated in the theorem.

Appendix E The proof of genericity

In this appendix, we present a proof of the genericity property of (H1) type generalized transition chains

needed in the proofs of (3)(b) and (3)(c) of Theorem 2.4. The theory was well established in [17,18]. We

reproduce it here for readers’ convenience. Moreover, we need an autonomous version of the argument

for the proof of Lemma 10.6 and also a version for the Mañé perturbation, so we include these variants

in this appendix.

Appendix E.1 The settings

We consider two settings, the nonautonomous (A) and the autonomous (B) cases:

(A) Given a Tonelli Hamiltonian H(p, q, t) : T ∗Tn × T→ R,
(i) there exists an NHIC Π̃, which is a deformation of a standard cylinder {(p, q, t) ∈ T ∗Tn × T :

(p̂n−1, q̂n−1) = 0};
(ii) there is a continuous path Γc : [0, 1] → H1(Tn,R) such that for any c ∈ Γc, the Aubry set entirely

lies in the cylinder Π̃.

(B) Given a Tonelli Hamiltonian H(p, q) : T ∗Tn → R and an energy level E > minαH ,

(i) there is a subsystem G : N → R, where N ⊂ T ∗Tn is an NHIM of the Hamiltonian flow of H;

coordinates can be given such that G is a Tonelli system defined on T ∗T2;

(ii) there exists a continuous path Γc : [0, 1] → H1(Tn,R) such that for any c ∈ Γc, the Aubry set

entirely lies in the level set Π̃ := G−1(E).

Notation 13. (1) Let π̌ : M̌ → Tn be a double covering space of Tn such that the lift of Π̃ to T ∗M̌×T
consists of two copies, denoted by Π̃ℓ and Π̃r. For c ∈ Γc, if the Aubry set Ã(c) is an invariant torus

Υ̃c ⊂ Π̃, its lift also consists of two components, Υ̃c,ℓ ⊂ Π̃ℓ and Υ̃c,r ⊂ Π̃r.

(2) Denote by π the projection such that π(p, q, t) = (q, t), and let Υ = πΥ̃.

(3) Let Γ∗
c ⊂ Γc such that

Γ∗
c = {c ∈ Γc : Ã(c) is an invariant torus}.
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We allow the following two types of perturbations:

(a) perturbations depending on all the variables, and

(b) the Mañé perturbation: perturbations depending only on the angular variables.

Definition E.1 (The c-minimal curve and the c-minimal orbit). Given the cohomology class c ∈
H1(M,R) where M is a closed manifold, a curve γ : R → M is called c-minimal if for any curve

ξ : R→M and for any t0, t1, t
′
1 ∈ R with t′1 = t1 mod 1, γ(t0) = ξ(t0) and γ(t1) = ξ(t′1), one has∫ t1

t0

(L(γ(t), γ̇(t), t)− ⟨c, γ̇(t)⟩+ α(c))dt 6
∫ t′1

t0

(L(ξ(t), ξ̇(t), t)− ⟨c, ξ̇(t)⟩+ α(c))dt,

where the Tonelli Lagrangian L is assumed time-1-periodic: L(·, t) = L(·, t+1). If a curve γ is c-minimal,

then dγ := (γ, γ̇) is called a c-minimal orbit.

Appendix E.2 The main theorem

Let BD ∈ Rn denote a ball about the origin of radius D. We assume that D > 0 is suitably large such

that for all c ∈ Γc, the c-minimal orbits of H entirely stay in BD × Tn+1. Let Bϵ ⊂ Cr(BD × Tn+1,R)
(or Bϵ ⊂ Cr(Tn+1) in the Mañé perturbation case) denote a ball about the origin of radius ϵ > 0. In the

autonomous case, we define Bϵ similarly as subsets in Cr(BD × Tn) or Cr(Tn).

Theorem E.2. Let H be a Cr Tonelli Hamiltonian as in the above case (A) or (B). Then there exists

an ϵ0 = ϵ0(H) such that for all ϵ < ϵ0 and any small d1 > 0, there exists a set O open and dense in Bϵ

such that for each Hδ ∈ O, it holds for H + Hδ and simultaneously for all c ∈ Γ∗
c that the diameter of

each connected component of the set N (c, M̌) |t=0\(A(c, M̌) + δ) |t=0 ̸= ∅ is not larger than d1.

Proof of Theorem E.2 in the case (A) and (a).

Step 1. Relating the Mañé set to the minimum of the barrier functions.

Given an Aubry class for c ∈ Γc we can define its elementary weak KAM solution. In the covering

space M̌ , there are two Aubry classes for c ∈ Γc, Υ̃c,ℓ and Υ̃c,r. We introduce the elementary weak KAM

solution u±c,ℓ for Υ̃c,ℓ as in Appendix A.3.

For almost every point (q, t) ∈ M̌ × T\Υc,ℓ, the initial condition (∂pu
±
c,r(q, t) + c, q, t) determines a

forward (backward) c-minimal orbit that approaches Υ̃c,r as t → ±∞. For points (q, t) ∈ M̌ × T\Υc,r,

u±c,ℓ determines a c-minimal orbit approaching Υ̃c,ℓ.

Definition E.3 (The barrier function). The barrier functions for c ∈ Γc are defined as follows:

Bℓ
c(q, t) = u−c,ℓ(q, t)− u+c,r(q, t), Br

c (q, t) = u−c,r(q, t)− u+c,ℓ(q, t).

In the following, we only study Bℓ
c. The arguments for Br

c are the same. The following two lemmas

are standard.

Since the backward weak KAM is semi-concave and the forward weak KAM is semi-convex, the barrier

function is semi-concave. Therefore, we have the following lemma.

Lemma E.4. At each minimal point of Bℓ
c, both u

−
c,r and u+c,ℓ are differentiable.

At the global minimum of Bℓ
c, we have ∂u−c,ℓ = ∂u+c,r, and hence the backward minimal curve γ−c,x is

joined smoothly to the forward minimal curve γ+c,x. So we have the following lemma.

Lemma E.5. If (q, t) ∈ M̌×T\((Υc,ℓ∪Υc,r)+δ) is a global minimal point of Bℓ
c, then (q, t) ⊂ N (c, M̌),

i.e., passing through the point (q, t) there is a c-semi-static curve in the covering space M̌ × T.

Step 2. Localization.

For a class c ∈ Γ∗
c , the covering space M̌ ×T is divided into two annuli Ac,r and Ac,ℓ, bounded by Υc,ℓ

and Υc,r. Clearly, one has π̌Ac,r = π̌Ac,ℓ. The set N (c, M̌)\A(c, M̌) contains c-minimal curves which

cross the annulus from one side to another side or vice versa. Each of the curves produces a homoclinic

orbit to the torus Υ̃c.
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Lemma E.6. There is a finite partition of Γc : Γc = ∪Ik, and each Ik is a segment of Γc. For each Ik,

there are an annulus Nk ⊂ Ac,r |t=0, and two numbers δ > 0 and d > 0 such that for each c ∈ Ik ∩ Γ∗
c ,

(1) dist(Nk,Υc,ℓ ∪Υc,r) > δ;

(2) each curve (γ(t), t) lying in (N (c, M̌)\A(c, M̌)) ∩ Ac,r passes through Nk;

(3) for each backward (forward) c-minimal curve γ, let {qi = γ(2iπ) ∈ Nk}, then |qi − qj | > d if i ̸= j.

Step 3. The main perturbation lemma.

Given q∗ ∈ T2, let Sd1(q
∗) = {|q− q∗| 6 d1} denote a square. Given a function B ∈ C0(Sd1(q

∗),R), let

Argmin(Sd1(q
∗), B) = {q ∈ Sd1(q

∗) : B(q) = minB}.

Lemma E.7 (The main perturbation lemma). For any small ϵ > 0, there is a set O open and dense

in Bϵ such that for each Hδ ∈ O, letting Bℓ
c,δ be the barrier function for the Hamiltonian H+Hδ and the

class c, we have that simultaneously for all c ∈ Ik ∩Γ∗
c the set Argmin(Sd1(q

∗), Bℓ
c,δ) is trivial for Sd1(q

∗)

provided that Sd1(q
∗) ⊂ Nk and d1 < d/3 is suitably small.

Step 4. Completing the proof.

Let πi be the projection so that πi(q1, q2) = qi (i = 1, 2). A connected set V is said to be non-trivial for

Sd1(q
∗) if πiV ∩Sd1(q

∗) = πiSd1(q
∗) holds for i = 1 or i = 2. Otherwise, it is said to be trivial for Sd1(q

∗).

To finish the proof of Theorem E.2, we split the annulus Nk equally into squares {Sj = |q − qj | 6 d1

5 }.
By Lemma E.7, for each Sj , there exists an open and dense set Ok,j ⊂ Bϵ, and for each Hδ ∈ Ok,j , it

holds simultaneously for all c ∈ Ik ∩ Γ∗
c that the set Argmin(Sj , Bℓ

c,ϵ) is trivial for Sj . The intersection

∩Ok,j is still open and dense in Bϵ. For each Hδ ∈ ∩k,jOk,j , it holds simultaneously for all c ∈ Γ∗
c that

the diameter of each connected component of the Mañé set is not larger than 4
5d1 if it keeps away from

the Aubry set.

We prove Lemma E.6.

Proof of Lemma E.6. Because Γc is compact, the speed of each c-minimal orbit is uniformly upper

bounded for all c ∈ Γ∗
c . Given an integer m > 0, there will be a small δc > 0 such that the period for each

c-minimal curve to cross the annulus Nc = Ac,r\((Υc,ℓ ∪ Υc,r) + δc) is not shorter than 4mπ. Because

of the upper semi-continuity of the Mañé set in c, there exists some δ′c > 0 such that Υc′,ℓ ∪ Υc′,r does

not touch Nc and the period for each c′-minimal curve to cross the annulus Nc is not shorter than 2mπ

provided that |c− c′| 6 δ′c and c′ ∈ Γ∗
c . The first two items are then proved if we notice Γ∗

c is compact.

For the third one, we notice that the condition γ(2iπ) = γ(2jπ) for i ̸= j implies that γ is a curve in

the Aubry set. It contradicts the assumption. Since both Nk and Ik are compact, such a constant d > 0

exists.

Appendix E.3 The proof of the main perturbation lemma in the case (A) and (a)

In this appendix, we prove Lemma E.7. The proof is based on the following three lemmas whose proofs

can be found in [17, Section 6].

The next lemma on the regular dependence on a certain parameter of the invariant circles of the twist

map is the key observation to establish the genericity.

Lemma E.8. There exist a constant CL and a parametrization σ 7→ c(σ) ∈ Ik ∩ Γ∗
c such that the

invariant curve Υ̃c(σ),0(q) on the NHIC forms a 1/2-Hölder family in the C0 norm with respect to the

parameter σ :

max
q

|Υ̃c(σ),0(q)− Υ̃c(σ′),0(q)| 6
√
2CL|σ − σ′|. (E.1)

Each invariant circle corresponds to a unique c ∈ Γc such that the Aubry set is the circle. The

parameter σ is usually defined on a Cantor set, denoted by Σ. We next use the normal hyperbolicity of

the cylinder to extend the Hölder estimate to barrier functions defined on Tn.

Lemma E.9. For σ, σ′ ∈ Σ, let c = c(σ) and c′ = c(σ′). If c, c′ ∈ Ik and q ∈ Nk, then

|Bℓ
c(σ)(q, 0)−Bℓ

c(σ′)(q, 0)| 6 C(
√
|σ − σ′|+ |c− c′|).
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Recall the quantities defined in Lemma E.6 such as the annulus Nk and the number d > 0.

Lemma E.10. For any ϵ > 0 small enough, there exists a δ such that if Sδ(q) is a Cr-function such

that max{|q − q′| : q, q′ ∈ suppSδ} 6 d, suppSδ ⊂ Nk and ∥Sδ∥Cr 6 δ, then restricted on Ik, there exists

a perturbation H → H ′ = H +Hδ with ∥Hδ∥Cr < ϵ and the barrier function is subject to a translation

Bc(q, 0) → Bc(q, 0) + Sδ(q) ∀ c ∈ Ik, q ∈ suppSδ.

Let us now give the proof of Lemma E.7.

Proof of Lemma E.7. The openness is obvious. To show the denseness, by Lemma E.10, we construct

the perturbationsHδ ∈ Bϵ such that the barrier function is under a translation Bc(q, 0) 7→ Bc(q, 0)+Sδ(q)

for all c ∈ Ik ∩ Γ∗
c and q ∈ suppSδ.

Recall the number d > 0 defined in Lemma E.6. Given a square Sd1(q
∗) ⊂ Nk with 3d1 < d, we consider

the space of Cr-functions S1. A function S ∈ S1 if it satisfies the conditions that suppS ⊂ Bd/2(q
∗) and

S is constant in q2 when it is restricted in Sd1(q
∗). Similarly, we can define S2 such that S ∈ S2 implies

that suppS ⊂ Bd/2(q
∗) and it is constant in q1 when it is restricted in Sd1(q

∗).

In Si, we define an equivalent relation ∼ and two functions S1 ∼ S2 implies S1 − S2 = constant

when they are restricted on Sd1(q
∗). Obviously, Si/ ∼ is a linear space with infinite dimensions. For

S1, S2 ∈ Si/ ∼, ∥S1 − S2∥r measures the Cr-distance if they are regarded as the functions defined on

Sd1(q
∗). We also use Bi,ϵ to denote a ball in Si/ ∼ about the origin of radius ϵ in the sense of the

Cr-topology.

We claim that there exists a set O1,ϵ open and dense in B1,ϵ such that for each Sδ ∈ O1,ϵ, it holds

simultaneously for all c ∈ Ik ∩ Γ∗
c that

π1Argmin(Sd1(q
∗), Bℓ

c + Sδ) $ [q∗1 − d1, q
∗
1 + d1]. (E.2)

Let Fc = {Bℓ
c(q, 0) : c ∈ Γ∗

c} be the set of barrier functions. For i = 1, 2, we set

Zi = {B ∈ C0(Sd1(q
∗),R) : πiArgmin(Sd1(q

∗), B) = [q∗i − d1, q
∗
i + d1]},

where q∗ = (q∗1 , q
∗
2).

Should the denseness do not hold, there would be a small ϵ > 0, and for each Sδ ∈ B1,ϵ, some c ∈ Γ∗
c

exists such that Bℓ
c + Sδ ∈ Z1. Let Bk

1,ϵ be the intersection of B1,ϵ with a k-dimensional subspace. The

box-dimension of Bk
1,ϵ in C0-topology will not be smaller than k.

For any Bℓ
c ∈ Fc, there is only one Sδ ∈ B1,ϵ such that Bℓ

c + Sδ ∈ Z1. Otherwise, there would be

S′
δ ̸= Sδ such that Bℓ

c + S′
δ ∈ Z1 too. We have Bℓ

c + S′
δ = Bℓ

c + Sδ + S′
δ − Sδ where Bℓ

c + Sδ ∈ Z1 and

S′
δ ∼ Sδ, which contradicts the definition of S1. For Sδ ∈ B1,ϵ, let SSδ

= {Bℓ
c ∈ Fc : Bℓ

c + Sδ ∈ Z1}.
Should the denseness do not hold, SSδ

would be non-empty. For any Sδ, S
′
δ ∈ Bk

1,ϵ, each B
ℓ
c ∈ SSδ

and

each Bℓ
c′ ∈ SS′

δ
, one has

d(Bℓ
c, B

ℓ
c′) = max

q∈Sd1 (q∗)
|Bℓ

c(q, 0)−Bℓ
c′(q, 0)|

> max
|q1−q∗1 |6d1

∣∣∣ min
|q2−q∗2 |6d1

Bℓ
c(q, 0)− min

|q2−q∗2 |6d1

Bℓ
c′(q, 0)

∣∣∣
= max

|q1−q∗1 |6d1

|Sδ(q)− S′
δ(q)| = d(Sδ, S

′
δ), (E.3)

where q = (q1, q2) and d(·, ·) denotes the C0-metric. It implies that the box-dimension of the set Fc is

not smaller than the box-dimension of Bk
1,ϵ in C0-topology. Guaranteed by the modulus continuity of

Lemma E.9, the box-dimension of the set Fc is not larger than 3. Therefore, we obtain an absurdity if

we choose k > 4.

In the same way, we can show that there exists a set O2,ϵ open and dense in B2,ϵ such that for each

Sδ ∈ O2,ϵ, it holds simultaneously for all c ∈ Ik ∩ Γ∗
c that

π2Argmin(Sd1(q
∗), Bℓ

c + Sδ)  [q∗2 − d1, q
∗
2 + d1]. (E.4)

Therefore, there exists an arbitrarily small Si,δ ∈ Bi,ϵ such that πiArgmin(Sd1(q
∗), Bℓ

c + S1,δ + S2,δ) is

trivial for Sd1(q
∗) and for all c ∈ Ik ∩ Γ∗

c . Due to Lemma E.10, we obtain the density.
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Appendix E.4 The autonomous case

To prove Theorem E.2 for autonomous systems, i.e., the combination (B) and (a), we replace Lemmas E.8

and E.9 by the following two theorems respectively.

Theorem E.11 (See [16, Theorem 1.1]). Let G : T ∗T2 → R be a Tonelli Hamiltonian, the set EE be

the set of extremal points of the convex set
∪

E′6E{α
−1
G (E′)}, E > minαG, and u

±
c : R2 → R, c ∈ EE

be lifted elementary weak KAM solutions to R2 normalized by u±c (0) = 0. For a given bounded domain

Ω ⊂ R2, there exist a constant C(Ω, G) depending only on Ω and G, and a one-to-one parametrization

of the elementary weak KAM solutions of cohomology classes in EE by a number σ ∈ Σ ⊂ [0, 1] such that

we have the following Hölder regularity:

∥u±c(σ) − u±c(σ′)∥C0(Ω) 6 C(Ω, G)(∥c(σ)− c(σ′)∥+ |σ − σ′| 13 ), ∀σ ∈ Σ and c ∈ c(Σ) = EE .

Theorem E.12 (See [16, Theorem 6.1]). Let Tk × Rk(⊂ Tn × Rn), k < n be a normally hyperbolic

invariant manifold for the Hamiltonian flow with k > 2 and u±c(σ) be elementary weak KAM solutions

defined on Tn for c(·) : Σ → H1(Tk,R) continuous and one-to-one, where Σ is a compact subset of Rk.

If ū±c(σ) := ū±c(σ) |Tk is ν-Hölder continuous in σ, then the weak KAM solutions u±c(σ) satisfy the following

estimate:

∥u±c(σ) − u±c(σ′)∥C0(Tn) 6 C(∥σ − σ′∥ν + ∥c(σ)− c(σ′)∥)

for some constant C.

Appendix E.5 Mañé perturbations (b)

To prove Theorem E.2 for Mañé perturbations (b), we replace Lemma E.7 by [13, Theorem 4.2]. Thus,

we complete the proofs of all the cases of Theorem E.2.
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